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Abstract

In this paper, we have established strong and ∆-convergence results for the SP∗-iteration process applied to mappings satisfying the
(HRSC)-condition in CAT (0) spaces. Furthermore, a numerical example is provided to show the superiority of our results over existing ones
and to illustrate the faster convergence of the SP∗-iteration process compared to several well-known iterative schemes.

Keywords: Fixed point, iteration process, mapping satisfying (HRSC)-condition, strong convergence, ∆−convergence, CAT (0) space.
2010 Mathematics Subject Classification: 47H09; 47H10

1. Introduction

Let (X ,d) be a metric space, K be a non-empty subset of X , and Φ : K →K be a mapping. A point w ∈Φ is called a fixed point of Φ if
Φw = w and we denote by Fix(Φ) the set of fixed points of Φ. A mapping Φ : K →K is called contraction if there exists θ ∈ [0,1) such
that

d(Φw,Φv)≤ θd(w,v),

for all w,v ∈K . If θ = 1 in inequality above, then Φ is said to be a nonexpansive mapping.

Definition 1.1. A mapping Φ : K →K satisfies (C)-condition on K if for all w,v ∈K ,

1
2

d(w,Φw)≤ d(w,v)⇒ d(Φw,Φv)≤ d(w,v).

Suzuki [33] showed that the mapping satisfying (C)-condition is weaker than nonexpansiveness and stronger than quasi-nonexpansiveness.
Recently, Garcia-Falset et al. [12] studied the mapping satisfying (E)-condition that have a weaker property than (C)-condition.

Definition 1.2. A mapping Φ : K → X satisfies (Eµ )-condition on K , if there exists µ ≥ 1 such that

d(w,Φv)≤ µd(w,Φw)+d(w,v)

for all w,v ∈K .

Moreover, it is said that Φ satisfies (E)-condition on K , whenever Φ satisfies (Eµ )-condition, for some µ ≥ 1. It is clearly seen that if
Φ : K → X is nonexpansive, then it satisfies (E1)-condition and from Lemma 7 in [33] we know that if Φ : K →K satisfies (C)-condition
on K , then Φ satisfies (E3)-condition (see [12]). Proposition 1 in [12], we know also that if Φ : K → X a mapping which satisfies
(E)-condition on K has some fixed point, then Φ is quasi-nonexpansive. Example 2 that is in [12] shows the converse is not true. In 2012,
Karapınar [15] studied the (C)-condition and introduced a new condition called (HRSC)-condition (Hardy-Rogers-Suzuki-(C) condition).

Definition 1.3. [15] A mapping Φ : K →K satisfies (HRSC)-condition on K if for all w,v ∈K ,

1
2

d(w,Φw) ≤ d(w,v)⇒

d(Φw,Φv) ≤ 1
5

[
d(w,v)+d(w,Φw)+d(v,Φv)+d(w,Φv)+d(v,Φw)

]
.

Moreover, Karapınar [15] gave some basic properties for a mapping satisfying (HRCS)-condition as follows.
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Proposition 1.4. (i) If a mapping Φ satisfies (HRSC)-condition and has a fixed point, then it is a quasi-nonexpansive mapping.
(ii) If Φ is a mapping satisfying (HRSC)-condition, then

d(w,Φv)≤ 15
[
d(w,Φw)

]
+d(w,v),

for all w,v ∈K
(iii) If Φ is a mapping satisfying (HRSC)-condition, then the set Fix(Φ) is closed.

