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ABSTRACT: This study presents a bibliometric and thematic analysis of research focused on improving 

the accuracy of digital elevation models (DEMs) using machine learning (ML) techniques between 2005 

and 2025. Drawing from Scopus and Web of Science databases, complemented by manual reference 

chaining, approximately 250 publications were analyzed. Results show a notable increase in scholarly 

activity after 2018, linked to the release of enhanced DEM products such as CoastalDEM and FABDEM. 

Keyword co-occurrence and thematic coding revealed four conceptual pillars: models, methods, 

applications, and data sources. Ensemble algorithms like Random Forest and LightGBM dominate the 

methodological landscape, while deep learning methods such as Convolutional Neural Network (CNNs) 

and Generative Adversarial Network (GANs) are emerging. Despite advancements, methodological 

homogeneity, reliance on Root Mean Square Error (RMSE), and underutilization of data fusion and semi-

supervised learning strategies remain significant limitations. Silent themes and regional gaps emphasize 

the need for methodological diversification and broader global integration. Future research should 

prioritize algorithmic diversity, standardized multi-metric validation frameworks, open science practices, 

and regional model applications. This study offers a structural mapping of DEM–ML research and 

proposes strategic directions for advancing the field through interdisciplinary collaboration and 

innovation. 

 

Keywords: Accuracy Improvement, Bibliometric Analysis, Data Fusion, Digital Elevation Model, Machine 

Learning 

1. INTRODUCTION 

Digital elevation models (DEMs) are fundamental geospatial datasets that digitally represent the 

three-dimensional structure of the Earth's surface. These models have become indispensable tools across 

numerous disciplines, including hydrological modeling, flood risk analysis, terrain classification, urban 

planning, disaster risk assessment, and environmental impact studies [1]. Despite their widespread utility, 

DEMs inherently suffer from vertical accuracy issues and systematic biases, primarily due to variations in 

data acquisition methods, sensor characteristics, and spatial resolution. In critical applications such as sea-

level rise modeling and coastal flooding assessments, even minor elevation errors can drastically influence 

predictive accuracy and subsequent risk estimations [2]. 

The release of the Shuttle Radar Topography Mission (SRTM) dataset [3] in the early 2000s and the 

global availability of the Google Earth platform in 2005 [4] marked significant milestones, substantially 

enhancing accessibility to elevation data. Consequently, post-2005 literature has increasingly focused on 

improving DEM accuracy through error correction methodologies and integration of multi-source 

datasets. 

In recent years, machine learning (ML) approaches have emerged prominently as effective methods 

for addressing systematic and random errors in DEMs, enhancing model resolution, and integrating 
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diverse data sources. Algorithms such as Random Forest, LightGBM, Support Vector Machines (SVM), 

Convolutional Neural Networks (CNN), and Generative Adversarial Networks (GAN) have 

demonstrated notable success in correcting elevation inaccuracies, generating bare-earth surfaces, and 

achieving super-resolution model enhancements [5], [6]. Enhanced DEMs, including CoastalDEM [7], 

FABDEM [5], Diluvium DEM [6], and DeltaDTM [8], have been developed using these ML techniques, 

significantly surpassing traditional model limitations. 

Parallel to these technological advancements, there has been a considerable increase in academic 

production concerning DEM accuracy enhancement techniques. Preliminary systematic searches indicate 

that between 2005 and 2025, approximately 225 documents from Scopus and 149 from Web of Science 

explicitly focus on ML-driven DEM accuracy improvement. Despite this growth, the resulting literature 

exhibits considerable heterogeneity in terms of methods, applied algorithms, accuracy metrics, and 

specific application contexts. Therefore, a comprehensive bibliometric and thematic analysis is required 

to systematically explore trends, thematic clusters, and research trajectories in this burgeoning field. 

In response, this study conducts a detailed bibliometric analysis of scholarly literature addressing 

machine learning applications aimed at improving the accuracy of digital elevation models. Bibliometric 

analyses have become a prevalent tool across geospatial sciences to map research trends, thematic clusters, 

and collaborative networks. For example, Polat et al. [9] performed a comprehensive bibliometric study 

on cadastre research from 1958 to 2018, uncovering key journals, countries, and emerging trends. Later, 

Polat et al. [10] conducted an analysis of Land Administration Domain Model (LADM) literature (2012–

2020), revealing author, institutional, and country-level intellectual structures. In related domains, Yu et 

al. [11] reviewed global remote sensing methods for glacier mass balance using bibliometric and 

knowledge mapping techniques; another study [12] analysed the evolution of remote sensing for mineral 

exploration from 2000 to 2023. Additionally, bibliometric reviews of spatial data infrastructure in urban 

contexts, remote sensing in marine sustainability have demonstrated the method’s versatility across 

different geospatial fields [13]. Nevertheless, targeted bibliometric investigations specifically addressing 

machine learning‑based accuracy enhancements in digital elevation models are still lacking—our study 

aims to address this clear gap. 

