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Abstract— Sunflower is a crop type that has high economic value and is also used for ornamental purposes. 

However, various diseases seen on sunflower leaves can disrupt production and it is difficult for growers to 

identify these diseases with traditional approaches. Therefore, the need for image-based artificial intelligence 

approaches that can automatically identify diseases seen on leaves has arisen. In this study, a system that can 

detect diseases seen on sunflower leaves, both image-based and artificial intelligence-supported, has been 

developed. The study consists of four stages. In the first stage, a publicly available dataset was used, and additional 

data was collected by us. In the second stage, image processing was performed. In the third stage, CNN 

(Convolutional Neural Network), ViT (Vision Transformer) and CNN-ViT models were designed. In the last 

stage, the performances of these models were evaluated, and their success was determined by accuracy, recall, 

precision, F1-score, Cohen Kappa and Hamming loss metrics. To improve data diversity and robustness, the 

dataset was enriched with real-world images collected under varying environmental conditions. The preprocessing 

stage included a comprehensive pipeline involving Gaussian filtering, HSV conversion, histogram equalization, 

Canny edge detection, and segmentation to enhance feature clarity and reduce noise. The CNN-ViT model was 

designed to leverage local feature extraction through convolutional layers and global feature representation via 

self-attention mechanisms. All models were trained and validated using standardized conditions to ensure 

comparability. The experimental results demonstrated that the hybrid CNN-ViT model achieved superior 

performance in all evaluation metrics, suggesting its potential as an effective tool in precision agriculture for early 

disease diagnosis. 
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1. Introduction 

The sunflower, scientifically known as Helianthus annus, first appeared in Mexico in 2,100 BC and has been 

used for both economic and ornamental purposes in many countries (David et al. 2008). Many countries, especially 

Turkey, grow sunflowers to meet consumer demand. Since its seeds contain oil and are also consumed as food, 

sunflower is an economically important crop (Vorobyov et al. 2021). Furthermore, straw is obtained from 

sunflower leaves and yellow dye from flowers, and these provide profit to both agriculture and industry (Yuan et 

al. 2022; Ghosh et al. 2023). However, diseases such as downy mildew, leaf scar and gray mold seen on sunflower 

leaves negatively affect sunflower production (Sara et al. 2022; Malik et al. 2022). Manual control and 

determination of diseases seen on sunflower leaves is a time-consuming process. To determine the diseases seen 

on the leaves, classification is done by observation, and this is prone to error since it depends on the experience of 

the observer (Sathi et al. 2023). Various approaches have been proposed to overcome this problem. The most 

important of these approaches is the spectrometer (Sasaki et al. 1998). Healthy and unhealthy sunflower leaves 

can be effectively classified with the spectrometer approach. In addition, diseases can be determined with gene 

bioinformatics approaches (Koo et al. 2013). However, the biggest limitation of these approaches is that they are 

time consuming, costly, and require expert knowledge. Therefore, the need for both image-based and artificial 

intelligence-supported systems that can identify diseases has arisen. 

In recent years, computer vision and artificial intelligence (AI) have been used effectively to identify diseases 

seen on sunflower leaves. In this direction, researchers frequently resort to machine learning (ML) approaches 

(Wu et al. 2022; Kaur et al. 2022; Centorame et al. 2024). However, in ML, feature extraction is performed to 
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extract more perceptible patterns and features from the data, which requires expert knowledge. This can cause the 

process to take time. To overcome this problem, researchers have turned to deep learning (DL) algorithms, another 

AI approach. In DL, no expert knowledge is required for feature extraction. The biggest difference between DL 

and ML is that feature extraction is done automatically, that is, by the model. DL models are used effectively in 

various studies, especially in agriculture, such as the detection of diseases in plants, the identification of pesticide 

insects, and plant classification (Li et al. 2021; Zhou et al. 2021; Islam et al. 2023; Wang et al. 2022). The successes 

achieved with DL in the field of agriculture have led researchers to determine diseases seen in sunflower leaves 

with DL models. (Rani et al. 2024), used CNN and RF (Random Forest) models to classify diseases seen on 

sunflower leaves and designed an approach that divided plant diseases into 10 different categories. The 

performance of the models was determined by accuracy scores and the average accuracy was obtained as 92.19%. 