It is clearly seen that if Φ : K → X is (HRCS)-condition, then Φ satisfies (Eµ )-condition, for µ = 15.
Fixed points play a fundamental role in numerous fields, particularly in mathematics, where they often represent solutions to equations or
equilibrium states in applied problems. The existence of fixed points is governed by a variety of fixed point theorems, which establish the
conditions under which mappings admit such points. Over the years, fixed point methods have found wide-ranging applications across
disciplines including informatics, biology, chemistry, economics, and engineering. While determining the exact value of a fixed point
typically constitutes the final stage in problem-solving, proving its existence is a crucial and often nontrivial first step. Among the most
effective techniques for approximating fixed points are iterative procedures. In recent years, this area has garnered increasing attention, with
researchers proposing novel iterative schemes not only for classical nonexpansive mappings but also for more general classes of mappings.
These studies have primarily focused on the convergence behavior of the proposed methods and have made substantial contributions to the
development of fixed point theory.
Numerous recent studies have significantly contributed to this development by introducing new classes of mappings, generalizing contraction
principles, and constructing modified iterative schemes in various abstract settings, including Banach spaces, CAT (0) spaces, b-metric
spaces, S-metric spaces, and generalized metric spaces. These works have established strong and ∆-convergence results, extended classical
theorems, explored applications to differential and integral equations, and revealed connections with operator theory and fractal geometry
(see, for instance, [[6], [13], [16], [23] - [25], [26]-[29], [37], [38] ]). This remains an ongoing area of mathematical research, with many
prominent researchers continuing to explore the qualitative behavior of iterative methods and their applications in nonlinear analysis.
Let X be a real Banach space and K be a nonempty subset of X , and Φ : K →K be a mapping. We have {ηn},{ϑn} and {τn} real
sequences in [0,1]. Recently, Phuengrattana and Suantai ([22]) defined the SP-iteration as follows:

zn = (1−ηn)wn +ηnΦwn,

vn = (1−ϑn)zn +ϑnΦzn,

wn+1 = (1− τn)vn + τnΦvn, ∀n ∈ N.
(1.1)

where w1 ∈K .
In 2014, Kadıoglu and Yıldırım [14] introduced Picard Normal S-iteration process as follows:

zn = (1−ϑn)wn +ϑnΦwn,

vn = (1− τn)zn + τnΦzn,

wn+1 = Φvn, ∀n ∈ N.
(1.2)

where w1 ∈K .
The following iterative scheme in the context of CAT (0) spaces is known as the SP*-iteration process, introduced by Temir and Korkut
[34], and it has been employed to establish convergence results for certain generalized nonexpansive mappings in CAT (0) spaces (see
[34]–[36]). It was demonstrated that the SP*-iteration process converges faster than both the SP-iteration scheme and the Picard Normal
S-iteration process.Let X be a CAT (0) and K be a nonempty subset of X , and Φ : K →K be a mapping. We have {ηn},{ϑn} and {τn}
real sequences in [0,1]. Now we give SP*-iteration process:for arbitrary w1 ∈K construct a sequence {wn} by

zn = Φ
(
(1−ηn)wn⊕ηnΦwn

)
,

vn = Φ
(
(1−ϑn)zn⊕ϑnΦzn

)
,

wn+1 = Φ
(
(1− τn)vn⊕ τnΦvn

)
, ∀n ∈ N.

(1.3)

Inspired and motivated by these facts, in this paper, we prove some convergence theorems of SP*-iterative process generated by (1.3) to fixed
point of mappings satisfying (HRSC)-condition in CAT (0) spaces. In addition, we provide an example that satisfies (HRSC)-condition but
the mapping does satisfy (C)-condition.

2. Preliminaries

Fixed point theory in CAT (0) spaces was first studied by Kirk (see [17], [18]). He showed that every nonexpansive (single-valued) mapping
defined on a bounded, closed, convex subset of a complete CAT (0) space has a fixed point. Since then, fixed point theory in CAT (0) spaces
has developed rapidly, and many related papers have appeared (see [7]-[11], [17]-[20]). On the other hand, it is well known that not every
Banach space is a CAT (0) space. In fact, the CAT (0) condition requires the metric to satisfy certain triangle comparison properties, which
impose strong restrictions on the curvature and geometric structure of the space. Among Banach spaces, only Hilbert spaces, whose norms
are induced by an inner product, are known to be CAT (0) spaces. This distinction reveals the profound geometric and topological differences
between general Banach spaces and CAT (0) spaces. Consequently, this fact encourages the extension of fixed point and convergence results
from Hilbert and Banach spaces to the nonlinear framework of CAT (0) spaces.
Recently, Kirk and Panyanak [20] employed the concept of ∆-convergence, introduced by Lim [21], to establish analogs of certain weak
convergence results originally proven in Banach spaces, within the framework of CAT (0) spaces. Subsequently, Dhompongsa and Panyanak
[7] extended these ∆-convergence results to the Picard, Mann, and Ishikawa iteration processes for nonexpansive mappings in CAT (0) spaces.
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Moreover, various convergence results for generalized nonexpansive mappings have been obtained in CAT (0) spaces through different
iterative methods (see [1], [2], [27], [30], [31], [34]-[36]).
We now collect some elementary facts about CAT (0) spaces which will be used in the sequel.
If w,v1,v2 are points of a CAT (0) spaces, and if v0 is the midpoint of the segment [v1,v2] then the CAT (0) inequality implies

