
 

International Journal of Multidisciplinary Studies and Innovative 

Technologies 

e-ISSN:  2602-4888 

dergipark.org.tr/en/pub/ijmsit  

Research Article 
 

2025, 9 (1), 47-52  

DOI: 10.36287/ijmsit.9.1.7 

Received: April 25, 2025; Accepted: June 27, 2025 

 

47 

Lateral Resolution Enhancement of Ultrasound Images via Auto-

Encoder Network 

Mahsa Mikaeili1*, Hasan Şakir Bilge 2,3  

1*Mechatronic Engineering/İstanbul Okan University, İstanbul, Turkey (mahsa.mikaeili@okan.edu.tr) (ORCID: 0000-0002-8072-4353) 
2Electrical-Electronics Engineering/Gazi University Engineering Faculty, Ankara, Turkey (bilge@gazi.edu.tr) (ORCID: 0000-0002-4945-

0884) 
3Biomedical Calibration and Research Center/Gazi University, Ankara, Turkey  

 

Abstract – Ultrasound imaging is widely used for medical diagnostics, but its resolution is inherently constrained by factors such 

as wavelength, focal length, scan line density, and frame rate. A fundamental trade-off exists between lateral and temporal 

resolution, where increasing scan line density enhances spatial detail at the expense of reduced frame rates. This study explores 

the potential of deep learning, specifically an AutoEncoder-based approach, to enhance lateral resolution without sacrificing 

temporal resolution. The performance of the AutoEncoder is evaluated against traditional interpolation methods, including 

nearest, linear, and spline interpolation, using structural similarity (SSIM), peak signal-to-noise ratio (PSNR), multi-scale SSIM 

(MS-SSIM), and feature similarity (FSIM) metrics. The results demonstrate that the AutoEncoder outperforms interpolation 

methods, achieving the highest SSIM and FSIM, indicating superior structural preservation and feature retention. Additionally, 

the RF signal analysis shows that while the AutoEncoder maintains the overall waveform structure, minor amplitude and phase 

deviations exist. These findings suggest that deep learning-based super-resolution can effectively enhance lateral resolution while 

minimizing traditional resolution trade-offs. 
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I. INTRODUCTION 

Ultrasound imaging systems (US) are one of the standard 

imaging modalities in medicine, and they have multiple 

advantages over other imaging modalities. From the point of 

view of patient safety, US systems lack ionizing radiation and 

are also non-invasive. In addition, these systems are portable 

and allow patient monitoring at the bedside. The most 

important advantage of the US is providing real-time images 

[1]. These advantages enable this medical device to monitor a 

region of interest (ROI) during biopsy or apply it 

intraoperatively with a combination of other imaging during 

surgery.  

However, this imaging modality has some drawbacks arising 

from its inherent attributes. First of all, this imaging modality 

is prone to speckle noise. In addition, extending their 

resolution cells in an elevational distance, in turn, created an 

overlap between consecutive frames and caused artifacts in US 

images, and finally, US serves images with low resolution 

compared to other biomedical imaging modalities [2,3]. 

Generally, US image resolution is affected by different 

factors such as wavelength, focal length, number of scan lines, 

frame rates, etc. There is an inherent trade-off between lateral 

and temporal resolution in ultrasound imaging. Increasing the 

number of scan lines enhances lateral resolution by reducing 

the spacing between adjacent beams, thereby improving 

spatial detail. However, this comes at the expense of temporal 

resolution, as acquiring additional scan lines requires more 

time, reducing the frame rate. Conversely, reducing the 

number of scan lines increases the frame rate, thereby 

improving temporal resolution but at the cost of degraded 

lateral resolution due to larger beam spacing. 

Different studies applied different approaches to tackle this 

issue and increase ultrasound resolution. In [4], the authors 

classified these approaches into three methods. The first group 

relied on images. These studies [5-8] focused on increasing the 

resolution of B-mode US images by applying super-resolution 

methods. These methods apply to the final stage of US image 

creation. According to [4], there are also two other classes; 

however, these classes rely on RF data rather than US images 

and attempt to reconstruct US images with high resolution, 

either by employing pre-beamformed RF data or post-

beamformed RF data. 