The study emphasized that deep learning algorithms are effective in accurate and timely disease recognition and 

highlighted that plant diseases should be detected at an early stage to minimize agricultural losses. (Sirohi and 

Malik, 2021), developed deep learning-based hybrid model for sunflower classification. The study combined 

VGG-16 and MobileNet models and classified four different types of diseases. The study consisted of various 

stages including data pre-processing, labeling, data augmentation, model training and design of hybrid model. The 

performance of the model was determined by accuracy score and 89.2% accuracy was achieved with hybrid 

approach. The study indicated that early detection of diseases through computer image analysis contributes to the 

protection of sunflower crop. (Sathi et al. 2023), presented a deep learning-based approach to detect sunflower 

diseases. A total of 1,428 sunflower images were used in the study and segmentation was performed with K-

Means. Preprocessing techniques such as resizing, contrast adjustment and color enhancement were applied to the 

images. Four different DL models were used in the study and the performances of these models were determined 

by accuracy scores. As a result, the study emphasized the importance of modern technologies in agricultural 

practices and offered a potential solution to help farmers in recognizing diseases. (Singh 2019) proposed an 

innovative approach combining image segmentation and PSO (Particle Swarm Optimization) algorithm for disease 

detection on sunflower leaves. K-means method was used for segmentation process and images were masked with 

pixel masking. The method provided a practical solution for disease monitoring and control especially in large 

areas. (Rajora et al. 2024), various diseases on sunflower leaves were determined using the CNN-SVM (CNN-

Support Vector Machine) hybrid model. The study was carried out by analyzing 9,695 images and the performance 

of the model was determined with accuracy. The research result emphasized that it would allow farmers to detect 

and intervene in diseases in a timely manner and would help them increase agricultural productivity and health. 

In line with the successes obtained with DL in the literature, both DL and hybrid model techniques were used 

in this study to recognize sunflower diseases. The effectiveness of CNN, ViT and CNN-ViT models was 

investigated, and the performance of the models was determined by various evaluation criteria. The highlights of 

the article are as follows: 

 Both DL and hybrid (CNN-VIT) architectures were used together, and a comparative analysis was 

performed. The contribution of the hybrid structure to the success of classification was evaluated for 

the first time in the literature. 

 Hybrid structure, where CNN and ViT architecture is combined, is still a novel approach in the field 

of agricultural image classification. 

 In contrast to the fact that many previous studies are based only on publicly available datasets, both 

public data set and original data collected in the field were used together. In this way, the 

generalization ability of the model was increased and made more suitable for real field conditions. 

 The effect of combining data obtained from different sources on the classification performance was 

systematically evaluated, and in this respect, practical inferences were presented for data set design 

and model training processes. 

The rest of the study is organized as follows: In the Material and Methods section, the data and methods used 

in the study are mentioned. In the Application Results and Discussion, the findings are given, and the results are 

interpreted. In the Conclusion, the study is concluded, and a general summary of the study is given and suggestions 

for future studies are presented. 

2. Material and Methods 

The flow chart of the study is given in Figure 1. There are two important stages of the study. These are: feature 

extraction and design of deep learning models. Information about each stage is given in subsections. 
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Figure 1. Flow chart of the study 

2.1. Data Set 

Two different data sets were used in the study. The first data set consists of images obtained from the study 

(Sara et al. 2022) and there are 466 images in the data set, 120 of which are downy mildew, 134 of which are fresh 

leaves, 72 of which are gray mildew and 140 of which are leaf marks. In addition, data augmentation was 

performed on the images and the number of images increased to 1,668. The second dataset was generated 

specifically for the study by us. Sunflower leaves were obtained from the provinces of Edirne and Kırklareli in the 

Thrace region with the help of a camera with high pixel resolution. There are a total of 250 images in our dataset. 

100 of these images are fresh leaves, 50 are downy mildew, 70 are leaf scars, and 30 are gray mold. As in the study 

(Sara et al. 2022), image augmentation was performed, and the images were increased from 250 images to 875 

images. During the data augmentation, rotation, scaling, and shearing, which are position-based data augmentation 

steps, were employed. Rotation aimed to obtain the appearance of leaf diseases from different angles. For this 

purpose, rotations were performed at angles of 45°, 60°, and 90° within the scope of the study. Scaling increased 

the image size, aiming to accurately distinguish symptoms at different proximity levels. In the scaling step, the 

width and height scaling were increased by 0.1 units. Finally, the shearing step distorted the image by tilting it 

along the axial plane. This aimed to test the robustness of the models against natural perspectives. In the shearing 

step, the distortion interval was set to 0.1. Various sunflower leaf images of each dataset are given in Figure 2. 

 

 

Figure 2. Leaf images belonging to the datasets. The images in the first row are from the dataset (Sara et al. 

2022). The images in the second row were collected by us. The leaves are a) downy mildew, b) fresh leaf, c) 

gray mold and d) leaf spot, respectively 

c) d) 

a) b) c) d) 

b) a) 

a) 
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2.2. Data Preprocessing 

Six different pre-processing techniques were used: image resizing, Gaussian filtering, HSV (Hue, Saturation 

and Value), histogram equalization, canny edge detection and segmentation. Since ViT and CNN DL models take 

images in 224 x 224, during the image resizing stage, the images were converted to this format. Then, Gaussian 

Filtering was applied to reduce noise and soften edges. After, the HSV color model, which is more suitable for the 

human eye's color perception and is also widely used in object detection and background separation, was employed 

(Andasuryani and Rasinta, 2021). Then, histogram equalization was performed to make the details in the images 

more distinct. In the next step, the Canny edge detection algorithm was applied to determine the edges in the 

images. In the last step, segmentation was performed to make it easier to recognize certain features or objects on 

the image. Figure 3 shows the results of applying these steps on leaf scar. 