This study contributes to this growing body of work by presenting a focused bibliometric mapping at 

the intersection of DEM accuracy enhancement and ML algorithms. Utilizing bibliometric tools such as 

VOSviewer [14], this analysis not only tracks the evolution of publication trends over the past two decades 

but also identifies conceptual structures through keyword co-occurrence networks, citation patterns, and 

thematic clustering. Furthermore, each publication is thematically coded based on the type of elevation 

model used, ML algorithm employed, accuracy metrics utilized, and the contextual application scenarios. 

In addition to database-driven systematic searches, a manual reference chaining method was 

employed, starting from the seminal publication "DiluviumDEM: Enhanced accuracy in global coastal 

digital elevation models" [6]. Through this manual process, 92 highly relevant studies were reviewed, and 

the 10 most influential publications were identified based on thematic relevance and citation impact. This 

dual strategy ensures a more comprehensive and representative analysis of the field, capturing not only 

indexed publications but also critical works that might otherwise remain underrepresented. 

By providing a comprehensive structural mapping of the literature at the intersection of digital 

elevation modeling and machine learning, this research aims to elucidate current research emphases, 

highlight methodological strengths and limitations, and propose strategic directions for future 

investigations. 

2. MATERIAL AND METHODS 

2.1. Literature Search Strategy 

The literature search was systematically conducted through Scopus and Web of Science (WoS) 

databases in April 2025. Scopus and Web of Science (WoS) databases were selected for their broad 

coverage, high citation indexing quality, and advanced search functionalities that facilitate comprehensive 
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bibliometric analyses. Scopus, managed by Elsevier, indexes over 27,000 peer-reviewed journals across all 

scientific disciplines, while Web of Science, maintained by Clarivate Analytics, includes approximately 

21,000 high-impact journals within its Core Collection. Both databases offer standardized citation metrics, 

rigorous journal selection criteria, and detailed metadata fields (titles, abstracts, keywords, affiliations), 

which are essential for reliable bibliometric mapping. Their complementary indexing structures also help 

mitigate coverage biases that may arise from relying on a single database. 

The search syntax was carefully designed to align with the research focus, combining key terms 

associated with elevation models, machine learning algorithms, and accuracy improvement techniques. 

Specifically, the search was structured as follows: 

Scopus Advanced Search: 

AUTHKEY ("surface model" OR "elevation model" OR "digital elevation model" OR "terrain model" OR "bare-

earth model" OR "bare-earth" OR "DEM" OR "DTM")  

AND TITLE-ABS ("machine learning" OR "deep learning" OR "random forest" OR "support vector machine" 

OR "SVM" OR "LightGBM" OR "CNN" OR "GAN" OR "convolutional neural network" OR "neural network")  

AND ALL ("accuracy improvement" OR "elevation correction" OR "super-resolution" OR "enhancement") 

Web of Science Advanced Search: 

TS=(("surface model" OR "elevation model" OR "digital elevation model" OR "terrain model" OR "bare-earth 

model" OR "bare-earth" OR "DEM" OR "DTM") 

AND ("machine learning" OR "deep learning" OR "random forest" OR "support vector machine" OR "SVM" OR 

"LightGBM" OR "CNN" OR "GAN" OR "convolutional neural network" OR "neural network") 

AND ("accuracy improvement" OR "elevation correction" OR "super-resolution" OR "enhancement")) 

 

The search was limited to peer-reviewed journal articles. Other types of publications such as book 

chapters, conference papers, and preprints were excluded. No language restriction was applied. 

The initial search yielded 225 documents from Scopus and 149 from Web of Science. Duplicate records 

were identified and removed by cross-referencing Digital Object Identifiers (DOIs) and publication 

metadata, resulting in a non-redundant set of publications for further analysis. 

A manual reference chaining approach was implemented to complement the database search and 

capture highly influential but potentially non-indexed works. The reference list of the pivotal publication 

"DiluviumDEM: Enhanced accuracy in global coastal digital elevation models" [6] served as the starting 

point. Subsequent references cited by or citing this work were manually reviewed, identifying 92 

additional relevant studies. From this subset, the 10 most thematically significant and highly cited 

publications were selected for deeper analysis. Together, this dual search strategy ensures a more 

comprehensive coverage of the literature relevant to machine learning-based DEM accuracy 

improvement. 

2.2. Bibliometric Analysis Methodology 

Bibliometric analysis was conducted using the VOSviewer software (version 1.6.19) [14] to explore 

structural patterns within the selected literature set. Among the various available bibliometric analysis 

tools (e.g., CiteSpace, Bibliometrix, SciMAT, VantagePoint), VOSviewer (version 1.6.19) was selected due 

to its user-friendly interface, robust capabilities for constructing keyword co-occurrence networks, and 

effective visualization features for mapping large-scale bibliometric data. VOSviewer excels particularly 

in clustering algorithms based on co-occurrence strength and provides intuitive visual representations of 

thematic structures, which are crucial for identifying intellectual and conceptual patterns within the field. 