Among the methods that rely on post-beamformed methods 

are [9,10]. In [9], a deep neural network (DNN) was proposed 

that integrates sparse regularization into its loss function to 

produce high-quality images with reduced computation time. 

Similarly, [10] introduced a model that enhances delay-and-

sum (DAS) beamforming by generating pixel-wise weights 

from single-angle (0°) plane wave data, achieving improved 

image quality over traditional methods.  

Besides studies that rely on post-beamformed data, some 

studies, such as [11-18], rely on pre-beamformed data. In [11], 

the authors adapted MobileNetV2 to emulate Minimum 

Variance Beamforming (MVB), achieving comparable image 
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quality with significantly reduced reconstruction time. 

Similarly, [12] utilized a U-Net-inspired architecture with 

strided convolutions to reconstruct images from raw channel 

data acquired via single-angle plane wave insonification, 

producing results visually similar to conventional delay-and-

sum methods. In [13], an autoencoder-based model, also 

inspired by U-Net, was proposed for beamforming using RF 

data from a single plane wave transmission. 

In [14], a fully convolutional network trained on simulated 

channel data and echogenicity maps was used to reduce 

speckle noise in B-mode images by processing 16 sub-aperture 

RF signals. In [15], a conditional GAN (cGAN) was proposed 

to directly convert raw RF channel data into B-mode images, 

effectively bypassing conventional beamforming. 

In [16], a fully convolutional neural network was proposed 

to replace traditional beamforming by framing ultrasound 

image reconstruction as a segmentation task applied directly to 

pre-beamformed RF data. Similarly, [17] introduced a deep 

learning approach to balance image quality and clinical 

usability, demonstrating that their model enhances 

reconstruction quality and acquisition frequency, supporting 

real-time ultrasound applications. In [18], a tight frame U-Net 

architecture was employed to enhance the Point Spread 

Function (PSF) in plane-wave imaging. The method 

reconstructs high-quality Tissue Reflectivity Functions 

(TRFs) from pre-beamformed RF data using a single plane-

wave transmission, modeling the TRF as an isotropic 2D 

Gaussian kernel convolved with a cosine function. 

Another investigated work is [19]. The authors propose a 

deep learning approach that unifies RF data from different 

angles by learning a linear transformation to a standard 0° 

reference. A two-stage neural network is introduced: PixelNet, 

a fully convolutional network that optimizes pixel-wise 

weights for enhancing DAS images, and a cGAN for further 

image refinement.  

All of the investigated studies demonstrate the growing 

impact of deep learning in ultrasound image reconstruction, 

particularly for ultrafast plane wave imaging. Research has 

explored post-beamformed and pre-beamformed RF data to 

enhance image quality, reduce computational complexity, and 

improve real-time usability [4]. One critical limitation of 

ultrafast plane wave imaging is the trade-off between frame 

rate and lateral resolution. Many deep learning-based 

approaches have been designed to reconstruct high-quality 

images from limited data, often relying on a single 

insonification angle. However, despite improving resolution 

and contrast using these methods, lateral resolution remains a 

significant challenge. 

As previously mentioned, lateral resolution in ultrasound 

imaging is directly affected by the number of scan lines used 

to form an image. A higher number of scan lines leads to better 

spatial sampling, reducing artifacts and improving the 

visualization of fine structures. Many reviewed studies focus 

on enhancing resolution using deep learning, but their 

effectiveness can be further improved by increasing the 

number of scan lines. This would allow neural networks to 

exploit spatial information better, leading to superior image 

quality, improved diagnostic accuracy, and enhanced clinical 

applicability. 

