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ABSTRACT

We propose an innovative framework for financial modeling by integrating stochastic differential
geometry with Ricci flow dynamics. In this framework, asset prices evolve on a Riemannian
manifold, with volatility governed by a stochastic Ricci flow equation. This results in a
dynamically evolving volatility surface, influenced by both geometric curvature and stochastic
forcing. We establish rigorous theoretical results concerning the existence and uniqueness of
stochastic flows and demonstrate their impact on option pricing. Numerical simulations illustrate
phenomena such as volatility clustering, geometric deformation, and realistic asset price behavior
under curvature-driven uncertainty. This approach extends traditional stochastic volatility models
by incorporating the intrinsic geometric features of market dynamics. Consequently, it provides a
robust tool for modeling turbulence, clustering, and complex financial phenomena with enhanced
accuracy.

Keywords: Stochastic Differential Geometry, financial manifolds, Riemannian metrics in finance, geometric stochastic analysis, volatility surface
deformation.
AMS Subject Classification (2020): Primary: 53C44; 60H10; 91G80; Secondary: 58]65; 53C21.

1. Introduction

Traditional models in mathematical finance, such as the Black-Scholes-Merton framework (see [14, 33]),
are based on Euclidean spaces with flat geometric structures. These models assume constant volatility, linear
diffusion, and homogeneous market conditions, which do not adequately capture the nonlinear and dynamic
nature of real financial systems (see [10])i. In contrast, financial markets often exhibit a level of geometric
complexity, which is reflected in factors such as the curvature of risk structures, asymmetric information flows,
and evolving inter-asset dependencies (see [11, 15, 21, 28, 30, 35, 36, 37]).

Recent developments in financial network theory and multiscale modeling have increasingly emphasized
geometric and topological structures as foundational tools for capturing complex market behavior. For
example, Bala et al. [6] introduced network-induced soft sets to model interactions within stock markets,
providing an abstract framework for financial topology. This framework aligns with differential geometric
approaches, where evolving market structures can be understood through dynamic metrics. Building on
this work, Akgitiller et al. [1] employed a path-based visibility graph kernel to extract geometric features
from stock time series. This approach offers a perspective reminiscent of curvature evolution along geodesic
flows, conceptually related to Ricci flow on financial manifolds. Moreover, the work of Batrancea et al. [7]
on community detection in financial networks reinforces the relevance of layered geometric structures. These
community partitions can be interpreted as regions of distinct curvature or volatility concentration, a feature
central to stochastic differential geometric models for derivative pricing.
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Earlier foundational contributions by Balc1 et al. further support this perspective. In [4], the authors
proposed a coarse-graining methodology for financial correlation networks—an approach that conceptually
aligns with the geometric smoothing behavior of Ricci flow, where market connectivity evolves under
curvature-like constraints. Additionally, their investigation of the fractality in Borsa Istanbul during the
COVID-19 crisis [5] uncovered multifractal scaling laws and long-memory characteristics. These features are
often captured in geometric and stochastic models through fractional curvature flows and volatility-driven
manifold deformations. Taken together, these works provide a strong justification for applying Ricci flow and
stochastic differential geometry to option pricing in dynamically structured and memory-influenced market
environments.

This motivates the use of stochastic differential geometry (SDG), which integrates stochastic calculus with
differential geometric structures ([20]) to describe asset dynamics on curved, time-evolving manifolds. Within
this framework, price dynamics are modeled as diffusion processes on Riemannian manifolds, and volatility is
encoded in the manifold’s curvature and the evolution of its metric.

Stochastic flows on manifolds have been extensively studied in geometric analysis (see [20], [27], and [22]).
However, geometric methods in finance have remained relatively underdeveloped. Early approaches include
Ilinski’s gauge-theoretic arbitrage framework [29] and the application of information geometry to financial
optimization by [2].

In recent years, several attempts have been made to connect geometry with market microstructure. For
instance, [34] explored Fisher information geometry in volatility estimation, [24] applied differential geometry
to interest rate modeling, [3] studied Brownian motion on evolving manifolds with applications to financial
heat kernels, and [32] introduced curvature-based corrections to classical option pricing models.

1.1. The Purpose of the Study

Despite the advancements outlined in the previous paragraph, there remains a lack of unified frameworks
that incorporate stochastic geometry, Ricci flow, and tensorial volatility structures in market modeling. Moreover,
most existing models either focus on static geometries or fail to account for stochastic curvature dynamics,
leaving a critical gap in capturing phenomena such as market deformation and arbitrage curvature. Therefore,
the main purpose of this study is to fill this gap. Specifically, it aims to connect the description of financial
market behavior geometrically using a stochastic differential geometry framework.

1.2. Objectives of the Study

The objectives of this paper include developing a novel stochastic geometric framework where:

¢ Financial markets are modeled as evolving stochastic Riemannian manifolds;

* Asset prices evolve via SDEs driven by geometric vector fields;

* Volatility surfaces and systemic risks evolve through stochastic Ricci flows;

¢ Correlations and arbitrage effects are embedded in the manifold’s curvature and torsion.

The underlying hypothesis is that curvature-driven stochastic flows on evolving manifolds can more
accurately reflect observed market behaviors—such as localized shocks and surface shifts—than traditional
models based solely on Euclidean spaces or static geometries.

Our model generalizes geometric Brownian motion to manifold-valued diffusion, introduces stochastic
tensor dynamics for volatility modeling, and leverages the Laplace-Beltrami operator and Ricci curvature for
derivative pricing under non-Euclidean regimes. This paper further connects the concept of function spaces to
financial modeling within the stochastic differential geometry framework.

2. Preliminaries

We present the essential concepts from differential geometry and stochastic analysis on manifolds that are
required for the development of our model. This section includes formal definitions of differentiable manifolds,
Riemannian metrics, affine connections, curvature tensors, and stochastic differential equations (SDEs) on
manifolds.
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2.1. Differentiable Manifolds and Riemannian Structures

Definition 2.1 (Differentiable Manifold [19, 31]). A differentiable manifold M of dimension n is a topological
space that is Hausdorff, second-countable, and locally homeomorphic to R", together with a maximal atlas of
compatible smooth charts.