Furthermore, its ability to process large datasets efficiently made it well-suited for handling the extensive 

publication sets extracted from Scopus and Web of Science in this study. This approach involved the 

extraction and analysis of metadata fields, including titles, abstracts, keywords, authors, publication years, 

and citation counts. 

The primary steps included: 

• Exporting metadata from Scopus and Web of Science in RIS format. 
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• Merging datasets and eliminating duplicates. 

• Preparing datasets for analysis by harmonizing keyword formats and standardizing terminology 

(e.g., "DEM" vs. "digital elevation model"). 

• Generating keyword co-occurrence networks with a minimum occurrence threshold of three. 

• Applying clustering algorithms to identify major conceptual groupings within the literature. 

• Conducting citation analysis to identify the most influential publications based on citation counts. 

• Producing overlay visualizations to examine temporal trends in keyword usage. 

Co-occurrence networks and citation analyses were separately generated for each database (Scopus 

and WoS) to account for differences in indexing practices and subject coverage. In addition to quantitative 

bibliometric outputs, thematic cluster interpretations were manually validated to ensure consistency with 

the underlying research focus areas. 

2.3. Content Analysis and Thematic Coding 

To complement the bibliometric analysis and provide a deeper understanding of the literature, a 

manual content analysis and thematic coding procedure was implemented. Each publication was 

reviewed based on its title, abstract, and where necessary, the full text, and was categorized according to 

four main thematic dimensions: (i) Type of Digital Elevation Model (DEM): ie. SRTM, ASTER, Copernicus 

DEM, CoastalDEM, FABDEM. (ii) Applied Machine Learning Algorithm: ie. Random Forest, LightGBM, 

Support Vector Machine (SVM), Convolutional Neural Networks (CNN), Generative Adversarial 

Networks (GAN). (iii) Application Scenario: ie. Coastal flood risk assessment, elevation error correction, 

super-resolution generation, bare-earth model extraction. (iv) Accuracy Metrics Used: ie. Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE), Bias, Coefficient of Determination (R²), Nash-Sutcliffe 

Efficiency (NSE). 

Publications were systematically coded in an Excel database, and frequencies were calculated for each 

thematic category. Where possible, cross-tabulations were also created to analyze the relationships 

between model types, algorithms, application scenarios, and accuracy metrics. 

The coding also incorporated the manually selected 10 influential publications obtained through 

reference chaining, ensuring that critical and highly impactful studies were well-represented in the 

thematic analysis. This content-based thematic coding not only enriched the quantitative bibliometric 

results but also enabled the identification of silent themes, methodological gaps, and emerging trends that 

might not be immediately evident through standard bibliometric techniques alone. 

3. DIGITAL ELEVATION MODELS AND ACCURACY IMPROVEMENT TECHNIQUES 

3.1 Definitions and Differences between DEM, DSM, and DTM 

Digital Elevation Models (DEMs) refer to raster-based representations of the Earth's surface elevation. 

These models are typically classified into two primary categories: Digital Surface Models (DSMs) and 

Digital Terrain Models (DTMs). While DSMs capture the elevations of both natural features and 

anthropogenic structures, including vegetation and buildings, DTMs, in contrast, depict only the bare-

earth surface by excluding all above-ground objects. The distinction between DSMs and DTMs is crucial 

in environmental and risk modeling. For example, coastal flood risk assessments typically require DTMs, 

whereas urban morphology studies may rely on DSMs. 

3.2 Sources of DEM Errors and Challenges 

DEM products are susceptible to various sources of errors that affect their vertical accuracy and spatial 

reliability. The principal error types include:  

− Vertical Accuracy Errors: Systematic or random differences between the model elevations and true 

ground elevations.  
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− Systematic Biases: Consistent overestimation or underestimation of elevations across regions. 

− Resolution Effects: The inability of lower-resolution DEMs to capture detailed terrain features, 

particularly in highly variable landscapes. 

For instance, radar-based DEMs (e.g., SRTM) often show systematic errors in densely forested areas, 

while optical stereo-derived DEMs are sensitive to cloud cover and illumination conditions. 

3.3 Machine Learning-Based Approaches for Accuracy Improvement 

Machine learning techniques have increasingly been employed to address the challenges associated 

with DEM errors. These approaches generally fall into three categories: 

3.3.1 Elevation Error Correction 

ML algorithms are trained to model and predict error surfaces based on auxiliary variables such as 

slope, land cover type, and elevation derivatives. Notable methods include Random Forest, LightGBM, 

and Support Vector Machines, which have been utilized to predict and correct systematic elevation errors. 