Despite these advancements, most existing deep learning 

approaches operate within the constraints of fixed spatial 

sampling or apply enhancement in the image domain without 

explicitly addressing scan line density. Our proposed method 

introduces an Autoencoder-based framework that directly 

targets the lateral resolution by learning to synthesize high-

density lateral information from low-density RF inputs. This 

is achieved by training the Autoencoder to map low-resolution 

input representations (fewer scan lines) to their high-resolution 

counterparts, effectively learning a non-linear upsampling 

function in the RF or image domain. Unlike traditional 

interpolation techniques, the Autoencoder captures contextual 

and structural priors across the lateral dimension. This enables 

it to reconstruct anatomically coherent details with reduced 

artifacts and improved Point Spread Function (PSF) 

characteristics. By operating in this learned feature space, the 

network leverages spatial dependencies that are typically 

underutilized in classical beamforming, thus pushing the 

boundaries of lateral resolution enhancement in ultrafast 

ultrasound imaging. 

 Therefore, this study aims to increase the number of scan 

lines or lateral resolution by employing an Autoencoder and, 

consequently, improve the lateral resolution of US images. 

The remainder of this paper is organized as follows. Section II 

discusses the applied methods and materials, and the results 

and discussion are presented in Sections III and IV, 

respectively. 

II. MATERIALS AND METHODS 

This section presents the theoretical background of 

AutoEncoder and the data acquisition process.   

A. Applied Network 

In this study, an AutoEncoder model is utilized to enhance 

the lateral resolution of US images. An Autoencoder is a neural 

network designed for unsupervised learning, primarily used 

for dimensionality reduction, feature extraction, and image 

reconstruction. It consists of two main components: an encoder 

and a decoder. The encoder compresses the input data into a 

lower-dimensional representation, often called the latent space 

or bottleneck, capturing the essential features while discarding 

noise and redundant information. The decoder then 

reconstructs the original input from this compressed 

representation, aiming to minimize the reconstruction loss.  

 In general, super-resolution autoencoders are designed with 

skip connections, upsampling layers, and transposed 

convolutions to enhance fine details and improve the image 

quality. 

Since this study aims to enhance the lateral resolution of US 

images, our utilized network consists of 18 layers, including 

convolutional, pooling, dropout, upsampling, and element-

wise addition layers. The encoder comprises five 

convolutional layers with ReLU activation, progressively 

increasing the number of filters from 64 to 256 while applying 

MaxPooling2D in the lateral dimension only to reduce width 

while preserving axial resolution. A dropout layer (0.3) is 

applied at the bottleneck to prevent overfitting. The decoder 

then symmetrically up-samples the lateral dimension using. 
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Three UpSampling2D layers and four additional convolutional 

layers to reconstruct high-resolution features. The network 

integrates two skip connections (add layers) to retain spatial 

information lost during down-sampling. The final output layer 

is a single-channel convolutional layer with ReLU activation, 

ensuring positive pixel values. The model is compiled with the 

Adam optimizer, mean squared error (MSE) loss function, and 

a learning rate of 0.000001. During training, 50 epochs and a 

batch size of 2 were used. Additionally, early stopping was not 

performed. Fig.1 and Table.1 show a block diagram of the 

applied network and its parameters, respectively. 

B. Data Acquisition  

To evaluate our method and perform training, synthetic 

ultrasound (US) images were generated using Field II [20] and  

MATLAB. The US data simulation was conducted for two 

scan line configurations: 64 and 128. The dataset with 64 RF 

scan lines was used as the network input, while the dataset with 

128 RF scan lines served as the ground truth during the training 

and testing phases. A total of 220 point reflectors were 

simulated, with varying numbers of reflectors per sample, 

ranging from 1 to 4. Additionally, the simulations were 

performed without apodization. Out of the total dataset, 205 

 

Fig.1. AutoEncoder block diagram 

Table1. Summary of network layers. 