d2(w,v0)≤
1
2

d2(w,v1)+
1
2

d2(w,v2)−
1
4

d2(v1,v2).

This is the (CN) inequality of Bruhat and Tits [4]. In fact, a geodesic space is a CAT (0) space if and only if it satisfies the (CN) inequality
([[3], p. 163]).
In the sequel, we need the following definitions and useful lemmas to prove our main results of this paper.

Lemma 2.1. ([7]) Let X be a CAT (0) space.
(i) For u,v ∈ X and t ∈ [0,1], there exists a unique point z ∈ [w,v] such that d(w,z) = td(w,v) and d(v,z) = (1− t)d(w,v).
(ii) For w,v ∈ X and t ∈ [0,1], we have

d((1− t)w⊕ tv,z)≤ (1− t)d(w,z)+ td(v,z).

Let {wn} be a bounded sequence in a closed convex subset K of a CAT (0) space X . For w ∈ X , set r(w,{wn}) = limsup
n→∞

d(w,{wn}). The

asymptotic radius r({wn}) of {wn} is given by r(K ,{wn}) = inf
n
{r(w,{wn}) : w ∈K } and the asymptotic center of {wn} relative to K

is the set A(K ,{wn}) = {w ∈K : r(w,{wn}) = r(K ,{wn})}. It is known that, in a CAT (0) space, A(K ,{wn}) consists of exactly one
point; see [10], Proposition 7.
We now recall the definition of ∆-convergence and weak convergence in CAT (0) space.

Definition 2.2. ([20],[21]) A sequence {wn} in a CAT (0) space X is said to ∆-converge to w ∈ X if w is the unique asymptotic center of
every subsequence {wn}. In this case we write ∆− lim

n→∞
wn = w and call u is the ∆−limit of {wn}.

Lemma 2.3. ([20]) Given {wn} ∈ X such that {wn}, ∆-converges to w and given v ∈ X with v 6= w, then

limsup
n→∞

d(wn,w)< limsup
n→∞

d(wn,v).

Lemma 2.4. ([20]) Every bounded sequence in a complete CAT (0) space always has a ∆-convergent subsequence.

Lemma 2.5. ([9]) Let K be closed convex subset of a complete CAT (0) space and {wn} be a bounded sequence in K . Then asymptotic
center of {wn} is in K .

3. Convergence of SP*-iteration process for mappings satisfying (HRCS)-condition

Lemma 3.1. Let K be a nonempty closed convex subset of a complete CAT (0) space X , Φ be a mapping satisfying (HRCS)-condition with
Fix(Φ) 6= /0. For arbitrary chosen w1 ∈K , let {wn} be a sequence generated by (1.3) with {τn}, {ϑn} and {ηn} real sequences in [0,1].
Assume that liminf

n→∞
(1−ηn)ηn > 0, liminf

n→∞
(1−ϑn)ϑn > 0 and liminf

n→∞
(1− τn)τn > 0. Then Fix(Φ) 6= /0 if and only if {wn} is bounded and

lim
n→∞

d(wn,Φwn) = 0.

Proof. Assume that Fix(Φ) 6= /0. Φ is a quasi-nonexpansive because Φ : K →K is a mapping satisfying (HRCS)-condition(see,[15],Proposition
3). Using (1.3), for any p ∈ Fix(Φ), because of Φ quasi-nonexpansive mapping, then we have

d2(zn, p) = d2(Φ((1−ηn)wn⊕ηnΦwn), p) (3.1)

≤ d2((1−ηn)wn⊕ηnΦwn, p)

≤ (1−ηn)d2(wn, p)+ηnd2(Φwn, p)

− (1−ηn)ηnd2(Φwn,wn)

≤ d2(wn, p)− (1−ηn)ηnd2(Φwn,wn)≤ d2(wn, p).