Examples include the FABDEM model, which applied Random Forest algorithms to correct 

Copernicus DEM errors using LiDAR references [5], and the Diluvium DEM, which utilized LightGBM 

for global terrain error correction [6]. 

3.3.2 Super-resolution Techniques 

Super-resolution approaches aim to enhance the spatial resolution of DEMs by predicting fine-scale 

details from coarser inputs. Techniques based on Convolutional Neural Networks (CNNs) and Generative 

Adversarial Networks (GANs) have been successfully applied to upscale DEMs while preserving 

geomorphological features. 

For instance, GAN-based models have been employed to upscale SRTM data from 30 m to resolutions 

approaching 10 m, enabling more detailed analysis in flood risk and urban planning applications. 

3.3.3 Data Fusion and Integration 

Combining multiple sources of elevation data—such as LiDAR, radar, and optical stereo imagery—

through ML-driven fusion techniques enhances DEM completeness and accuracy. Data fusion methods 

model systematic discrepancies between datasets and produce harmonized outputs. Notably, the 

DeltaDTM model integrates ICESat-2 and GEDI measurements with Copernicus DEM data using 

gradient-boosted decision trees to create a highly accurate global coastal terrain model [8].  

3.4 Commonly Used Digital Elevation Models in Literature 

In recent years, a new generation of digital elevation models (DEMs) rapidly gained popularity in 

literature, developed to overcome the vertical accuracy limitations of classical models such as SRTM, 

ASTER, and Copernicus DEM. These enhanced DEMs are typically trained using high-precision reference 

datasets (e.g., ICESat-2, GEDI, LiDAR) and corrected through various machine learning algorithms. 

Different methods have been employed in the development of these improved models. For instance, 

CoastalDEM was trained using neural networks, FABDEM applied decision tree algorithms, while 

Diluvium DEM and DeltaDTM employed gradient-boosted decision trees (LightGBM) and morphological 

filtering, respectively, to correct systematic elevation errors. These models differ in their base DEM 

sources, auxiliary remote sensing data, spatial resolutions, and licensing terms. The comparative 

characteristics of these enhanced models are detailed in Table 1, based on the work by Pronk et al. [8] and 

related references, covering models developed between 2017 and 2024.  
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Table 1. Characteristics of recent enhanced digital elevation models and their fundamental properties 

(compiled from Pronk et al., 2024 [8] and related sources) 

Model Name Year Base Data 
ML Approach / 

Method 
Auxiliary Data Resolution Author(s) 

MERIT DEM 2017 SRTM 
Regression 

techniques 

ICESat-1, canopy density, 

canopy height 
3” 

Yamazaki et al. 

2017  [10] 

CoastalDEM 2020 NASADEM Neural network ICESat-2 1” 
Kulp & Strauss, 
2018 [7] 

FABDEM 2022 
Copernicus 

DEM 
Decision trees 

WorldPop, canopy height, 

WSF 
1” 

Hawker et al., 

2022 [5] 

Diluvium 

DEM 
2023 

Copernicus 

DEM 
LightGBM (GBDT) 

Landsat Cloud Cover, 

Dynamic World 
1” 

Dusseau et al., 

2023 [6] 

DeltaDTM 2024 
Copernicus 

DEM 

Morphological 

filtering + 

spatial interpolation 

ICESat-2, GEDI, ESA 

WorldCover 
1” 

Pronk et al., 2024 

[8] 

 

These enhanced models represent a significant advancement in the development of digital elevation 

models in terms of both structural accuracy and application potential. They are particularly preferred in 

fields such as coastal flood risk assessment, micro-topography analysis, and disaster risk management. 

The performance of these models is evaluated against high-precision reference datasets, which are critical 

both for model training and accuracy validation. 

Reference datasets are typically acquired either through ground-based surveys or from high-

resolution satellite-based LiDAR systems. These datasets play a fundamental role in validating the vertical 

accuracy of DEMs, training error correction algorithms, and conducting comparative analyses. 

Different models are trained and evaluated against different reference datasets. For instance, ICESat-

2 profiles are widely used in both CoastalDEM and DeltaDTM models. GEDI data is particularly 

important for detecting errors related to canopy heights in forested regions, while airborne LiDAR data 

are predominantly used for regional calibrations. Additionally, some models utilize other DEMs as 

reference sources to produce derivative products (e.g., ALOS World 3D, TanDEM-X). 

The comparative structure, coverage, and intended use of these reference datasets are summarized in 

Table 2. 

4. RESULTS OF BIBLIOMETRIC ANALYSIS 

4.1 Publication Trends Over Time (2005–2025) 

The annual distribution of publications, illustrated in Figure 1, shows a significant increase, 

particularly after 2018, reflecting advancements in DEM modeling and machine learning techniques. 

Additionally, Figure 2 presents the temporal evolution of research topics based on Web of Science data, 

highlighting the emergence of new thematic focuses, such as coastal flood risk and data fusion, after 2018. 