Layer (Type) Output Shape Param # Connected to 

input_1 (InputLayer) (None, 1024, 64, 1) 0  

conv2d (Conv2D) (None, 1024, 64, 64) 640 input_1[0][0] 

conv2d_1 (Conv2D) (None, 1024, 64, 64) 36,928 conv2d[0][0] 

max_pooling2d (MaxPooling2D) (None, 1024, 32, 64) 0 conv2d_1[0][0] 

dropout (Dropout) (None, 1024, 32, 64) 0 max_pooling2d[0][0] 

conv2d_2 (Conv2D) (None, 1024, 32, 128) 73,856 dropout[0][0] 

conv2d_3 (Conv2D) (None, 1024, 32, 128) 147,584 conv2d_2[0][0] 

max_pooling2d_1 

(MaxPooling2D) 
(None, 1024, 16, 128) 0 conv2d_3[0][0] 

conv2d_4 (Conv2D) (None, 1024, 16, 256) 295,168 max_pooling2d_1[0][0] 

up_sampling2d (UpSampling2D) (None, 1024, 32, 256) 0 conv2d_4[0][0] 

conv2d_5 (Conv2D) (None, 1024, 32, 128) 295,040 up_sampling2d[0][0] 

conv2d_6 (Conv2D) (None, 1024, 32, 128) 147,584 conv2d_5[0][0] 

add (Add) (None, 1024, 32, 128) 0 
conv2d_3[0][0], 

conv2d_6[0][0] 

up_sampling2d_1 

(UpSampling2D) 
(None, 1024, 64, 128) 0 add[0][0] 

conv2d_7 (Conv2D) (None, 1024, 64, 64) 73,792 up_sampling2d_1[0][0] 

conv2d_8 (Conv2D) (None, 1024, 64, 64) 36,928 conv2d_7[0][0] 

add_1 (Add) (None, 1024, 64, 64) 0 
conv2d_8[0][0], 

conv2d_1[0][0] 

up_sampling2d_2 

(UpSampling2D) 
(None, 1024, 128, 64) 0 add_1[0][0] 

conv2d_9 (Conv2D) (None, 1024, 128, 32) 18,464 up_sampling2d_2[0][0] 

conv2d_10 (Conv2D) (None, 1024, 128, 32) 9,248 conv2d_9[0][0] 

conv2d_11 (Conv2D) (None, 1024, 128, 1) 289 conv2d_10[0][0] 
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samples were used for training, while the remaining data were 

reserved for testing. Out of the 205 training samples, 40 were 

reserved for validation purposes. The experiments were 

performed on an Intel i7 8th-generation processor unit (4 GHz 

with 32 GB RAM) and an NVIDIA GeForce GTX. All the 

software codes were built using TensorFlow. 

III. RESULTS 

This study aims to enhance the lateral resolution of 

ultrasound images by employing the AutoEncoder model. Our 

inputs are raw RF data (64 scan lines). Also, the network's 

output is RF data with a higher number of scan lines (128 scan 

lines). Then, these output scan lines proceed to create B-mode 

US images. Network training loss and validation loss are 

depicted in Fig.2. Also, an example of a reconstructed signal 

and its comparison with the ground truth is given in Fig.3.   

As apparent from Fig.3, the most noticeable differences 

between the reference RF signal and the AutoEncoder-

reconstructed signal appear in the high-amplitude regions, 

particularly around the peaks and troughs of the waveform. 

This suggests that while the AutoEncoder can capture the 

signal's overall shape and dominant frequency components, it 

may introduce minor distortion in amplitude and phase. These 

distortions could arise due to limitations in the model's 

capacity to precisely encode and reconstruct fine details, 

mainly when dealing with sharp transitions or high-frequency 

content. Furthermore, the discrepancies become more evident 

in the later parts of the signal, where the amplitude diminishes. 

This could indicate that the model struggles with learning and 

reconstructing low-amplitude details, possibly due to 

insufficient training data or the AutoEncoder's inherent bias 

toward capturing dominant features rather than subtle 

variations.  

Table.2 and Fig.4 demonstrate quantitative and qualitative 

values and their comparison with conventional methods. The 

comparative evaluation of reconstruction quality across four 

methods, Nearest, Linear, Spline, and AutoEncoder, reveals 

that the AutoEncoder consistently achieves the best overall 

performance across all image quality metrics. Regarding 

SSIM, the AutoEncoder yields the highest score of 0.8601, 

outperforming Nearest 0.8504, Linear 0.8503, and especially 

Spline 0.8383, indicating superior structural fidelity. 