Using (1.3) and (3.1), we get

d2(vn, p) = d2(Φ((1−ϑn)zn⊕ϑnΦzn), p) (3.2)

≤ d2((1−ϑn)zn⊕ϑnΦzn, p)

≤ (1−ϑn)d2(zn, p)+ϑnd2(Φzn, p)

− (1−ϑn)σnd2(Φzn,zn)

≤ d2(zn, p)− (1−ϑn)σnd2(Φzn,zn)

≤ d2(zn, p)≤ d2(wn, p).

By using (1.3) and (3.2), we get

d2(wn+1, p) = d2(Φ((1− τn)vn⊕ τnΦvn), p) (3.3)

≤ d2((1− τn)vn⊕ τnΦvn, p)

≤ (1− τn)d2(vn, p)+ τnd2(Φvn, p)

− (1− τn)τnd2(Φvn,vn)

≤ d2(vn, p)− (1− τn)τnd2(Φvn,vn)

≤ d2(vn, p)≤ d2(wn, p).
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This implies that {d(wn, p)} is bounded and non-increasing for all p ∈ Fix(Φ). Put lim
n→∞

d(wn, p) = γ . From (3.1) and (3.2), we have

limsup
n→∞

d(zn, p)≤ limsup
n→∞

d(wn, p) = γ

and

limsup
n→∞

d(vn, p)≤ limsup
n→∞

d(zn, p)≤ limsup
n→∞

d(wn, p) = γ.

From (3.3), we can get d(wn+1, p)≤ d(vn, p). Therefore γ ≤ liminf
n→∞

d(vn, p). Thus we have γ = lim
n→∞

d(vn, p). Next

γ = lim
n→∞

d(vn, p)≤ lim
n→∞

d(zn, p)≤ lim
n→∞

d(wn, p) = γ.

Now, using (3.1), we know that

d2(zn, p)≤ d2(wn, p)− (1−ηn)ηnd2(Φwn,wn).

Thus
(1−ηn)ηnd2(Φwn,wn)≤ d2(wn, p)−d2(zn, p)

so that
d2(Φwn,wn)≤

1
(1−ηn)ηn

[d2(wn, p)−d2(zn, p)].

We have
lim
n→∞

d2(Φwn,wn)≤ 0.

Hence lim
n→∞

d(Φwn,wn) = 0.

Conversely, suppose that the sequence {wn} is bounded and satisfies limn→∞ d(wn,Φwn) = 0. Let A({wn}) = {p}. Then, by Lemma 2.5,
p ∈K . Since Φ satisfies the (HRSC)-condition on K , there exists µ > 1 (e.g., µ = 15 in Proposition 1.4) such that

d(wn,Φp)≤ 15
[
d(Φwn,wn)

]
+d(wn, p)

which implies that

limsup
n→∞

d(wn,Φp) ≤ limsup
n→∞

{
15[d(Φwn,wn)]+d(wn, p)

}
≤ limsup

n→∞

d(wn, p).

As a consequence of the uniqueness of the asymptotic center, hence Φp = p. This completes the proof.

Now , we prove the ∆-convergence theorem of a iterative process generated by (1.3) in CAT (0) spaces.

Theorem 3.2. Let X ,K ,Φ and {wn} be as in Lemma 3.1 with Fix(Φ) 6= /0. Then {wn}, ∆-converges to a fixed point of Φ.

Proof. Lemma 3.1 ensures that the sequence {wn} is bounded and satisfies limn→∞ d(Φwn,wn) = 0. Let us define W∆(wn) =
⋃

A({ξn}),
where the union is taken over all subsequences {ξn} of {wn}. We claim that W∆(wn) ⊆ Fix(Φ). Let ξ ∈W∆(wn). Then, there exists
a subsequence {ξn} of {wn} such that A({ξn}) = {ξ}. By Lemmas 2.4 and 2.5, there exists a subsequence {ζn} of {ξn} such that
∆- limn→∞ ζn = ζ ∈K . Since limn→∞ d(ζn,Φζn) = 0, and Φ satisfies the (HRSC)-condition, it follows that

d(ζn,Φζ )≤ 15d(Φζn,ζn)+d(ζn,ζ ).