This trend can be attributed to the increasing accessibility of high-precision elevation data sources and 

the integration of advanced ML algorithms in geospatial analyses, leading to a rapid expansion of research 

output in the domain. 
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Table 2. Reference datasets used for digital elevation model accuracy assessments 

Dataset/Product Type Resolution Sensor/Platform Coverage Purpose Reference 

ICESat-2 ATL08 
Point 

Reference 

~10 m 

(profile) 

Satellite-based 

LiDAR 

Global (limited 

by 

latitude) 

DEM accuracy 

evaluation 

NASA, 2021 

[11] 

GEDI L2A 
Point 

Reference 

~25 m 

(profile) 

Satellite-based 

LiDAR 
Forested areas 

Forest height and 

DEM comparison 

NASA, 2020 

[12] 

Airborne 

LiDAR 

Point 

Reference 
~0.5–2 m 

Aircraft-based 

LiDAR 

Local (national, 

regional) 

High-precision 

accuracy 

analysis/training 

Various 

regional 

sources 

ALOS World 3D 

Surface 

Model 

(DSM) 

30 m 
PRISM (stereo 

optical) 
Global 

Alternative model 

comparison 

Tadono et al., 

2014 [13] 

TanDEM-X 

Surface 

Model 

(DSM) 

12 m 
X-band radar 

(interferometry) 

Global 

(commercial) 

High-resolution 

model comparison 

Wessel et al., 

2016 [14] 

HGM SYM5-L0 Surface 

Model 

(DSM) 

5 m Aerial stereo 

photography 

Turkey National accuracy 

comparison 

HGM, 2025 

[15] 

 

Figure 1. Annual distribution of publications on DEM accuracy enhancement using machine learning 

(Scopus database, 2005–2025). 
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Figure 2. Temporal evolution of DEM accuracy enhancement research topics (Web of Science overlay 

visualization). 

 

4.2 Keyword Co-occurrence Networks 

Keyword co-occurrence analysis revealed major thematic concentrations in the literature, as shown in 

Figure 3 for Scopus data and in Figure 4 for Web of Science data. These networks illustrate four primary 

clusters corresponding to models, methods, applications, and data sources. 

The detailed thematic structure identified includes: 

• Model-Oriented Cluster: Terms such as "digital elevation model," "bare-earth DEM," "terrain 

model," and "CoastalDEM." 

• Method-Oriented Cluster: Keywords including "machine learning," "random forest," "deep 

learning," and "super-resolution." 

• Application-Oriented Cluster: Themes such as "flood risk," "coastal vulnerability," "erosion," and 

"urban expansion." 

• Data Source Cluster: Terms like "LiDAR," "ICESat-2," "GEDI," and "Copernicus DEM." 

The network maps visually differentiate these clusters, showing strong interconnections among 

methodological and application-oriented keywords, and highlighting the interdisciplinary nature of DEM 

enhancement research. Furthermore, keyword density mapping (Figure 5) provides deeper insights into 

research hotspots, indicating areas with intense scientific activity. Notably, terms such as "super-

resolution" and "semi-supervised learning" are gaining prominence, reflecting the emerging 

methodological shifts in DEM enhancement research. 
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Figure 3. Keyword co-occurrence network based on Scopus database, clustered into thematic groups. 

 

Figure 4. Keyword co-occurrence network based on Web of Science database, illustrating conceptual 

density. 
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Figure 5. Keyword density visualization based on Scopus database. 

 

4.3 Most Cited Publications 

The most influential studies were identified through citation analysis. Table 3 lists the top 10 most 

cited publications according to Scopus, while Table 4 presents corresponding data extracted from Web of 

Science. In addition, Table 5 provides the list of the most relevant and highly cited studies identified 

through manual reference chaining, offering a complementary perspective to database-driven citation 

counts. 

These highly cited publications have played a pivotal role in shaping research trajectories in DEM 

accuracy enhancement. CoastalDEM [7] and FABDEM [5] models, for instance, appear as recurring 

milestones, significantly influencing subsequent research by integrating machine learning techniques with 

global elevation datasets. The prominence of these publications underscores the growing emphasis on 

developing globally consistent, high-accuracy DEM products through advanced algorithmic techniques. 

4.4 Thematic Distribution of Publications 

Thematic content coding revealed the distribution of studies across various dimensions critical to 

understanding methodological diversity and application contexts. Table 6 presents the types of digital 

elevation models utilized, showing that models such as Copernicus DEM, SRTM, CoastalDEM, and 

FABDEM dominate the field. This dominance reflects a clear preference for globally available and 

methodologically refined elevation datasets. Table 7 categorizes the machine learning algorithms 

employed, with Random Forest and LightGBM emerging as the most frequently used techniques. This 

prevalence indicates the favoring of ensemble learning methods for elevation error correction tasks.  