 

Figure 3. Implementation of image processing steps 

2.3. Model Development 

DL, as a sub-branch of AI and ML, aims to develop systems that can make human-like decisions using models 

that can process large data sets and complex structures. DL basically uses multi-layered artificial neural networks 

to learn. These networks are designed with inspiration from the biological nervous system and process data in 

layers. Each layer extracts different features from the data, producing more complex and abstract representations. 

DL, unlike traditional ML algorithms, has the ability to extract features directly from data (Sarhan et al. 2024). 

This provides a significant advantage, especially in visual data. For instance, a DL model can recognize objects, 

colors, and shapes in an image. This type of learning largely eliminates the need for manual feature engineering. 

DL has achieved success in many areas with various special network structures. CNN, one of the DL models, is 

widely used in image processing and computer vision fields and is preferred in tasks such as object recognition, 

classification, and segmentation (Çakar and Sengur 2021; Ozer 2024). Another DL model, ViT, unlike the CNN, 

divides the images into small-fixed size pieces and transforms them into a sequence and processes this sequence 

with feature extraction mechanisms specific to transformer models (Azad et al. 2024). CNNs are successful in 

learning local features, but they require additional layers and large datasets to model long-distance dependencies. 

ViT, on the other hand, can perform better, especially on large datasets, by processing the entire image 

simultaneously thanks to its self-attention mechanism. ViT is used in many areas such as medical image analysis, 

remote sensing, autonomous driving and industrial quality control and has become an important alternative in the 

field of computer vision in recent years (Thirunavukarasu and Kotei 2024; Alijani 2024). In addition to these 

models, the hybrid architecture (CNN-ViT) offers a richer and stronger classification model by combining CNN's 

local spatial sensitivity and ViT’s transformer's global attention ability. In hybrid approach, first, 3-dimensional 

leaf images were fed to the CNN model by performing a series of pre-processing techniques (which were 

mentioned earlier). The CNN block extracted low to mid-level local features such as edge, texture, and color 

through a series of Conv3D, BatchNormalization, activation function and pooling layers. The final CNN feature 

maps were transformed via a linear dense layer into a sequence of tokens, each corresponding to a vision patch. 

Positional embeddings were added to these tokens, and then multiple Transformer encoder blocks were applied. 

These blocks include Multi-Head Self-Attention (MHSA), Layer Normalization (LN), Feed-Forward Network 

(FFN), and residual connections to model the spatial relationships between different parts of the image and create 

global feature representations. Local features from the CNN were converted to tokens and then passed to the 

Transformer block. The global context from the Transformer was integrated again via CNN-based advanced dense 

layers before being forwarded to the classification head. This enables cross-level feature fusion, preserving the 

local patterns of the input image while achieving broad context understanding. Finally, the Transformer output 
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was evaluated using global average pooling (GAP) and routed to a dense layer containing Softmax. The model 

was trained end-to-end using various optimization algorithms with categorical cross-entropy loss for multi-class 

classification. This structure clearly demonstrates that the hybrid architecture, supported by both the original CNN-

ViT integration mechanism and advanced modules, offers a powerful contribution to classification, both 

theoretically and practically. 

Therefore, in addition to CNN and ViT models, a hybrid approach was used in the study. The data were 

separated as 80% training and 20% testing. The classification process was carried out under various scenarios. 

These scenarios are given in Table 1. 

Table 1. Scenarios for the classification  

Scenario No Dataset Data Augmentation 

#1 (Sara et al. 2022) N/A 

#2 (Sara et al. 2022) Available 

#3 Ours N/A 

#4 Ours Available 

#5 (Sara et al. 2022) and ours N/A 

#6 (Sara et al. 2022) and ours Available 

Finally, the parameters of the developed models were determined with Grid Search (GS) algorithm. GS is a method 

that systematically examines all combinations in hyperparameter optimization. By definition, a grid is created with 

given hyperparameter values, and the model is trained for each combination, its performance is measured, and the 

combination that yields the best results is selected. For the CNN model, the hyperparameters that needed to be 

tuned were pooling size, kernel size, number of filters, batch size, optimization, and learning rate. For ViT, these 

were: encoder dimensionality, activation function in hidden layers, transformer encoder in hidden layers, 

optimization, and learning rate. For CNN-ViT, the previously mentioned parameters of the two models were 

evaluated together, and the best parameters were selected. Apart from these hyperparameters, one of the most 

important parameters is the epoch value. No optimization was performed for the epoch value; the epoch value was 

selected as 50 to ensure equal training for each model. The parameters of the models varied for each scenario, and 

they are given through Table 2-4. 