Definition 2.2 (Riemannian Metric [31]). A Riemannian metric on a smooth manifold M is a smooth assignment
of an inner product g, : T, M x T,,M — R on each tangent space 7, M such that g, varies smoothly with p € M.

The pair (M, g) is then called a Riemannian manifold. The Riemannian metric induces a norm and volume
form on M.

2.2. Affine Connections and Curvature

Definition 2.3 (Levi-Civita Connection [31]). Let (M, g) be a Riemannian manifold. The Levi-Civita connection
V is the unique affine connection on M that is:

* Metric-compatible: Vg = 0

e Torsion-free: VxY — Vy X = [X,Y] for all vector fields X, Y.

Definition 2.4 (Riemann Curvature Tensor [19, 31]). Let V be the Levi-Civita connection on (M, g). The Riemann
curvature tensor is defined by

R(X.Y)Z :=VxVyZ -VyVxZ - VxyZ
for vector fields X, Y, Z on M.

Definition 2.5 (Ricci Tensor and Scalar Curvature [16, 17, 19]). The Ricci tensor Ric is the trace of the Riemann
curvature tensor:
Ric(X,Y) :=Tr(Z — R(Z,X)Y),

and the scalar curvature R is the trace of the Ricci tensor: R := Tr, Ric.

2.3. Stochastic Calculus on Riemannian Manifolds

We now define stochastic processes on manifolds in the sense of Itd and Stratonovich.

Definition 2.6 (Stochastic Differential Equation on Manifold [27]). Let M be a smooth manifold and X, € M.
A stochastic process X; on M satisfies the SDE

dX; =) Vi(Xy) 0 dBj + Vo(Xy)dt,

i=1

where Vg, Vi, ..., V,, are smooth vector fields on M, B} are standard Brownian motions, and o denotes the
Stratonovich integral.

Proposition 2.1 (Existence of Stochastic Flows [22]). Given a complete Riemannian manifold (M, g) and globally
Lipschitz vector fields V;, the SDE admits a unique strong solution, and the flow X, defines a stochastic diffeomorphism
almost surely.

2.4. Laplace-Beltrami Operator and Heat Kernel

Definition 2.7 (Laplace-Beltrami Operator [39]). Let (M, g) be a Riemannian manifold. The Laplace-Beltrami
operator A, acting on a smooth function f € C*>°(M) is defined as:

Agf =div(Vf),
where V f is the gradient and div is the divergence with respect to g.

Proposition 2.2 (Heat Kernel Representation [20]). Let A, be the Laplace-Beltrami operator on a compact Riemannian
manifold M. Then the solution to the heat equation
ou 1

2 ZA
ot 279"

with initial condition (0, z) = f(x) admits the representation
u(tx) = E[f(Xtr)L

where X is Brownian motion starting at x € M.
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3. Model Formulation

Let (M, g;) be a family of stochastic Riemannian manifolds representing the geometric state of a financial
market at time ¢, where g, is a random Riemannian metric evolving over time. We model the asset dynamics,
volatility structure, and risk surfaces using stochastic geometric flows on M,.

3.1. Asset Dynamics on Evolving Manifolds

Let X, € M, denote the manifold-valued stochastic process representing the state of an asset. Its evolution
is governed by the Stratonovich stochastic differential equation:

dXt = Z %(Xtyt) o de + VO(Xtv t) dtv (31)

i=1
where:

e {B;}m, are independent standard Brownian motions;
e Vi(-,t) € I'(TM,) are time-dependent smooth vector fields;
* The process X, evolves along stochastic flows on M, accounting for curvature and metric deformations.

Definition 3.1 (Market Manifold). We define the market at time ¢ as the triple (M, g, p1), where g, is a
Riemannian metric and f, is a volume measure induced by g,. The local volatility and correlation structure
are encoded in g;, and its evolution captures market deformation.

3.2. Volatility Tensor Field and Ricci Flow

Let ¥, € T'(T*M; ® T* M,) be the symmetric positive-definite volatility tensor. We model its evolution via a
stochastic Ricci flow: 5
% = —2Ric(gs) + o (gs) o W, (32)

where:

¢ Ric(g;) is the Ricci curvature tensor at time ¢;
* o(gt) is a stochastic noise coefficient tensor;
* TV, denotes space-time white noise or fractional noise on the manifold.

Proposition 3.1 (Stochastic Volatility Surface as Geometric Evolution). Under Equation (3.2), the volatility surface
X, evolves with curvature-driven deformation and random fluctuations, reflecting both systemic stress and exogenous
market shocks.

3.3. Laplace-Beltrami Operator and Option Pricing

Let u(t,z) denote the value of a derivative security, where xz € M, is the current state. We propose the
geometric pricing PDE:
Oou 1
ZA = .
e + 5 g+ (Vu,Vp) =ru, (3.3)

where:

* A, is the Laplace-Beltrami operator under the time-varying metric g;;
® 1/ is the drift vector field;
¢ r is the instantaneous risk-free rate.

Proposition 3.2 (Feynman-Kac Formula on Manifolds). Let X, satisfy Equation (3.1), and suppose M, is complete.
Then the solution to the pricing PDE (3.3) admits the representation:

u(t,z) =E [eiT(Tft)cp(XT) }Xt = :r} ,

where o is the terminal payoff function.

The propositions are used in our main results.
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4. Main Results

We now establish the rigorous and original theorems within the framework of stochastic differential
geometry applied to financial markets. Each theorem is proved using techniques from stochastic analysis on
manifolds, geometric partial differential equation (PDE) theory, and functional analytic methods, ensuring
both mathematical precision and originality.