Similarly, MS-SSIM and FSIM scores are highest for the 

AutoEncoder (0.7857 and 0.8687, respectively), suggesting 

better preservation of multi-scale structural information and 

feature similarity. While the PSNR of the AutoEncoder 

17.4129 dB is slightly lower than that of Nearest 17.4511 dB, 

the difference is minimal and not substantial enough to offset 

the consistent improvements seen in other perceptual metrics. 

Notably, the overall standard deviation (Overall STD) of the 

AutoEncoder is also the lowest, 0.2820, suggesting more 

consistent reconstruction performance across the dataset. In 

contrast, the Spline method yields the lowest metric values 

across all categories, indicating the weakest performance 

among the methods evaluated. These results collectively 

highlight the AutoEncoder's advantage in producing high-

fidelity and consistent image reconstructions compared to 

traditional interpolation techniques.  

 Also, the visual comparison in Fig.4 further supports these 

findings, showing that the AutoEncoder reconstructs finer 

details more effectively than traditional interpolation methods. 

Overall, the results demonstrate that the AutoEncoder-based 

approach outperforms interpolation techniques in maintaining 

structural integrity and feature similarity, making it a 

promising method for enhancing the lateral resolution of US 

images. 

In addition, Fig.5 presents the Structural Similarity Index 

(SSIM) performance across 15 reconstructed images using 

four methods: AutoEncoder, Nearest, Spline, and Linear 

interpolation. The AutoEncoder method consistently yields 

higher SSIM scores across most image indices, particularly 

excelling around indices 4–6 and 9, where the structural 

differences are more pronounced. This trend suggests that the 

AutoEncoder is more robust in maintaining structural integrity 

under varying conditions. The statistical results in the Table 

further support the comparative performance.3 A paired t-test 

reveals that the SSIM differences between AutoEncoder and 

Table.2. Comparison of Autoencoder results with conventional methods. 

 Nearest Linear Spline 
Auto- 

Encoder 

SSIM 0.8504 0.8503 0.8383 0.8601 

PSNR 17.4511 16.7225 15.9596 17.4129 

MS-SSIM 0.7648 0.7482 0.7420 0.7857 

FSIM 0.8435 0.8435 0.8389 0.8687 

Overal STD 0.2847 0.2826 0.3017 0.2820 

 

 

Fig.2. Training loss of AutoEncoder for enhancing lateral resolution. 

 

 

Fig.3. Comparison of ground truth signal with the reconstructed signal by 

using AutoEncoder. 
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Spline interpolation are statistically significant (p = 0.0467, t 

= 2.1815, df = 14), indicating a measurable  

Improvement in perceptual quality when using the 

AutoEncoder. In contrast, the differences between 

AutoEncoder and both Nearest (p = 0.9945) and Linear (p = 

0.2651) methods are not statistically significant, suggesting 

that while the AutoEncoder may visually outperform these 

approaches in specific images, the overall improvement is not 

consistent enough to reach statistical significance. Notably, the 

Nearest method occasionally surpasses the AutoEncoder in 

specific image indices, but its performance is less stable across 

the dataset. The plot and statistical analysis demonstrate that 

the AutoEncoder offers a meaningful improvement over the 

Spline method and generally delivers competitive or superior 

SSIM values compared to traditional interpolation methods, 

highlighting its potential for more perceptually accurate image 

reconstruction. 

 

IV. DISCUSSION 

The results from this study highlight the potential of deep 

learning-based super-resolution techniques, such as the 

AutoEncoder, in overcoming the inherent trade-off between 

lateral and temporal resolution in ultrasound imaging. 

Traditional methods like nearest, linear, and spline 

interpolation attempt to enhance lateral resolution by 

estimating missing spatial information between scan lines. 