Taking the limit superior on both sides and applying the Opial property, we deduce that ζ ∈ Fix(Φ).
Next, we claim that ξ = ζ . Suppose, for contradiction, that ξ 6= ζ . Since, by Lemma 3.1, the limit limn→∞ d(wn,ζ ) exists, and due to the
uniqueness of asymptotic centers, we have

lim
n→∞

d(ζn,ζ )< lim
n→∞

d(ζn,ξ )≤ lim
n→∞

d(ξn,ξ )

< lim
n→∞

d(ξn,ζ ) = lim
n→∞

d(wn,ζ )

= lim
n→∞

d(ζn,ζ ),

which is a contradiction. Thus, ξ = ζ ∈ Fix(Φ), and hence W∆(wn)⊆ Fix(Φ).
To prove that {wn}, ∆-converges to a fixed point of Φ, it suffices to show that W∆(wn) consists of exactly one point. By Lemmas 2.4 and
2.5, there exists a subsequence {ζn} of {ξn} such that ∆- limn→∞ ζn = ζ ∈K . Let A({ξn}) = {ξ} and A({wn}) = {ρ}. As shown earlier,
ξ = ζ and ζ ∈ Fix(Φ). We now claim that ρ = ζ . Assume the contrary. Then the existence of limn→∞ d(wn,ζ ) and the uniqueness of
asymptotic centers imply:

lim
n→∞

d(ζn,ζ ) < limn→∞ d(ζn,ρ)≤ limn→∞ d(wn,ρ)

< limn→∞ d(wn,ζ ) = limn→∞ d(ζn,ζ ),

which is again a contradiction. Hence, ρ = ζ ∈ Fix(Φ). Therefore, W∆(wn) = {ρ}. In conclusion, W∆(wn) is a singleton whose unique
element is a fixed point of Φ. This completes the proof of the ∆-convergence of the sequence {wn}.
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In the next result, we prove the strong convergence theorem as follows.

Theorem 3.3. Let X ,K ,Φ and {wn} be as in Lemma 3.1 with Fix(Φ) 6= /0 such that K is compact subset of X. Then {wn} converges
strongly to a fixed point of Φ.

Proof. By Lemma 3.1, we have lim
n→∞

d(wn,Φwn) = 0. Since K is compact, by Lemma 2.4, there exists a subsequence {wnk} of {wn} and

p ∈K such that {wnk} converges p. Then, by Proposition 1.4, for µ = 15, we have

d(wnk ,Φp)≤ 15
[
d(Φwnk ,wnk )

]
+d(wnk , p)

for all k ≥ 1. So {wnk} converges Φp. This implies Φp = p. Since Φ is quasi-nonexpansive , we have d(wn+1, p)≤ d(wn, p) for all n ∈ N.
Therefore {wn} converges strongly to p.

Finally, we briefly discuss the strong convergence theorem using (I)-condition introduced by Senter and Dotson[32] in CAT (0) space X as
follows.

Theorem 3.4. Let Φ be a mapping satisfying the (HRCS)-condition on a nonempty closed convex subset K of a complete CAT (0) space X.
Let {wn} be the sequence defined as in Lemma 3.1, and suppose that Fix(Φ) 6= /0. If Φ also satisfies the (I)-condition, then the sequence
{wn} defined by (3) converges strongly to a fixed point of Φ.

Proof. Let {wn} be a sequence in the fixed point set Fix(Φ) such that wn→ z for some z ∈K . Since d(wn,Φwn) = 0≤ d(wn,z), by the
(HRCS)-condition, we have d(wn,Φz) = d(Φwn,Φz)≤ d(wn,z).
Taking the limit on both sides yields

lim
n→∞

d(wn,Φz)≤ lim
n→∞

d(wn,z) = 0.