4.1. Well-Posedness of the Manifold-Valued Market SDE

Theorem 4.1 (Existence and Uniqueness of Stochastic Flow on Financial Manifold). Let (M, g) be a complete
connected Riemannian manifold representing the evolving financial market geometry, and let {V;}™, C I'(T M) be
smooth time-dependent vector fields satisfying:

* Lipschitz condition: There exists L > 0 such that for all z,y € M,
d(Vi(z),Vi(y)) < Ld(z,y), Yi=0,...,m.
* Linear growth: There exists C > 0 such that:
Vi@)| < CA+zll), VeeM.
Then the Stratonovich SDE: .
dX; = Vo(Xy, t)dt + Y Vi(Xy,t) 0 dB] (4.1)

i=1

admits a unique global strong solution X, € M with continuous dependence on the initial data.

Proof. We approach this using the intrinsic theory of stochastic differential equations on manifolds, as
developed by Elworthy and Hsu ([27], Chapter 5).

First, since the vector fields V; are smooth and satisfy the global Lipschitz condition in the Riemannian
distance d(z,y), the coefficients of the SDE are locally Lipschitz in charts. Thus, for any initial point =y € M,
there exists a unique local solution X; up to an explosion time 7, by standard results on Stratonovich SDEs in
Euclidean space pulled back via charts (see [27], Theorem 5.1.1).

Now, to guarantee that the solution exists globally (i.e., 7 = co almost surely), we must rule out finite-time
explosion. Since M is assumed to be complete and the vector fields satisfy a linear growth condition, a classical
non-explosion criterion applies. In particular, by applying It6’s formula to the Riemannian distance function
squared d*(zo, Xt), one shows that the expected growth of the process is bounded on finite intervals:

E[d?(xq, X;)] < C(1 + E[/t d?(xo, X,)ds)), (4.2)
0

for some constant C' > 0. Gronwall’s inequality then yields:
E[dQ(xO’ Xt)] < Cr,

where Cr depends on t, the Lipschitz and linear growth constants. This ensures that the process does not escape
to infinity in finite time, i.e., it remains within compact sets with high probability, and hence the explosion time
is infinite almost surely.

Finally, continuous dependence on initial conditions follows from stability estimates for solutions of SDEs on
manifolds. Specifically, one can show that for two solutions X" and X/ starting at z and y € M, the expected
distance E[d(X], X}')] is controlled by d(z,y) via a Gronwall-type estimate.

Therefore, the SDE admits a unique global strong solution with continuous dependence on the initial
condition. O

4.2. Stochastic Ricci Flow for Volatility Geometry

Theorem 4.2 (Existence of Mild Solutions to Stochastic Ricci Flow). Let go be a smooth Riemannian metric on a
complete, connected manifold M, and let o : Met(M) — Lo(U, H*(M)) be a Lipschitz continuous operator. Then the
SPDE .

Orgr = —2Ric(g:) + o(gt) o Wy

has a unigue mild solution in C([0,T]; H*(M)) for k > 2.
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Proof. We start by interpreting the Ricci flow as a quasilinear evolution in the space of symmetric (0, 2)-tensor
tields. Specifically, the equation describes the evolution of the Riemannian metric under the deterministic Ricci
flow term —2 Ric(g;) and a stochastic perturbation o (g;) o W;. The solution will be sought in the space of tensor
fields g; € C ([0, T]; H*(M)), where H*(M) is the Sobolev space of k-regular tensor fields.

The deterministic Ricci flow —2 Ric(g:) generates an analytic semigroup S(¢) on the space of symmetric (0, 2)-
tensor fields. This semigroup satisfies:

gt = S(t)go + /0/ S(t — s) (—2Ric(gs)) ds. (4.3)

For the stochastic part, the operator ¢(g;) is assumed to be Lipschitz continuous. Hence, the stochastic term
o(g) o Wi can be interpreted in the Itd’s sense and generates a stochastic integral. We write the solution in
mild form as:

g = S(t)go + / S(t — s) (~2Ric(ga)) ds + / S(t — 8)(g.)dWs. (44)

The heat semigroup S(t) is the solution to the homogeneous equation corresponding to the deterministic Ricci
flow term —2Ric(g;), and o(g;) is a bounded, Lipschitz operator acting on the stochastic component.

Next, we prove the existence of a solution using the Banach Fixed Point Theorem. Define a mapping 7 on
the Banach space C ([0, T]; H*(M)) by:

t t
T(9)(t) =S(t)go+ [ S(t—s)(—2Ric(gs))ds+ [ S(t—s)o(gs)dWs. (4.5)
0 0
The operator 7 is well-defined due to the existence of the semigroup S(t), the boundedness of ¢, and the fact
that H*(M) is a Banach space. We next show that 7 is a contraction.
Since o is Lipschitz, for g1, g2 € C([0, T]; H*(M)), we have the estimate:

t

1T (1) (&) = T(g2) Dllar < | IS(t = 5) (0(g1(s)) — o(g2(8))) [ ds. (4.6)

0

By the Lipschitz continuity of o, we can further estimate the right-hand side. Thus, 7 is a contraction under
suitable conditions on the Lipschitz constant of o. The Banach Fixed Point Theorem guarantees that 7 has a
unique fixed point in C([0, T]; H*(M)), which corresponds to the unique mild solution to the SPDE.

Finally, the uniqueness follows from the fact that the mild solution is the unique fixed point of the contraction
T, and the dependence on the initial condition g is continuous by standard results for SPDEs.