 

2.4. Model Evaluation 

The performance of the models was determined by the evaluation criteria of accuracy, F1-score, recall, 

precision, Cohen’s Kappa and Hamming Loss. The accuracy score can be expressed as the ratio of the instances 

correctly classified by the models to the total number of instances. It shows the general success but can be 

misleading in unbalanced data sets. Therefore, other evaluation criteria were used in addition to the accuracy score. 

The recall shows how well the models capture true positives, while precision gives the rate at which the values 

classified by the models as positive are actually positive. The F1-score is the harmonic mean of the precision and 

recall values. It is used as a better performance indicator in unbalanced data sets. Cohen’s Kappa is a metric that 

measures the classification success by taking into account the effect of random classifications. Values close to 1 

indicate that the model is strong, while values close to 0 indicate that the model makes random classifications. 

Hamming Loss is an error measure that shows the rate of incorrectly classified examples. It is used effectively, 

especially in multi-label classification problems. A low value indicates that the model is good. 

 

2.5. Model Development Environment 

The training of the models was performed on a MacBook device with an Apple M1 chip and 7 GB of RAM. 

The training process was entirely CPU-based, without the use of any external GPU. Despite limited system 

resources, each model was trained in a reasonable amount of time. Average training times were approximately 1 

hour for the CNN model, 2.5 hours for the ViT model, and approximately 3.5 hours for the hybrid CNN-ViT 

model. All training processes were conducted in the Anaconda Spyder environment. This information is important 

for demonstrating the feasibility of deep learning models even with limited resources and serves as a reference for 

researchers wishing to assess the technical adequacy of the study. Table 5 shows the time spent and technical 

information for each scenario. 
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Table 2. Hyperparameters of CNN model for each scenario  

Scenario No Hyperparameters Hyperparameters Range Selected Hyperparameters 

#1 

Pooling size {2x2, 4x4, 8x8} 2x2 

Kernel size {3x3, 5x5, 7x7, 9x9} 5x5 

Number of filters {16, 32, 64} 32 

Batch size {2, 8, 16, 32, 64, 128, 256} 16 

Optimization {adam, rmsprop, SGD} adam 

Learning rate {0.01, 0.001, 0.0001} 0.01 

#2 

Pooling size {2x2, 4x4, 8x8} 4x4 

Kernel size {3x3, 5x5, 7x7, 9x9} 5x5 

Number of filters {16, 32, 64} 16 

Batch size {2, 8, 16, 32, 64, 128, 256} 32 

Optimization {adam, rmsprop, SGD} adam 

Learning rate {0.01, 0.001, 0.0001} 0.001 

#3 

Pooling size {2x2, 4x4, 8x8} 2x2 

Kernel size {3x3, 5x5, 7x7, 9x9} 3x3 

Number of filters {16, 32, 64} 16 

Batch size {2, 8, 16, 32, 64, 128, 256} 8 

Optimization {adam, rmsprop, SGD} adam 

Learning rate {0.01, 0.001, 0.0001} 0.01 

#4 

Pooling size {2x2, 4x4, 8x8} 4x4 

Kernel size {3x3, 5x5, 7x7, 9x9} 5x5 

Number of filters {16, 32, 64} 32 

Batch size {2, 8, 16, 32, 64, 128, 256} 32 

Optimization {adam, rmsprop, SGD} SGD 

Learning rate {0.01, 0.001, 0.0001} 0.001 

#5 

Pooling size {2x2, 4x4, 8x8} 4x4 

Kernel size {3x3, 5x5, 7x7, 9x9} 5x5 

Number of filters {16, 32, 64} 32 

Batch size {2, 8, 16, 32, 64, 128, 256} 32 

Optimization {adam, rmsprop, SGD} adam 

Learning rate {0.01, 0.001, 0.0001} 0.001 

#6 

Pooling size {2x2, 4x4, 8x8} 8x8 

Kernel size {3x3, 5x5, 7x7, 9x9} 7x7 

Number of filters {16, 32, 64} 64 

Batch size {2, 8, 16, 32, 64, 128, 256} 32 

Optimization {adam, rmsprop, SGD} rmsprop 

Learning rate {0.01, 0.001, 0.0001} 0.0001 
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Table 3. Hyperparameters of ViT model for each scenario  