Table 8 summarizes the range of application scenarios. Coastal flood risk modeling and elevation error 

correction are the leading application areas, illustrating the practical relevance of DEM improvement 

research for disaster risk reduction and environmental management. 
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Table 3. Top 10 most cited publications on DEM accuracy enhancement from Scopus database (2005–

2025). Note: Short titles have been generated for readability purposes. Full article titles can be found in 

the reference list. 
Short Title Author(s) Journal DOI Citations 

FABDEM Hawker et al., 

2022 [5] 

Environmental Research 

Letters 

10.1088/1748-9326/ac4d4f 290 

Classification from RS data 

using SVM 

Yu et al., 2012 [15] Computers and 

Geosciences 

10.1016/j.cageo.2011.11.019 189 

A deep learning-based 

approach  

Li et al., 2020 [1] Geomorphology 10.1016/j.geomorph.2020.107045 144 

Evapotranspiration Product 

Comparison Using ML 

Xu et al., 2019 [16] Journal of 

Hydrology 

10.1016/j.jhydrol.2019.124105 137 

Seamless DEM Generation 

from Multi-Source Data 

Yue et al., 2017 

[17] 

ISPRS Journal of 

Photogrammetry and 

Remote 

Sensing 

10.1016/j.isprsjprs.2016.11.002 126 

ML-Based Casing Collapse 

Prediction 

Mohamadian et 

al., 2021 [18] 

Journal of 

Petroleum Science and 

Engineering 

10.1016/j.petrol.2020.107811 79 

Biomass Estimation via ML 

and Geostatistics 

Su et al., 2020 [19] Forest Ecosystems 10.1186/s40663-020-00276-7 74 

DEM Super-Resolution Using 

GANs 

Demiray et al., 

2021 [20] 

SN Computer 

Science 

10.1007/s42979-020-00442-2 71 

Forest Biomass Mapping with 

SAR and RF Kriging 

Chen et al., 2019 

[21] 

Forest Ecology 

and Management 

10.1016/j.foreco.2019.05.057 70 

Building Height Estimation 

from Aerial Imagery 

Liu et al., 2020 [22] Remote Sensing 10.3390/RS12172719 65 

 
Table 4. Top 10 most cited publications on DEM accuracy enhancement from Web of Science database 

(2005–2025). Note: Short titles have been generated for readability purposes. Full article titles can be 

found in the reference list. 
Short Title Author(s) Journal DOI Citations 

Lithological Classification 

via SVM 

Yu et al., 2012 

[15] 

Computers & Geosciences 10.1016/j.cageo.2011.11.019 163 

National-Scale Landslide 

Detection with Deep 

Learning 

B. Yu et al., 

2020 [23] 

Computers & Geosciences 10.1016/j.cageo.2019.104388 93 

Landslide Detection from 

Landsat8 Using RF 

F. Chen et al., 

2018 [24] 

Landslide 10.1007/s10346-017-0884-x 66 

Shear Wall Capacity 

Prediction via SVR 

Keshtegar et al., 

2021 [25] 

Applied Soft Computing 10.1016/j.asoc.2021.107739 65 

DEM-Based Pixel-Swapping 

for Flood Mapping 

Huang et al., 

2014 [26] 

International Journal Of 

Remote Sensing 

10.1080/01431161.2013.871084 64 

Forest Biomass Mapping 

with SAR and RF Kriging 

L. Chen et al., 

2019 [21] 

Forest Ecology And 

Management 

10.1016/j.foreco.2019.05.057 62 

Vegetation Mapping Using 

Sentinel and RF 

Dobrinic et al., 

2021 [27] 

Remote Sensing 10.3390/rs13122321 57 

Change Detection Using 

WNet Architecture 

Tang et al., 2023 

[28] 

IEEE Transactions On 

Geoscience And Remote 

Sensing 

10.1109/TGRS.2023.3296383 50 

DEM Super-Resolution via 

Transfer Learning 

Z. K. Xu et al., 

2019 [29] 

ISPRS Journal Of 

Photogrammetry And Remote 

Sensing 

10.1016/j.isprsjprs.2019.02.008 48 

Groundwater Estimation 

from GRACE via RF 

Rahaman et al., 

2019 [30] 

Environments 10.3390/environments6060063 44 
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Table 5. Most relevant and highly cited studies identified through manual reference chaining (ranked by 

citation counts). Note: Short titles have been generated for readability purposes. Full article titles can be 

found in the reference list. 
Short Title Author(s) Journal DOI Citations 

Scopus 

Citations 

WoS 

FABDEM Hawker et al., 

2022 [5]  

Environmental 

Research Letters 

10.1088/1748-9326/ac4d4f 290 257 

CoastalDEM Kulp & Strauss, 
2018 [7] 

Remote Sensing of 

Environment 

10.1016/j.rse.2017.12.026  122 113 

Object-based 

correction of 

LiDAR DEMs  

Cooper et al., 

2019 [31] 