Thus, we conclude that the SPDE admits a unique mild solution in C([0, T; H*(M)). O

4.3. Geometric Stability Under Curvature Noise

Theorem 4.3 (Metric Stability Under Stochastic Curvature Flow). Let (M, g;) be a compact Riemannian manifold
evolving under the stochastic Ricci flow:

dg: = —2Ric(g¢) dt + o(gi) AWy,

where W, is a Wiener process in a suitable Hilbert space of symmetric 2-tensors, and o is Lipschitz and bounded. Assume
the initial metric go € H* (M) satisfies Ric(go) > — K go for some constant K > 0. Then for any e > 0, T > 0, and integer
k > 2, there exists a constant C' = C(go, K, || ||, k, M) such that:

&2
P sup |9 — gollg+ > € <Cexp<—).
<t€[07T] gt — goll 5T

Y: = |9 — 9ol %, (47)

which is a nonnegative C'-functional on the Sobolev space H*(Sym?T*M). The stochastic Ricci flow is
interpreted in the mild sense in a Hilbert space framework.

Step 1: It6 Differential for Y,
Applying It6’s formula in infinite dimensions ([18]), we obtain:

dY: = 2(g: — 90, dge) v + 1|0 (94)|[fas e dt- (4.8)

Proof. We define the process:
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Substitute dg; = —2Ric(g¢) dt + o(gi) dWy:

dY; = —4(g; — go, Ric(g:)) e dt + 2(ge — go, 7 (9t) AWy) gy + [|0(g0) [Frs vy - (4.9)

Step 2: Ricci Lower Bound and Energy Estimate
Given Ric(g;) > —K g, and assuming small deviations from g, we estimate:

—<9t — 9o, RiC(Qt))Hk < Cl||gt - QOHiﬂv + Oy, (4.10)

by bilinearity and ellipticity of the Ricci operator in Sobolev spaces (see Hamilton [25]). Moreover, using the
boundedness of o in HS(H*), we write:

dY; < C1Yidt + Codt + 2{g: — go,0(gt) dWy) g (4.11)

Step 3: Gronwall and Exponential Martingale Inequality
Let M, := |, Ot (gs — 90,0(gs) AWs) gx. Then M, is a continuous martingale with quadratic variation:

(M), = / 10(95)" (9 — g0} [Zyeds < C / Yids. 4.12)

Applying the exponential martingale inequality (see Revuz and Yor [38]), we have for any A > 0:

P ( sup Y; > €2> < exp (—>\62 + )\2C3T) .
t€[0,T]
Optimizing over A yields the bound:
P ( sup |lgt — gollgr > 5) < Cexp (— e > , (4.13)
t€[0,T) 205T

where C5  ||0||% », thus completing the proof. O

Theorem 4.4 (Metric Stability under Variable Stochastic Curvature Flow). Let g, solve the stochastic Ricci flow

0 ) .
% = —2Ric(gs) +0(g¢) o Wy,

on a compact Riemannian manifold M, where Ric(g¢) > —K(t,x)g; for some smooth non-negative function K :
[0,7] x M — Ry, and o € C* is bounded in H*. Then, for any e > 0,

&2
Pl sup |lgt —g k> E SCTexp<>,
<tem 0= ol 2A(T)

where A(T) = fOT (suppert K (t, x) + [lo(g:)||%) dt, and Cr depends on initial data and geometric constants.

Proof. Let us define the functional Y; := || g, — gonqk. Since g; evolves in an infinite-dimensional manifold of
Riemannian metrics, we apply Itd’s formula in the Banach space H*(Sym?* T*M).
From the stochastic Ricci flow,
dg: = —2Ric(g¢)dt + o(g¢) 0 dW,. (4.14)

Taking Y; = (9: — g0, 9t — 90) m+, applying It6’s formula yields:
Substitute the SDE into this:

dY: = —4{g; — go, Ric(g¢)) grdt + 2{g: — go,0(g:) 0 dWy) g + Ha(gt)||§{kdt. (4.16)
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Now, use the curvature bound Ric(g;) > —K(¢,x)g:, and the equivalence of Sobolev norms on compact
manifolds ([26, 13]), we estimate:

~4{gu = gos Ric(g0)) v < 4 sup K(t,)-llg: - goll s
xE

Hence,
dY; < AKpmax (t)Yadt + |o(ge) I77ndt + 2(g: — g0, 0(g¢) © dWy) g, (4.17)

where K.« (t) := sup,caq K (2, z).
Let M; = fot (g9s — 90, 0(gs)dWs) e denote the martingale term. Then:

¢
Y, <Y+ / (4K max(s)Ys + ||U(gs)\|§{k.)ds + 2M,. (4.18)
0

By applying Gronwall’s inequality to the drift term and using Doob’s maximal inequality and exponential martingale
inequality (Revuz and Yor [38]), we estimate:

2
P| sup V; >¢e%| < Crexp (— > , 4.19)
(te[O,T] ' ) g 2A(T) (
with
T
M) = [ (Roalt) + () ) .
and Cr depends on initial data and geometric constants. This concludes the proof. O

4.4. Heat Kernel-Based Option Pricing on Manifolds

Theorem 4.5 (Geometric Feynman-Kac Formula for Option Valuation). Let (M, g:) be a smooth, complete
Riemannian manifold with time-dependent metric g;, and let X, be the solution to the Stratonovich SDE

dX; = Vo(Xp,t)dt + Y Vi(Xy,t) 0 dBj,

=1

where V; € T'(T M) are smooth vector fields adapted to the geometry of g;. Suppose u. : [0, T| x M — R solves the terminal
value problem

|
Ot 5 Agu+ (Vu, Vo) = r(@)u,  u(T,z) = o(x),

for some bounded, smooth terminal condition ¢ € C°(M) and interest rate function r € C*°(M). Then the unique
classical solution admits the probabilistic representation:

ult,2) = By e IO B
where E,, denotes the expectation under the probability law of the process X, starting at X, = x.

Proof. We aim to show that the function u(t,z) =E, [e‘ftT 7'(X°‘)d8g0(XT)} satisfies the given PDE with the
terminal condition.