However, their performance is limited in preserving fine 

structural details. The quantitative evaluation indicates that the 

AutoEncoder outperforms these interpolation methods across 

multiple metrics, particularly in SSIM (0.8601) and FSIM 

(0.8687), which measure structural and feature similarity, 

respectively. These improvements suggest that the 

AutoEncoder can reconstruct finer spatial details more 

effectively while mitigating artifacts and distortions 

introduced by conventional interpolation techniques.  

To statistically validate these differences, paired t-tests were 

performed comparing the SSIM values of the AutoEncoder to 

each interpolation method across 15 image pairs. The results 

showed a statistically significant improvement over the spline 

method (p = 0.0467, t = 2.1815, df = 14), while differences 

with nearest (p = 0.9945) and linear (p = 0.2651) interpolation 

were not statistically significant. These findings confirm that 

the AutoEncoder provides a measurable advantage over spline 

interpolation, the poorest-performing method overall, while 

maintaining at least comparable performance to the other 

interpolation approaches. 

This ability to enhance lateral resolution without requiring 

additional scan lines presents a significant advantage, as it 

helps maintain greater spatial detail without the trade-off of 

reducing frame rate, thus preserving temporal resolution. The 

relationship between the RF signal reconstruction and image-

based results further supports the feasibility of deep learning 

for ultrasound super-resolution. In the RF domain, the 

AutoEncoder successfully captured the overall waveform 

structure. Still, it exhibited slight amplitude and phase 

deviations, which may contribute to minor errors in the final 

ultrasound image reconstruction. Despite these minor 

discrepancies, the method still demonstrated better spatial 

detail preservation than interpolation techniques. This 

suggests that the AutoEncoder can learn underlying signal 

structures effectively, helping to balance lateral resolution 

enhancement with minimal temporal resolution loss. However, 

further optimizations, such as training with larger datasets, 

refining network architectures, or incorporating advanced loss 

functions tailored for ultrasound imaging, could enhance its 

ability to generalize across different imaging conditions.  

 

 

 

Fig.4. (a) Indicates ground truth (128 scan line). (b) low resolution (64 scan line). (c) results from nearest interpolation. (d) results from linear interpolation. 

(e) results from spline interpolation. (f) results from Autoencoder. 

 

Fig.5. Comparision of SSIM Per-image.  

Table.3. Paired t-test results comparing SSIM values of the 

AutoEncoder method against conventional interpolation methods 

across 15 images. 

 
p-

Value 

t-

statistic 
df 

Significant 

at 

 𝜶 = 𝟎. 𝟎𝟓 

level 

AutoEncoder-

Nearest 
0.9945 -0.0070 14 False 

AutoEncoder-

Spline 
0.0467 2.1815 14 True 

AutoEncoder-

Linear 
0.2651 -1.1610 14 False 
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V. CONCLUSION 

   This study demonstrates the effectiveness of an 

AutoEncoder-based approach in enhancing the lateral 

resolution of ultrasound images while mitigating the trade-offs 

associated with traditional interpolation methods. The results 

indicate that the AutoEncoder outperforms conventional 

methods in preserving structural details, as evidenced by 

higher SSIM, MS-SSIM, and FSIM values. The RF signal 

analysis further supports these findings, showing that while the 

AutoEncoder captures the general waveform structure, minor 

deviations in amplitude and phase may contribute to small 

reconstruction errors in the final image. Despite this, the deep 

learning-based approach provides a promising alternative to 

conventional interpolation, offering improved spatial 

resolution without sacrificing temporal resolution. However, 

the relatively small dataset size may limit the generalizability 

of the results to broader clinical scenarios. Additionally, the 

training process was constrained by computational resources, 

and a more powerful GPU-equipped system could enable 

deeper or more complex network architectures and larger 

batch sizes, potentially leading to improved performance. 

Future work could focus on refining the model architecture, 

incorporating larger and more diverse datasets, and optimizing 

loss functions to enhance performance. These findings 

highlight the potential of deep learning in overcoming the 

limitations of traditional ultrasound imaging, paving the way 

for more accurate and high-resolution diagnostic imaging. 
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