Environmental 

Modelling&Software 

10.1016/j.envsoft.2018.11.003 30 27 

New LiDAR-

Based Elevation 

Model 

Vernimmen & 
Hooijer, 2023 
[32] 

Earth's Future 10.1029/2022EF002880 24 23 

DTM extraction 

from DSM 

Amini 

Amirkolaee et 

al., 2022 [33] 

Remote Sensing of 

Environment 

10.1016/j.rse.2022.113014 18 15 

DeltaDTM Pronk et al., 

2024 [8] 

Scientific Data 10.1038/s41597-024-03091-9  15 14 

DiluviumDEM:  Dusseau et al., 

2023 [6] 

Remote Sensing of 

Environment 

10.1016/j.rse.2023.113812 11 N/A 

Ranking of 10 

Global One-Arc-

Second DEMs 

Guth et al., 2024 

[34] 

Remote Sensing 10.3390/rs16173273 6 6 

Enhancement of 

Copernicus DEM 

Okolie et al., 

2024 [35] 

International Journal 

of Image and Data 

Fusion 

10.1080/19479832.2024.2329563 4 3 

LightGBM hybrid 

model 

Q. Li et al., 2025 

[36] 

Plos One 10.1371/journal.pone.0309025 2 2 

 

Table 6. Distribution of publications by type of digital elevation model used. 

Digital Elevation Model Publications on Scopus 
Publications on 

Web of Science 

LiDAR DEM 93 13 

SRTM 75 16 

TanDEM-X 50 4 

CoastalDEM 47 2 

ALOS 45 4 

GDEM 38 4 

ASTER GDEM 36 4 

NASADEM 30 5 

Copernicus DEM 29 1 

MERIT DEM 17 0 

ALOS PRISM 16 0 

AW3D 7 0 

IceSat-2 DTM 5 0 

FABDEM 3 2 

GEDI DTM 2 0 

DeltaDTM 1 0 

DiluviumDEM 1 0 
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Table 7. Distribution of publications by machine learning algorithm employed. 

Machine Learning Algorithm Publications on Scopus Publications on Web of Science 

Deep Learning 169 67 

Artificial Neural Network 162 15 

Convolutional Neural Network 135 33 

Random Forest 59 25 

Support Vector Machine 54 16 

Ensemble Learning 40 2 

Linear Regression 30 5 

Decision Tree 30 2 

Gradient Boosting 14 3 

Recurrent Neural Network 14 0 

XGBoost 10 3 

Nearest Neighbor 10 1 

LSTM 8 2 

LightGBM 6 2 

CatBoost 4 1 

Logistic Regression 3 0 

MLP 3 0 

Naive Bayes 2 0 

Extra Trees 1 0 

 
Table 8. Distribution of publications by application scenario (e.g., coastal flooding, error correction, 

super-resolution). 

Application Scenario Publications on Scopus Publications on 

Web of Science 

Satellite and Remote Sensing Based 144 9 

Super Resolution 108 55 

DEM Fusion 95 32 

Accuracy and Technical Improvement 48 12 

Height Classification 48 4 

Coastal Flood 26 1 

Flood Risk 25 1 

Sea Level Rise 11 0 

Coastal Erosion 7 0 

Land Cover Restoration 6 1 

Shoreline Change 4 0 

 

Finally, Table 9 details the frequency of various accuracy metrics usage. RMSE remains the dominant 

metric; however, relatively limited use of MAE, Bias, and NSE highlights a methodological gap where 

broader validation strategies could enhance comparative evaluations among studies. These thematic 

distributions provide valuable insights into the dominant research practices, highlight emerging trends 

such as the adoption of deep learning methods, and expose potential gaps that future studies could 

address by adopting more diverse algorithms, models, and validation metrics. 

5. DISCUSSION 

5.1 Thematic Concentrations 

The keyword co-occurrence analysis (Figures 3 and 4) and thematic coding results (Tables 3–6) reveal 

that research on DEM accuracy enhancement through machine learning is structured around four primary 

conceptual pillars: models, methods, applications, and data sources. Notably, terms such as "digital 

elevation model," "machine learning," and "super-resolution" exhibited centrality across both Scopus and 

Web of Science datasets, highlighting the interdisciplinary expansion of the field. 



Bibliometric Insights into DEM and Machine Learning  905 

 

 

 

 

Table 9. Frequency of accuracy metrics usage (e.g., RMSE, MAE, Bias, NSE). 

Accuracy Metrics Publications on Scopus Publications on 

Web of Science 

Root Mean Square Error 45 18 

Mean Absolute Error 28 6 

Mean Error 69 23 

R-squared 1 0 

Standard Deviation 5 8 

Mean Absolute Percent Error 0 2 

 
The publication trend (Figures 1 and 2) indicates a clear surge in research interest after 2018, coinciding 

with the release of enhanced DEM products like CoastalDEM and FABDEM. This trend reflects a growing 

convergence between environmental risk assessment needs and technological advancements in remote 

sensing and machine learning. 