Step 1: Generator of the Diffusion Process.
Let X, be a diffusion process on M with generator:

1
Et = §Agt + <V, ‘/0>,

where A, is the Laplace-Beltrami operator associated to the Riemannian metric ¢;, and V; is a smooth vector
field. By standard results in stochastic differential geometry ( Hsu [27]), the generator corresponds to the
infinitesimal action of the Stratonovich SDE governing X.
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Step 2: Application of Ito Formula on Manifolds.

Define Y; := e~ i’ "(X)ds(X7). To evaluate u(t, z) := E,[V;], we apply the Feynman-Kac method by defining
the process

Mt =€ f(;‘ r(Xs) dsu(t, Xt)

By Itd’s formula on manifolds (Emery [22]), under sufficient regularity and assuming u € C*2([0, T] x M), we
compute:

AM, = e~ Jo "X ds [qu (e, X,) — (X )u(t, Xy) dt] . (4.20)

Now expand du(t, X;) via Itd’s rule:

du(t, X;) = (Oyu + Lyu) dt + martingale terms. (4.21)
Thus:
dM,; = e~ Jo "XV 45 [(9,u + Lyu — ru) dt + d(martingale)] . (4.22)
Hence, if u solves the PDE:
Owu + Lyu = ru,

then dM,; = d(local martingale), and M, is a local martingale. Under boundedness and integrability conditions,
it is a true martingale. Therefore,

u(t,z) = E, [e— I 7‘<Xs>ds¢(XT)} . (4.23)

Step 3: Representation via the Heat Kernel.
If K4, (t,z,y) denotes the fundamental solution (heat kernel) of the operator d; — L; + r(z), then the same
representation can be written as:

tia) = [ Ko (2,00, 1) @29
M
which follows from integrating the semigroup representation associated with the heat equation and the
spectral theorem on compact manifolds.

This confirms that the stochastic expectation representation solves the geometric terminal value problem
uniquely and rigorously. O

5. Applications

In this section, we explore several applications of the theoretical results presented earlier. We apply the
stochastic Ricci flow, stochastic Feynman-Kac formula, and stochastic flow theory to financial metrics, such as
volatility surface deformation, pricing kernel behavior, and asset price dynamics on financial manifolds.

5.1. Volatility Surface Deformation under Stochastic Ricci Flow

We model the deformation of the implied volatility surface as a geometric flow on a financial manifold
(M, g¢), where g, is a time-dependent Riemannian metric representing the local geometry of the volatility
surface. The evolution of this geometry under stochastic influences is governed by the stochastic Ricci flow
equation:

drgr = —2Ric(g;) + o(gy) o W, (5.1)

where:

* Ric(g,) is the Ricci curvature tensor of (M, g;), encoding geometric distortions,

o(g:) is a volatility tensor modeling stochastic deformation strength,

W, is formal white noise (i.e., time derivative of a Wiener process),

The equation is interpreted in the Stratonovich sense to preserve geometric structure.
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Model Assumptions: We consider the case where:

Ric(gt) = Qgi, U(gt) = Bgs,

for constants o > 0 (geometric contraction rate) and 3 > 0 (volatility amplitude). Substituting into (5.1), the
flow simplifies to:

09t = —2ags + Bgs © W (5.2)

Analytical Solution via Stochastic Exponential Equation (5.2) is a matrix-valued linear Stratonovich SDE. We seek
a solution of the form:

gt = go - X,

where X, satisfies the scalar SDE:
dXt = (*QOéXt)dt + ﬂXt o th

Lemma 5.1. Let X, be a positive process satisfying the Stratonovich SDE:
dX; = (—2aX,)dt + BX; 0 dW;, Xo = L.

Then the unique solution is given by:
X = exp (—2at + fWy). (5.3)

Hence, the evolving metric tensor is:
gt = go - exp (—2at + SW,).

Proof. This is a linear Stratonovich SDE of the multiplicative form. By standard stochastic calculus, the solution

N X; = exp </Ot(—2a)d8 + /Otﬁ o dWS> .

In Stratonovich calculus, f g B o dW, = BW,, since there is no correction term. Therefore,
X; = exp (—2at + W)

O

Geometric Interpretation: The exponential form of g; implies a multiplicative deformation of the initial metric,
driven by a combination of the deterministic Ricci contraction and stochastic geometric inflation. The volatility
surface becomes progressively warped in a probabilistic manner, reflecting the accumulation of geometric
uncertainty due to market shocks.

Euler-Maruyama Discretization: To numerically simulate the surface evolution, we discretize equation (5.2):

i+t = gt — 209: At + Bg AWy,

with AW, ~ N(0,At). This allows direct simulation of volatility surface metrics under stochastic Ricci
dynamics.

— 0:= goexp(—2at+ pWy)

Metric Component g¢
o
(=]

0.4 1

0.2 1

T T T T T T T T T
0.00 0.25 0.50 0.75 1.00 125 1.50 175 2.00
Time £

Figure 1. Stochastic Ricci Flow of Volatility Surface Metric g¢
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Algorithm 1 below outlines the steps to simulate the deformation of the volatility surface under the stochastic
Ricci flow model.

Algorithm 1 Simulation of Volatility Surface Deformation

1: Input: Initial Riemannian metric gy, stochastic volatility parameters, time step At, final time T
2: Output: Deformed volatility surface

3: Initialize the volatility surface oy based on g

4: Sett = 0 as the initial time

5. while t < T do

6.  Compute Ricci curvature Ric(g;) using current metric g,

7. Update the metric g, according to the stochastic Ricci flow:

Gesar = g — 2Ric(g,) At + o (g;) o Wi At

8. Update the volatility surface o, according to the Ricci flow dynamics
9:  Store or plot the updated volatility surface
10 Sett=t+ At

11: end while
12: Return: The final volatility surface after deformation under the stochastic Ricci flow. =0

Table 1. Parameters used in the numerical simulations.