Scenario No Hyperparameters Hyperparameters Range Selected Hyperparameters 

#1 

Encoder dimensionality {1-100} 49 

Activation function {gelu, relu, selu} gelu 

Transformer encoder {1-100} 6 

Optimization {adam, rmsprop, SGD} adam 

Learning rate {0.01, 0.001, 0.0001} 0.01 

#2 

Encoder dimensionality {1-100} 70 

Activation function {gelu, relu, selu} relu 

Transformer encoder {1-100} 66 

Optimization {adam, rmsprop, SGD} Adam 

Learning rate {0.01, 0.001, 0.0001} 0.001 

#3 

Encoder dimensionality {1-100} 17 

Activation function {gelu, relu, selu} gelu 

Transformer encoder {1-100} 28 

Optimization {adam, rmsprop, SGD} rmsprop 

Learning rate {0.01, 0.001, 0.0001} 0.001 

#4 

Encoder dimensionality {1-100} 33 

Activation function {gelu, relu, selu} gelu 

Transformer encoder {1-100} 18 

Optimization {adam, rmsprop, SGD} adam 

Learning rate {0.01, 0.001, 0.0001} 0.01 

#5 

Encoder dimensionality {1-100} 62 

Activation function {gelu, relu, selu} relu 

Transformer encoder {1-100} 42 

Optimization {adam, rmsprop, SGD} SGD 

Learning rate {0.01, 0.001, 0.0001} 0.001 

#6 

Encoder dimensionality {1-100} 58 

Activation function {gelu, relu, selu} gelu 

Transformer encoder {1-100} 77 

Optimization {adam, rmsprop, SGD} SGD 

Learning rate {0.01, 0.001, 0.0001} 0.0001 
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Table 4. Hyperparameters of CNN-ViT model for each scenario  

Scenario No Hyperparameters Hyperparameters Range Selected Hyperparameters 

#1 

Pooling size {2x2, 4x4, 8x8} 2x2 

Kernel size {3x3, 5x5, 7x7, 9x9} 3x3 

Number of filters {16, 32, 64} 16 

Encoder dimensionality {1-100} 44 

Activation function {gelu, relu, selu} gelu 

Transformer encoder {1-100} 14 

Optimization (ViT) {adam, rmsprop, SGD} adam 

Learning rage (ViT) {0.01, 0.001, 0.0001} 0.01 

#2 

Pooling size {2x2, 4x4, 8x8} 8x8 

Kernel size {3x3, 5x5, 7x7, 9x9} 5x5 

Number of filters {16, 32, 64} 64 

Encoder dimensionality {1-100} 49 

Activation function {gelu, relu, selu} gelu 

Transformer encoder {1-100} 25 

Optimization (ViT) {adam, rmsprop, SGD} rmsprop 

Learning rage (ViT) {0.01, 0.001, 0.0001} 0.001 

#3 

Pooling size {2x2, 4x4, 8x8} 2x2 

Kernel size {3x3, 5x5, 7x7, 9x9} 3x3 

Number of filters {16, 32, 64} 16 

Encoder dimensionality {1-100} 13 

Activation function {gelu, relu, selu} relu 

Transformer encoder {1-100} 25 

Optimization (ViT) {adam, rmsprop, SGD} adam 

Learning rage (ViT) {0.01, 0.001, 0.0001} 0.01 

#4 

Pooling size {2x2, 4x4, 8x8} 4x4 

Kernel size {3x3, 5x5, 7x7, 9x9} 7x7 

Number of filters {16, 32, 64} 32 

Encoder dimensionality {1-100} 57 

Activation function {gelu, relu, selu} gelu 

Transformer encoder {1-100} 32 

Optimization (ViT) {adam, rmsprop, SGD} SGD 

Learning rage (ViT) {0.01, 0.001, 0.0001} 0.001 

#5 

Pooling size {2x2, 4x4, 8x8} 8x8 

Kernel size {3x3, 5x5, 7x7, 9x9} 7x7 

Number of filters {16, 32, 64} 32 

Encoder dimensionality {1-100} 82 
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Activation function {gelu, relu, selu} gelu 

Transformer encoder {1-100} 63 

Optimization (ViT) {adam, rmsprop, SGD} adam 

Learning rage (ViT) {0.01, 0.001, 0.0001} 0.001 

#6 

Pooling size {2x2, 4x4, 8x8} 8x8 

Kernel size {3x3, 5x5, 7x7, 9x9} 9x9 

Number of filters {16, 32, 64} 64 

Encoder dimensionality {1-100} 87 

Activation function {gelu, relu, selu} gelu 

Transformer encoder {1-100} 67 

Optimization (ViT) {adam, rmsprop, SGD} adam 

Learning rage (ViT) {0.01, 0.001, 0.0001} 0.0001 

 

 