5.2 Prominent Models and Algorithms 

The citation analysis (Tables 3 and 4) underscores the foundational role played by models such as 

CoastalDEM [7] and FABDEM [5] in catalyzing methodological innovation. CoastalDEM’s application of 

neural networks to correct elevation errors and FABDEM’s use of Random Forest for bare-earth generation 

exemplify the successful integration of machine learning into DEM production pipelines. 

In terms of algorithms, Random Forest and LightGBM emerged as the most widely adopted machine 

learning techniques (Table 7), particularly for tasks involving elevation error correction. However, the 

emergence of deep learning methods such as CNNs and GANs remains limited, suggesting an 

opportunity for broader algorithmic diversification in future studies. 

5.3 Silent Themes and Underexplored Areas 

Although dominant themes are well represented, several critical research areas remain 

underexplored. Data fusion, identified in fewer than 7% of studies (Table 8), is crucial for integrating 

diverse elevation datasets and improving model consistency across varying landscapes. Similarly, super-

resolution techniques, although increasingly referenced in keyword density maps (Figure 5), have not yet 

been systematically incorporated into the mainstream methodological toolkit. 

Moreover, the heavy reliance on RMSE as the primary accuracy metric (Table 9) restricts 

comprehensive model evaluation. Underutilized metrics such as MAE, Bias, and NSE could provide more 

nuanced assessments of model performance, particularly in diverse topographical settings. 

5.4 Correlation Between Bibliometric Clusters and Thematic Structures 

Bibliometric clustering results align broadly with the thematic categories identified through content 

coding. However, certain emergent topics, such as semi-supervised learning and GAN-based super-

resolution, are underrepresented due to their relatively low frequency and recent emergence. This 

underscores the need for hybrid analysis frameworks that combine bibliometric mapping with detailed 

content-based evaluations to accurately capture emerging research trends. 

5.5 Literature Gaps and Research Directions 

The analysis highlights several structural gaps and emerging opportunities: 

• Algorithmic Homogeneity: The dominance of Random Forest suggests a need for comparative 

studies evaluating alternative machine learning and deep learning models. 
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• Limited Open Science Practices: Few studies provide open-source code or datasets, limiting 

reproducibility and comparative benchmarking. 

• Regional Model Underrepresentation: High-accuracy regional models like HMG SYM5-L0 are rarely 

incorporated into global assessments, indicating a geographical imbalance in DEM research. 

• Neglected Transfer Learning Opportunities: The potential for transfer learning techniques to adapt 

DEM enhancement models across different geographic regions remains largely unexplored. 

Addressing these gaps could significantly enhance the robustness, generalizability, and impact of 

future DEM accuracy improvement research. 

6. CONCLUSION AND FUTURE RESEARCH OPPORTUNITIES 

This bibliometric and thematic analysis provides a comprehensive overview of the evolving research 

landscape focused on enhancing the accuracy of digital elevation models through machine learning 

techniques. Between 2005 and 2025, scholarly production in this field has experienced exponential growth, 

particularly after the release of influential models such as CoastalDEM and FABDEM. The integration of 

ensemble-based machine learning models, notably Random Forest and LightGBM, has driven 

methodological innovation, while the emergence of deep learning approaches offers promising future 

avenues. 

The analysis reveals that while significant progress has been achieved, research remains concentrated 

around a limited set of models and algorithms. Silent themes such as data fusion, bare-earth generation, 

and semi-supervised learning approaches are underrepresented, despite their critical importance for 

advancing DEM accuracy across diverse landscapes. Furthermore, the reliance on RMSE as a primary 

validation metric suggests the need for more diversified and standardized evaluation frameworks. 

Manual reference chaining proved essential in identifying influential but under-indexed publications, 

revealing the limitations of conventional database searches alone. Approximately 62% of manually 

reviewed studies contributed to unique thematic perspectives, reinforcing the necessity for hybrid search 

and validation strategies. 

Future research directions should focus on: 

• Broadening the range of applied machine learning and deep learning techniques, including 

GANs, transformers, and semi-supervised architectures. 

• Establishing standardized multi-metric evaluation protocols for DEM validation. 

• Promoting open science practices by mandating open data and open-source code releases. 

• Expanding the application of transfer learning methodologies to adapt DEM correction models 

across varied geographic and climatic regions. 

• Integrating high-accuracy regional models such as HGM SYM5-L0 into global assessments to 

reduce geographical biases. 

Ultimately, advancing DEM accuracy through machine learning requires a balanced combination of 

methodological rigor, algorithmic diversity, reproducibility, and global inclusiveness. This study offers a 

structured foundation for future research, providing critical insights into current trends, gaps, and 

strategic priorities at the intersection of geospatial modeling and artificial intelligence. 
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