Parameter Symbol Value
Curvature coefficient a 0.1
Volatility coefficient B 0.2
Time horizon T 1
Number of steps N 1000
Time step dt 0.001
Initial volatility surface 9o 1
Drift term Vo 0.05
Volatility term o 0.2
Initial asset price So 100
Risk-free rate T 0.05

Number of simulations M 10000

o
o

latility
Volatility

o o
N
Vol

Strike

ll:;gure 2. Volatility Surface under Stochastic Ricci Figure 3. Initial volatility surface Figure 4. Ricci Flow Deformed Surface
ow

Remark 5.1. The output of this simulation shows the time evolution of the volatility surface under the stochastic
Ricci flow.
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5.2. Pricing Kernel Behavior Using Stochastic Feynman-Kac Formula

The pricing kernel in financial markets represents the risk-neutral probability distribution over the future
states of the system. The price of an option at time ¢ is governed by the following stochastic PDE:

Dot 3 Agyut (Vu, Vo) = r(a)u,  u(T,z) = o),

where A, is the Laplace-Beltrami operator, and 7 (x) is the risk-free rate. The solution to this equation is given
by the stochastic Feynman-Kac formula:

u(t,r) = E, [e_ s T(XS)dS‘P(XT)} ;

where X, is the asset price process governed by the SDE:

dX; = Vo(Xy, t)dt + Y Vi(Xy,t) o dBj.
i=1
The price of the option can be computed by solving the SDE for X;, and the payoff at maturity is then
discounted to time ¢.
A numerical solution to this problem is given by the following Python code:
The output of this simulation gives the option price at time ¢, computed using the stochastic Feynman-Kac
formula.

5.3. Stochastic Flow on Financial Manifolds

The evolution of an asset price X; on a Riemannian manifold M is described by the stochastic differential
equation (SDE):

m
dX; = Vo(Xy, t)dt + Y Vi(X,t) 0 dBj,
i=1
where X, represents the price of the asset, V; (X, t) is the drift term, and V;(X;, t) are the volatility terms.
The solution to this equation describes the trajectory of the asset price as it evolves over time under both
deterministic and stochastic influences. The solution is given by:

t m t
Xt:Xo—i—/ %(Xs,s)ds+2/ Vi(Xs,s) o dB.
0 =1 70

A numerical solution of the asset price evolution can be obtained using the following algorithm:

Algorithm: Stochastic Flow on Financial Manifold.

The algorithm 2 below outlines the steps for solving the Stratonovich SDE for stochastic flows on financial
manifolds.

Algorithm 2 Solution of Stochastic Flow on Financial Manifold

1: Input: Initial point X, € M, time step At, drift vector field Vj, stochastic volatility vector fields {V;},
Brownian motion increments {B;}
Output: Path X; on the manifold
Initialize the financial manifold M with metric g
Set X, as the initial condition of the stochastic flow
Set t = 0 as the initial time
Initialize Brownian motion increments By,
whilet < T do
Compute drift Vy(X,,t) and diffusion > | Vi(X;,t) o dB;}
Update Xt+At = Xt + %(Xt, t)At + Z:’;l V;(Xt, t) o dB%
Store or visualize the updated path X,
Sett=t+ At
end while
Return: The path X; on the manifold, modeling the stochastic flow. =0

[ T
R
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6. Geometric Option Pricing on a Riemannian Manifold

Our intention is to provide a numerical results through simulation as follows. We consider:
financial State Space as a Riemannian Manifold.
Let the financial market be modeled by a 2-dimensional Riemannian manifold M C R?, embedded as

M={(@y.2) €R sz = f(a,y) = e D],

The Riemannian metric g is given by the pullback of the Euclidean metric:

gij = <a<I) o0 > , where ®(z,y) = (z,y, f(z,y)).

Oxi’ di

Thus, we have

B |:fxfy 1+ f3

In the next step, we define stochastic dynamics on the Manifold.
Let X; = (x¢,y:) be a stochastic process evolving on M. The geometric SDE is given by

oz’ dy

oy U R S

m
dX; = Vo(Xy)dt + > Vi(X¢) 0 dBy,
i=1
where V; are smooth vector fields tangent to M, and the o denotes Stratonovich integration to preserve the

manifold constraint.
The infinitesimal generator of the diffusion process is the Laplace-Beltrami operator £, given by

1 ii
L= 20 (VIslg"0ju).

where g% is the inverse metric and |g| = det(g).
Next, let u(z, y, t) be the price of a European call option. The pricing PDE under risk-neutral dynamics is:

%+£9U—TU:O, U(I,y7T):q)(,I,y),

with terminal payoff function:
(I)((E,y) = max(f(x,y) - K, 0) )

where f(xz,y) is the height function representing asset price, and K is the strike price.
The regularity of existence of solution holds almost surely. Since M is compact and smooth, and £, is
uniformly elliptic, the PDE admits a unique classical solution

ue C®([0,T] x M),

and the solution admits a spectral decomposition in terms of the eigenfunctions {¢x} of £,:

oo

’LL(LC, Y, t) = Z e_(/\k+T)(T_t) <(I)v ¢k>¢k(‘ra y)v

k=1

with )\, the eigenvalues and (-, -) the L? inner product on M.
Now, let the volatility evolves under geometric flow. Then, we model this via Ricci flow on the metric:

09i;
ot

= —2RiC7;j .

In this case, the operator £, becomes time-dependent, and the pricing equation becomes:

ou

5 +Ly(t)u—ru=0.
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In order to present numerical simulation for the above innovative formulation, we consider the discretization
of: the manifold M as a mesh in (z, y) coordinates, the Laplace—Beltrami operator via finite differences, the time
interval using Crank-Nicolson schemes, and Stochastic dynamics solution.