Table 5. General and technical information about development environment  

Scenario No Model Training Time Hardware Type CPU RAM GPU 

#1 

CNN 50 minutes CPU Apple M1 7 GB None 

ViT 2 hours CPU Apple M1 7 GB None 

CNN-ViT 3 hours CPU Apple M1 7 GB None 

#2 

CNN 1 hour CPU Apple M1 7 GB None 

ViT 2.5 hours CPU Apple M1 7 GB None 

CNN-ViT 3.5 hours CPU Apple M1 7 GB None 

#3 

CNN 45 minutes  CPU Apple M1 7 GB None 

ViT 1 hour, 43 minutes CPU Apple M1 7 GB None 

CNN-ViT 2.5 hours CPU Apple M1 7 GB None 

#4 

CNN 1 hour CPU Apple M1 7 GB None 

ViT 2.5 hours CPU Apple M1 7 GB None 

CNN-ViT 3 hours CPU Apple M1 7 GB None 

#5 

CNN 1 hour, 10 minutes CPU Apple M1 7 GB None 

ViT 2.7 hours CPU Apple M1 7 GB None 

CNN-ViT 4 hours CPU Apple M1 7 GB None 

#6 

CNN 1.5 hours CPU Apple M1 7 GB None 

ViT 3 hours CPU Apple M1 7 GB None 

CNN-ViT 4.5 hours CPU Apple M1 7 GB None 

 

3. Results and Discussion 

Developments in the field of ML and DL, when combined with image processing techniques, offer significant 

contributions, especially in critical areas such as agriculture and health. In this study, the performances of CNN, 
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ViT and CNN-ViT models were compared on different datasets. The main objective of the study was to determine 

which data combinations and model configurations provide higher accuracy and generalization capacity. The 

approximate evaluation results obtained for each scenario are given in Table 6. 

 

Table 6. Classification results for each scenario  

Scenario No Model Accuracy Precision Recall F1-Score Cohen’s Kappa Hamming Loss 

#1 

CNN 75.8% 77.1% 76.0% 75.8% 0.52 24.2% 

ViT 77.9% 78.9% 76.5% 77.1% 0.58 22.2% 

CNN-

ViT 
82.1% 83.7% 80.1% 81.6% 0.67 16.2% 

#2 

CNN 81.7% 81.9% 81.1% 81.1% 0.63 18.1% 

ViT 85.6% 85.8% 85.1% 85.1% 0.69 14.2% 

CNN-

ViT 
87.7% 87.9% 87.6% 87.4% 0.72 12.1% 

#3 

CNN 73.5% 71.2% 74.7% 72.4% 0.49 26.3% 

ViT 78.0% 77.2% 84.6% 78.8% 0.60 21.2% 

CNN-

ViT 
82.0% 80.9% 85.9% 82.4% 0.64 18.3% 

#4 

CNN 86.3% 85.6% 88.2% 86.7% 0.71 13.2% 

ViT 88.6% 85.8% 89.6% 87.2% 0.73 11.1% 

CNN-

ViT 
89.1% 88.2% 89.0% 88.4% 0.75 10.2% 

#5 

CNN 87.5% 87.0% 88.7% 87.5% 0.72 12.2% 

ViT 90.3% 89.0% 90.5% 89.5% 0.76 9.2% 

CNN-

ViT 
91.7% 92.0% 90.6% 91.1% 0.77 8.3% 

#6 

CNN 92.0% 91.5% 91.5% 91.5% 0.78 7.3% 

ViT 94.0% 93.7% 93.5% 93.6% 0.79 5.2% 

CNN-

ViT 
95.7% 95.2% 95.1% 95.1% 0.81 4.1% 

 

First, when considering Scenario 1, where only the dataset is used from (Sara et al. 2022) and no data augmentation 

is present, the CNN model achieved 75.8% accuracy, while the ViT model achieved a slightly higher value of 

77.9% accuracy. However, one of the most striking results is that the CNN-ViT model, which is a combination of 

CNN and ViT models, achieved 82.1% accuracy. This showed that the combination of two different model 

architectures is more successful than the individual models. In Scenario 2, where data augmentation was 

introduced, the accuracy rate increased to 81.7%, especially in the CNN model, revealing the importance of data 

diversity. While the ViT model reached 85.6% accuracy in this scenario, the CNN-ViT model again achieved the 

best result with 87.7% accuracy. A similar trend is observed for Scenarios 3 and 4, where our own dataset is used. 

However, the striking point here is that the initial performances of the models are relatively lower as the dataset 

changes. For example, while the CNN model had an accuracy rate of 73.5% without data augmentation, it increased 

to 86.3% when data augmentation was applied. This showed that the raw dataset may have limited diversity and 

that data augmentation methods allowed the model to generalize better. The most remarkable results were obtained 

in Scenarios 5 and 6, where two datasets were combined. Here, it was observed that all models achieved the highest 

performance, especially in Scenario 6, where both data augmentation and dataset merging strategies were applied. 

The CNN model achieved the highest performance by reaching 92.0%, the ViT model 94.0% and the CNN-ViT 

model 95.7% accuracy rates. In addition, it was observed that the CNN-ViT model minimized the classification 

errors in this scenario, where the Hamming Loss values also decreased to the lowest levels. 
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One of the most important findings of this study is that data augmentation has a direct positive effect on model 

performance. It was observed that the generalization abilities of models trained on a single dataset were more 

limited, but these limitations were significantly overcome when data augmentation was used. However, it is clear 

that combining different datasets also provides a significant advantage. By combining two datasets, both data 

diversity increased and the model was able to cope better with different scenarios. In particular, the fact that the 

CNN-ViT model achieved the highest accuracy in all scenarios shows that hybrid models can offer a more 

powerful alternative in the field of image processing. Finally, when Cohen’s Kappa values were examined, it was 

seen that the probability of random classification decreased significantly with data augmentation and data 

aggregation strategies. This is an important metric that supports that the models are truly learning, and their results 

are more reliable. 