By the uniqueness of limits, it follows that Φz = z, hence z ∈ Fix(Φ). Therefore, Fix(Φ) is closed.
Next, by Lemma 3.1, we have limn→∞ d(wn,Φwn) = 0. Using condition (I), we obtain

lim
n→∞

f
(
d(wn,Fix(Φ))

)
≤ lim

n→∞
d(wn,Φwn) = 0,

which implies that limn→∞ f
(
d(wn,Fix(Φ))

)
= 0. Since f : [0,∞)→ [0,∞) is a nondecreasing function satisfying f (0) = 0, we conclude

that limn→∞ d(wn,Fix(Φ)) = 0. Hence, there exists a subsequence {wnk} of {wn} and a sequence {yk} ⊂ Fix(Φ) such that d(wnk ,yk) ≤
1
2k , for all k ≥ 1. By Lemma 3.1 again, we have

d(wnk+1 ,yk)≤ d(wnk ,yk)≤
1
2k ,

and thus,

d(pk+1,yk) ≤ d(pk+1,wnk+1)+d(wnk+1 ,yk)

≤ 1
2k+1 +

1
2k < 1

2k−1 .

Therefore, {yk} is a Cauchy sequence in Fix(Φ). Since Fix(Φ) is closed, {yk} converges to some point p ∈ Fix(Φ).
To show that {wn} converges to p, observe that d(wnk , p)≤ d(wnk ,yk)+d(yk, p)→ 0 as k→ ∞.
Hence, limk→∞ d(wnk , p) = 0. Since limn→∞ d(wn, p) exists, it follows that wn→ p.

Next, we give the following example a mapping satisfying (HRCS)-condition, but it does not satisfy (C)-condition.

Example 3.5. Let X = R (a CAT (0) space) and K = [0,5]. Define

Φ : K →K , Φ(w) =


w+2

4
, w 6= 5,

3, w = 5.
(1.3)

In order to see that Φ satisfies (HRCS)-condition on [0,5], we consider the following cases: Let the metric be the usual absolute value:
d(w,v) = |w− v|. The mapping Φ satisfies the (HRSC)-condition if, for all w,v ∈ [0,5], the following implication holds:

1
2
|w−Φ(w)| ≤ |w− v| ⇒

|Φw−Φv| ≤ 1
5

(
|w− v|+ |w−Φw|+ |v−Φv|

+ |w−Φv|+ |v−Φw|
)
.

We will verify this inequality by considering all possible cases for w,v ∈ [0,5].
Case 1: w,v = 5
In this case, Φw = Φv = 3, so: |Φw−Φv|= 0, and the right-hand side is strictly positive. Hence, the inequality is satisfied.
Case 2: w,v ∈ [0,5)
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|Φw−Φv| = |w+2
4
− v+2

4
|= |w− v

4
|

≤ 1
5
|w− v|+ 1

4
|w− v|+ 1

20
|w− v|

≤ 1
5
|w− v|+ 1

5
|5w−5v

4
|+ 1

5
|1
3
(

3w−3v
4

)|

≤ 1
5
|w− v|+ 1

5
|(w− (

v+2
4

))− (v− (
w+2

4
))|

+
1
5
|(w− (

w+2
4

))− (v− (
v+2

4
))|

≤ 1
5
|w− v|+ 1

5
|(w− (

v+2
4

))|+ 1
5
|(v− (

w+2
4

))|

+
1
5
|(w− (

w+2
4

))|+ 1
5
|(v− (

v+2
4

))|

=
1
5
(|w− v|+ |w−Φw|+ |v−Φv|+ |w−Φv|+ |v−Φw|).

Hence, the inequality is satisfied.

Case 3: w = 5,v ∈ [0,5)

In this case: Φw = 3 and Φv = v+2
4 .Then we have

|Φw−Φv| = |3− v+2
4
|= |v−10

4
|= 1

5
|5v−50

4
|

≤ 1
5
|4v−20

4
|+ 1

5
|v−30

4
|

≤ 1
5
|v−5|+ 1

5
|2|+ 1

5
|v−18

4
|+ 1

5

≤ 1
5
|v−5|+ 1

5
|2|+ 1

5
|(v+2

4
)−5|

+
1
5
|3− v|+ 1

5
|2−3v

4
|

To see why this inequality holds, let us examine the following cases.
|2−3v|

4
+ |3− v| ≥ 1 for v ∈ [0,5)

Define

ϕ(v) =
|2−3v|

4
+ |3− v|,

and we wish to show ϕ(v)≥ 1 for all v ∈ [0,5).
The expressions inside the absolute values change sign at

2−3v = 0 =⇒ v = 2
3 , 3− v = 0 =⇒ v = 3.