Algorithm 3 Stochastic Differential Geometry-Based Simulation Framework

1: Input: Initial asset price Sy, metric g(z,y), volatility field o(x,y,0), time horizon T, steps N, spatial grid
size h, deformation parameter ¢, Ricci flow parameters «, 8

2. Initialize: Time step At = T'//N, spatial mesh (x;, y,) € M}, volatility surface ag ; = 00, asset price Sy

3 forn=0to N —1do

4 Generate Brownian increments AW,,, AW,\”) ~ A/ (0, At)

5. for each grid point (z;,y;) do

6: Compute metric determinant /det g;

7 Approximate Laplace-Beltrami:

n n n n . n

Aot b Ty T Oyt Oie 00 — 403
9%4,5 ~ 2 2
i h

end for
Update volatility using Ricci flow (Euler step):

ot =0+ (Ago}; + - R} - o) At + 8- AW
10  Update asset price using Euler-Maruyama:
Spt1 = Sn +1rSp At + 07, S, AW,

11:  (Optional) Update solution u on manifold via Crank-Nicolson:

At At
Solve: (I - 2Ag> "t = <I + 2Ag> u™ + At - F(u™,ty,)

12: end for
13: Output: Evolved asset price path S;, volatility field o(x,y,t), and (optionally) solution field u(x,y,t) =0

Table 2. Discretization Schemes for Stochastic Differential Geometry-Based Model

Component Discretization Method
Manifold M Approximated as a uniform mesh in (z, y) coordinates:
$1:$0+Zh, y]:y0+jha 27.72077N

Laplace—Beltrami Operator | For conformal metric g;; = ¢°(x,y)di;:

Ag
o~ ] Wig1,jFWi—1,5F Wi 41+ 5—1—4us
Agul,] ~ ¢727 ' h2 .
Time Evolution Crank-Nicolson scheme for PDE 9,u = A, u + F(u,t):
g )
n+l__ n

u

ig %ig o1 n+1 n 1 n+1 n
a = 3(Bguiy + Aguiy) + 5 (K5 + FY).

Stochastic Asset Price SDE | Euler-Maruyama scheme:
STL+1 =5, + ,U(Sn7 tn)At + U(Sn7 tn)AWnr
AW, ~ N(0, At).

Stochastic  Volatility via | Ricci-driven volatility dynamics:
Ricci Flow

On+t1 = opn + RicciFlow (o, t,) At + /8AWr(LU)-
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Table 3. Simulation Parameters for Ricci Flow Driven Option Pricing Model

Parameter Symbol Value
Initial asset price So 100.0
Risk-free interest rate r 0.05
Base volatility o0 0.2
Volatility deformation amplitude € 0.05
Ricci curvature coefficient o 0.1
Volatility coefficient B 0.2
Time horizon T 1.0
Number of time steps N 1000
Time step size dt T/N = 0.001
Number of Monte Carlo simulations M 10000

Table 4. Option Price Matrix (rows: Strikes, columns: Maturities)

Strike \ Maturity 0.0100 0.5075  1.0050  1.5025  2.0000

50 50.0400 51.1200 52.5200 53.5000 54.9600

75 25.0300 26.5600 28.9500 30.7700 32.7500
100 0.8100  6.9800 10.5100 13.4500 16.1700
125 0.0000 0.6000 2.3400 4.6000 6.3400
150 0.0000  0.0200 0.3600  1.2000  2.6100

Geometric Option Prices under Ricci Flow Volatility

Figure 5. 2D-plots of the option prices under Stochastic Ricci
Flow-driven model

Table 5. Option price sensitivity with respect to e (Volatility deformation amplitude)

e Option Price

0.01 10.15
0.03 10.62
0.05 11.18
0.07 11.81
0.10 12.44
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Table 6. Option price sensitivity with respect to a (Ricci curvature coefficient)

a  Option Price

0.05 10.57
0.10 11.18
0.20 11.92
0.30 12.30
0.50 12.95

Table 7. Option price sensitivity with respect to o (Base volatility)

oo  Option Price

0.10 7.32
0.15 9.28
0.20 11.18
0.25 13.05
0.30 14.76

7. Geometrical visualizations

The geometrical figures generated for the analytical results are presented as follows.

Table 8. Parameters used in stochastic Ricci flow-based volatility modeling

Parameter Symbol Value
Initial Stock Price So 100
Strike Price K 50 to 150
Time to Maturity T 0.01 to 2.0 years
Risk-free Interest Rate T 0.05
Base Volatility o 0.2
Deformation Amplitude € 0.05

Curvature Flow (Approx. Ricci Curvature) att = 0 Curvature Flow (Approx. Ricci Curvature) att =3 Curvature Flow (Approx. Ricci Curvature) att = 6
4 4 4

0.0003 0.0002

0.000000
3 0.0000 3 0.0000 3

—0.000135
—0.0003 N —0.0002

—0.000270
—0.0006 -0.0004 o
2 ~0.000405 3
—0.0009 & _0.0006 ]

¥ (Maturity)
curv:
¥ (Maturity)

~0.000540 G

OX. CUTV:

—0.0012 0.0008

Approx. Curvature
y (Maturity)

Approx

_0.0015 —0.000675 g

A

—0.0010
_o.0018 —0.000810
—0.0012
—0.0021 —0.000945
—0.0014
—0.0024 —0.001080
4 ~0.0016 .

-4 -3 -2 -1 0 12 3 a -4 -3 -2 -1 0 12 3 4 -4 -3 -2 -1 0o 1 2 3 4

x (Strike) x (Strike) x (Strike)

Figure 6. Curvature flow at time, t =0 Figure 7. Curvature flow at time, t =3 Figure 8. Curvature flow at time, t =6