CM (Confusion Matrix) is frequently used to determine the performance of the models in each scenario and in 

each class. CM graphs of the models are given in Figure 4. 
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Figure 4. CM plots of models for 6 different scenarios. (DM: Downy mildew, FL: Fresh leaf, GM: Gray mold, 

LS: Leaf scar) 

When the performances of CNN, ViT and CNN-ViT models are examined in the first scenario, it is seen that 

CNN and ViT models make incorrect classifications in certain classes, but the CNN-ViT model exhibits a more 

balanced distribution. There is a high false prediction rate especially in certain classes (e.g. LS). This situation 

shows that the model learns some classes better than others and therefore requires optimization. In the second 

scenario, it is observed that the accuracy rate increases in all models in general. While the CNN model performs 

better especially in large data sets, the ViT model is determined to be less efficient. The CNN-ViT model achieved 

the highest accuracy rate by combining the advantages of both architectures. The hybrid model provides an 

advantageous result, especially in terms of minimizing false positive and false negative rates. In the third scenario, 

it is seen that the CNN model has a low accuracy rate in certain classes and in some cases makes serious wrong 

classifications. In the ViT model, while the error rate decreases in certain classes, high wrong classifications 

continue in some classes. Although the overall accuracy rate of the CNN-ViT model is higher, the error rate is 

determined to be high in the LS class. In the fourth scenario, the CNN model exhibits a high accuracy rate in 

certain classes, while the wrong classifications are quite high in other classes. While the ViT generally shows a 

homogeneous distribution, the CNN-ViT model offers a better performance in all classes. In the fifth scenario, the 

CNN model has a very high false prediction rate in some classes, and it is observed that it overgeneralizes 

especially in certain classes. Although this situation is more balanced in the ViT model, errors continue in certain 

classes. The CNN-ViT model offers the most balanced classifications as in the previous scenarios. In the last 

scenario, it is observed that the CNN model has extremely high accuracy rates in some classes but makes 

significant false classifications in other classes. While the ViT model provides a relatively better balance, the 

CNN-ViT model produces the most balanced results. This shows that hybrid models have a stronger generalization 

ability on complex data sets. In Scenario 1, the hybrid model stood out with its high recall (0.8047) and specificity 

(0.9308) values, while its F1-score (0.8157) reached the highest levels. This demonstrated that the model was 

successful in both correctly classifying true positives and minimizing false positives, thus improving overall 

accuracy. In Scenario 2, CNN-ViT again had the highest recall value (0.8757), while its specificity (0.9546) and 

F1-score (0.8743) continued their success. This showed that the model demonstrated a balanced performance in 

correctly recognizing positive classes while simultaneously minimizing false positives. In Scenario 3, the CNN-

ViT model's recall (0.8589) and specificity (0.9321) values were quite high, while its F1-score (0.8241) reinforced 

the model's balanced performance. This demonstrated that the model detected the positive class with high accuracy 

and also correctly classified the negative class to a large extent. In Scenario 4, although the ViT model was 

observed to have a higher recall value (0.8959), CNN-ViT provided the highest specificity (0.9615) and F1-score 

(0.8838). Here, it was observed that while the ViT model recognized the positive class well, the CNN-ViT model 

produced fewer false positives, providing a more balanced result. In Scenario 5, the CNN-ViT model stood out 

with its recall (0.9060) and specificity (0.9694) values and achieved the highest success with an F1-score (0.9113). 
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This specified that the model both detected the positive class with high precision and correctly classified the 

negative class, keeping error rates to a minimum. In Scenario 6, the CNN-ViT model achieved the highest recall 

(0.9512) and specificity (0.9850) values, representing its highest performance. The F1-score (0.9513) also 

demonstrated the model's balanced and robust performance. In this scenario, the CNN-ViT model classified both 

classes very accurately, minimizing false positive and false negative rates. Consequently, considering all scenarios, 

the CNN-ViT model achieved the highest recall and specificity values, maintaining high F1-scores. This indicated 

that the model achieved high accuracy in both positive classes and correctly recognized negative classes, 

minimizing false positives. 

Some of the methods used to determine model performance in classification studies are statistical approaches. 