Thus we split [0,5) into three subintervals:

[0, 2
3 ], [ 2

3 ,3], [3,5).

Case 3.1: 0≤ v≤ 2
3 .

Here 2−3v≥ 0 and 3− v≥ 0, so

ϕ(v) =
2−3v

4
+(3− v) =

2−3v+12−4v
4

=
14−7v

4
.

We check

14−7v
4

≥ 1 ⇐⇒ 14−7v≥ 4 ⇐⇒ 7v≤ 10 ⇐⇒ v≤ 10
7
.

Since 2
3 < 10

7 , the inequality holds for all v ∈ [0, 2
3 ].

Case 3.2: 2
3 ≤ v≤ 3.

Here 2−3v≤ 0 but 3− v≥ 0, so

|2−3v|= 3v−2, |3− v|= 3− v.

Thus

ϕ(v) =
3v−2

4
+(3− v) =

3v−2+12−4v
4

=
10− v

4
.
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We check

10− v
4
≥ 1 ⇐⇒ 10− v≥ 4 ⇐⇒ v≤ 6.

Since v≤ 3 < 6, the inequality holds for all v ∈ [ 2
3 ,3].

Case 3.3: 3≤ v < 5.
Here 2−3v≤ 0 and 3− v≤ 0, so |2−3v|= 3v−2, |3− v|= v−3. Hence

ϕ(v) =
3v−2

4
+(v−3) =

3v−2+4v−12
4

=
7v−14

4
=

7(v−2)
4

.

We check

7(v−2)
4

≥ 1 ⇐⇒ 7(v−2)≥ 4 ⇐⇒ v−2≥ 4
7 ⇐⇒ v≥ 18

7 .

Since v≥ 3 > 18
7 , the inequality holds for all v ∈ [3,5).

In each subinterval of [0,5), we have shown ϕ(v)≥ 1. Therefore |2−3v|
4 + |3− v| ≥ 1 for all v ∈ [0,5). Each term is positive, and the

total sum is strictly greater than | v−10
4 |. Thus we have

|Φw−Φv| ≤ 1
5

(
|w− v|+ |w−Φw|+ |v−Φv|

+ |w−Φv|+ |v−Φw|
)
.

Hence, by considering all possible cases for w,v ∈ [0,5], we conclude that the piecewise-defined mapping Φ satisfies the (HRSC)-condition.
In order to we show that Φ does not satisfy (C)-condition, we take w = 3.5,v = 5, then we have

1
2
|w−Φw|= 1

2
|3.5− (3.5)+2

4
|= 1.0625 < 1.5 = |w− v|.

Next,

|Φw−Φv|= |( (3.5)+2
4

)−3|= 1.625 > 1.5 = |w− v|.

Thus Φ does not satisfy (C)-condition.

Numerical result: We now compare convergence behavior of SP*-iteration process with other iteration processes using Example 3.5.
From Figure 1, we see that the SP*-iteration process converges faster than SP-iteration and Picard Normal S-iteration processes. Let
{an}= {bn}= {cn}= 0.7 and initial point be w1 = 0. The fixed point of the mapping defined in Example 3.5 is 0.666667. These can be
seen in Figure 1.

Figure 3.1: Convergence of SP-iteration, Picard Normal S-iteration and SP*-iteration processes to the fixed point 0.666667 of the mapping defined in
Example 3.5.

4. Conclusions

We get some results on the strong and ∆-convergence of SP*-iteration process (1.3) for the mapping with (HRCS)-condition in nonlinear
CAT (0) spaces. In addition, we give an illustrative numerical example that satisfies (HRCS)-condition. As seen in Example 3.5, the mapping
does not satisfy (C)-condition. Further, in future studies, iteration process can be developed and iteration that converges faster than prominent
iterations can be presented.
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