7.1. Discussion of Findings

Our results demonstrate that incorporating stochastic Ricci flow into volatility modeling yields a
dynamically evolving volatility surface that responds to both geometric curvature and market noise. This
approach captures key features observed in real markets, such as volatility clustering, asymmetric dispersion,
and localized shocks. The figures Figure 1, Figure 2, Figure 3, and Figure 4 provide graphical illustrations that
shed more light on the importance of the findings of this study. In Figure 5, 2D-plots of the option prices under
the Stochastic Ricci Flow-driven model are presented.
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Ricci Curvature Evolution at t = 0.1 Ricci Curvature Evolutionat t = 1 Ricci Curvature Evolution at t = 5
08 0540 0072
0.6 0405 0.054
0.4 0.270 0.036
z 2z Z
% 02 g % Y 0.135 % % 0.6 0018 g
= o = o = I
E 0.0 5 E 0.000 5 E 0.000 5
©® E © E © 04 E
E 02§ E . —-0135 % E - -0.018 2
z 2 E
-0.4 _0.270 -0.036
o6 ’ ~0.405 " ~0.054
08 —0.540 —0.072
o . 0.4 0.6 y 10 o . 0.4 0.6 ¥ 10
Normalized Strike Normalized Strike Normalized Strike
Figure 9. Ricci evolution at time, t = 0.1 Figure 10. Ricci evolution at time, t =1 Figure 11. Ricci evolution at time, t =5

200

180
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140

Asset Price
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0.0 0.2 0.4 0.6 0.8 1.0
Time

Figure 12. Simulated Asset Price Paths under the Stochastic Ricci Flow-Based Volatility Model. The asset price S; evolves according to the stochastic differential
equation
dSt = TSt dt + o(gt)St th,

where the volatility o (g:) is geometrically deformed through a Ricci flow-inspired stochastic process on the volatility surface g¢, governed by

o
% = —2Ric(ge) + fWs.

The figure illustrates 10, 000 Monte Carlo simulated trajectories from ¢ = 0 to t = 1, starting at So = 100, showing geometric dispersion and volatility clustering
due to curvature effects on the manifold-valued volatility.
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The resulting option prices obtained in this study are presented in Table 4, which reflects a realistic sensitivity
to strikes and maturities, while the asset simulations reveal structured uncertainty growth.

Other sensitivity analyses, based on the interaction effects of model parameters on the option prices, are
presented in Table 5, Table 6, and Table 7. The respective captions in each table provide the type of parameter
sensitivity on the option prices.

Overall, the geometric-stochastic framework established in this study enhances financial modeling by
linking curvature-driven deformations to market behavior. The visualizations in Figure 6, Figure 7, and
Figure 8 respectively show the visualizations that foster understanding of the theoretical results in terms of
the curvature flow at the specified times, t = {1, 3,6}.

The Ricci flow evolution visualizations at varied times, ¢t = {0.1,1,5}, are provided in Figure 9, Figure 10,
and Figure 11, respectively. These visualizations are based on the theoretical Stochastic Ricci flow dynamics
for option pricing. For each stochastic model developed under the stochastic differential geometry framework,
the corresponding computational strategies have been rigorously formalized as Algorithms 1, 2, and 3. These
algorithms encapsulate the sequence of geometric and stochastic techniques that underpin the derivation and
verification of our main results. Algorithm 1 details the construction of stochastic flows on financial manifolds,
which capture the intrinsic randomness of asset dynamics within a differential geometric setting. Algorithm
2 formulates the evolution of volatility surfaces using Ricci flow-inspired metrics, linking curvature-driven
geometry to the temporal structure of volatility. Algorithm 3 synthesizes the complete pricing framework on
curved financial manifolds, enabling the simulation of option prices via geometric diffusions.

The implementation of Algorithm 3 yields the simulated option price matrix, which is presented in Table 4.
This matrix serves to illustrate the dynamic interplay between curvature, stochastic flow, and price evolution
on financial manifolds. These algorithms provide a transparent and replicable pathway from abstract geometric
formulations to concrete financial computations, thereby reinforcing the analytical and numerical validity of
our framework. The concluding section reflects on these insights and outlines potential avenues for future
research.

Conclusion

This paper presents a novel framework for financial modeling by integrating stochastic differential geometry,
specifically Ricci flow, into volatility dynamics. We formulate asset price evolution on a manifold where
volatility is governed by a stochastic Ricci flow equation, yielding a curvature-driven and time-dependent
volatility surface. Analytical results establish the existence and structure of stochastic flows, while numerical
simulations demonstrate realistic asset price behavior, option pricing sensitivity, and volatility clustering. The
proposed model captures intrinsic market geometries, offering a powerful extension to classical stochastic
volatility frameworks with enhanced flexibility and realism.

The simulations conducted throughout this study have provided concrete numerical insights into the
behavior of option pricing models governed by stochastic Ricci flows on evolving financial manifolds. The
3D volatility surface deformation plots illustrate how curvature dynamics, induced by geometric flows,
impact the implied volatility structure over time and strike. This visual behavior reflects the underlying
market geometry responding to stochastic fluctuations, thus offering a geometric lens for understanding
volatility clustering and surface shifts. Furthermore, the computed option prices across varying maturities
and strikes demonstrate consistency with the curvature-driven deformation framework, preserving arbitrage-
free structures. Numerical convergence analysis affirms the stability and reliability of the geometric Euler-
Maruyama schemes employed, with error behavior conforming to theoretical stochastic bounds. Collectively,
the figures and computational results validate the feasibility and robustness of integrating differential
geometric flows into financial derivative pricing models, opening pathways for more structurally informed
volatility modeling.

The economic policy implication of our curvature-driven, stochastic Ricci flow framework offers
policymakers a novel lens for monitoring systemic financial risk, as it embeds volatility clustering and tail-
risk signals within evolving geometric structures—complementing recent evidence on the predictive power of
economic uncertainty for volatility modeling [9, 12]. By enhancing traditional risk indicators with continuous
curvature dynamics, regulators can better anticipate market instability and design stress-testing protocols and
macroprudential policies that account for evolving fluctuation geometries [8, 9, 23]. Moreover, the manifold-based
model supports targeted monetary interventions by mapping curvature spikes to shifts in investor sentiment and
economic fundamentals, in line with findings linking volatility components to real economic outcomes [12, 40].
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Hence, the results of this paper offers invaluable contributions to the existing literature beyond mathematical
representations, but also useful for economic policy reform too.
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