In this study, the Friedman test and one-way ANOVA (Analysis of Variance) were used to determine whether the 

model results were significant. The Friedman test, a nonparametric method, is used to compare the performance 

of multiple models on the same data blocks. In this method, the data are sorted by block, and the model mean 

rankings are compared. The Friedman test is more reliable, especially in cases with relatively small sample sizes, 

and its nonparametric structure is more robust to patterns (Inyang et al., 2024). One-way ANOVA is used to 

compare three or more models on the same units. It is based on the assumptions of normal distribution and 

homogeneity of variance (Abbas et al., 2024). The Friedman test result (x2=12.00, p=0.0025) indicated that at least 

one model was statistically significantly different from the others, as p<0.05. This revealed that the observed 

differences in the performance of the three models were not random, but rather systematic and statistically 

significant. However, in the one-way ANOVA analysis, no significant difference was found between the model 

performances, as p>0.05 (F=1.006, p=0.389). The main reason for this may be the high variance, which may have 

caused the difference not to be detected by the ANOVA. When the accuracy results are examined, the performance 

of the CNN model varies between 73.5% and 92.0%. Similarly, the accuracy of the CNN-ViT model varies 

between 82.0% and 95.7%. As can be seen, the performances are in a wide range, indicating a high within-group 

variance. 

In general, when the performances of all three models were compared, it was determined that the CNN-ViT 

had the best accuracy rate and a balanced classification success. The main reasons for this may be the combination 

of CNN's ability to learn local features and ViT's ability to capture long-range dependencies. CNN and ViT models 

used alone cause erroneous classifications by overgeneralizing in certain classes. The CNN-ViT produced more 

robust and balanced classifications by combining the strengths of both approaches. In addition, the deep learning 

methods used in the study can provide higher accuracy rates compared to classical machine learning approaches. 

In particular, the use of advanced models such as CNN and ViT increased the classification success. The use of 

various techniques for preprocessing the images (filtering, segmentation, etc.) allowed the model to make more 

accurate classifications. However, despite these successes, the study also has several shortcomings. The most 

important of these is the small dataset and diversity. The success of the study largely depends on the dataset used. 

If the dataset contains a limited number of diseases types or has low sample diversity, the generalization ability of 

the models may be limited. Using a larger and more diverse dataset can increase the accuracy of the models. It is 

also important to determine how the study will perform in real-world conditions. Different lighting conditions, 

weather, and natural variability in foliage can affect the accuracy of the models. Therefore, it is important to 

evaluate the model in outdoor tests. Finally, DL models developed in this study to detect diseases on sunflower 

leaves demonstrated high classification accuracy. These results are consistent with many studies in the literature 

demonstrating the effectiveness of deep learning in diagnosing leaf diseases in different plant species (Moupojou 

et al., 2023; Şener and Ergen, 2024; Toğaçar, 2002; Fan et al., 2022) These studies showed that AI is a particularly 

powerful tool for detecting leaf diseases through image processing. Additionally, another frequently emphasized 

point in the literature is that data augmentation techniques increase model generalization and reduce the risk of 

overfitting. Similar approaches were adopted in this study, and the results were significantly improved.  

Furthermore, testing the developed models in different geographic regions is crucial for a more accurate 

assessment of their generalizability. While this study primarily used data from the Thrace Region, the model's 

adaptability should be tested by collecting data from agricultural areas with different climatic and environmental 

conditions. 

4. Conclusion 

In this study, image-based deep learning models were used for early detection of sunflower leaf diseases. CNN, 

ViT and hybrid CNN-ViT models were designed in the study and the performances of these models were compared 

with metrics such as accuracy, F1-score, precision, recall, Cohen’s Kappa and Hamming Loss. The study analyzed 

the success of these approaches in detail using different datasets and data augmentation techniques. The hybrid 

model had the highest accuracy compared to traditional DL approaches and offered a strong alternative in the 

detection of sunflower leaf diseases. 
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As a result, it has been observed that DL methods supported by image processing techniques provide high 

success in the detection of sunflower diseases. The hybrid CNN-ViT model has contributed to preventing diseases 

from reducing agricultural productivity by making accurate and timely diagnoses. The study shows that image-

based deep learning models can be used in important applications such as disease detection in agriculture. It was 

emphasized that the developed CNN-ViT-based model can be used as a decision support tool, enabling farmers to 

quickly and accurately diagnose leaf diseases encountered in the field, particularly in sunflower production. 

Training the model with data collected under diverse environmental conditions increases its robustness and overall 

performance for such applications. Furthermore, in addition to the study's strengths, significant limitations such as 

the limited size and diversity of the datasets used, the classification of only four disease types, and the fact that the 

model has not yet been tested in real-time in the field are also important factors to consider. Finally, the developed 

CNN-ViT-based model's integration with mobile applications will enable farmers to perform real-time field 

diagnostics. The fact that the study was conducted on a CPU-based, low-resource system demonstrates the model's 

resource efficiency and its applicability to low-capacity devices. Therefore, future work plans to develop 

lightweight, mobile-optimized versions of the model. 
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