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Abstract− This paper investigates the theoretical structure and practical implications of
isotonic extensions of soft sets. It utilizes isotonic operators—functions satisfying groundedness
and order-preserving properties—to derive new soft sets that reflect observed attributes
and potential latent associations within a system. This study presents foundational results
on preserving key soft set structures under isotonic extension and examines how internal
approximation relations evolve under such operators. The study provides an application
to infectious disease risk modeling in a hospital environment as a practical demonstration.
Here, isotonic extensions enable the identification of asymptomatic but exposed individuals,
offering a novel mathematical approach to decision-making under uncertainty.
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1. Introduction

The necessity of coping with uncertainty and incomplete information is a fundamental challenge in
modern mathematical modeling. In this context, the soft set theory, introduced by Molodtsov in
1999 [1], presents a significant innovation, particularly in modeling uncertainty through parametric
representations. By providing a more flexible structure compared to classical logic frameworks, soft sets
have found applications in numerous fields, such as multi-criteria decision making, information systems,
medicine, engineering, and economics. However, existing approaches in the literature predominantly
focus on observable, direct data, living out the modeling of indirect, implicit, or potentially risky
relationships. This limitation leads to the inadequacy of decision models, especially in areas where
indirect interactions are decisive, such as epidemiology, security analysis, and network theory.

The definition of a topology on a set extends beyond the traditional axioms for open sets, encompassing
collections of closed sets, neighborhood systems, closure operators, and interior operators, among
other constructs. For instance, Day [2] and Hausdorff [3] have developed topological concepts by
leveraging the notions of convergence, closure, and neighborhoods. Kuratowski [4] has pioneered a
distinct approach to constructing a topological structure on a non-empty set U through the definition
of a closure operator µ : P (U) → P (U), where P (U) is the power set of U . Utilizing this framework,
the closure operator satisfying the established axioms enables the definition of the topological space

1mbkandemir@mu.edu.tr (Corresponding Author)
1Department of Mathematics, Faculty of Science, Muğla Sıtkı Koçman University, Muğla, Türkiye
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(U, µ) by identifying closed sets as those satisfying µ(X) = X. Furthermore, Kuratowski has broadened
the scope of topological spaces by relaxing the axiom µ(X ∪Y ) ⊆ µ(X)∪µ(Y ), thereby defining closure
spaces. Conversely, Čech’s approach [5] to the definition of closure spaces omits the idempotence axiom
µ(µ(X)) = µ(X). The terms “Kuratowski closure space” and “Čech closure space” are employed in
the literature to mitigate terminological ambiguity. Additionally, Gnilka [6–8] and Hammer [9,10] have
preferred the term “extended topological space” over “closure space”. These studies have investigated
fundamental concepts, such as compactness, quasi-metrizability, symmetry, and continuity through
the lens of closure operators. More recently, Stadler and Stadler [11] and Stadler et al. [12,13] have
unveiled a topological approach to chemical organizations, evolutionary theory, and combinatorial
chemistry, elucidating the relationships between topological concepts, such as similarity, neighborhood,
connectedness, and continuity within chemical and biological contexts. In these interdisciplinary
studies, the authors have considered the foundational concepts of closure and isotonic spaces, defining
an isotonic space as a closure space (U, µ) that satisfies only the axioms of groundedness, i.e., the
condition µ(∅) = ∅, and isotonicity, i.e., the condition X ⊆ Y ⇒ µ(X) ⊆ µ(Y ), for all X, Y ∈ P (U).
Moreover, Habil and Elzenati [14, 15] have explored the notions of connectedness and lower and upper
separation axioms in isotonic spaces.

Current research concerning soft sets primarily concentrates on fundamental set operations, equivalence
structures, decision-making algorithms, and generalized operators. For instance, Maji et al. [16] have
defined basic operations on soft sets; Ali et al. [17] extended these operations; and Molodtsov [18]
provided a theoretical foundation for correct operation definitions in soft sets. Rapid advancements in
soft set theory have led to the definition of a multitude of novel operations, such as multiplication and
complementation on soft sets, along with their various modifications. The theoretical properties of
these operations have been extensively studied in [19–28]. Alongside these, numerous studies concern
variations of soft sets and their applications to decision-making problems [29–43]. Nevertheless, the vast
majority of these studies are based on models where only existing information is processed. A framework
for systematically including implicit relationships, chains of contact, or potential impacts into the model
remains absent within the classical structure. This gap can lead to serious consequences, particularly
in decision-making problems involving high uncertainty, such as the detection asymptomatic infections.

This study proposes a novel mathematical approach by extending soft sets through isotonic operators
in this context. These operators consider not only the observed information but also the potential
relationships arising from the structural nature of the system. Thus, elements that are not directly
observable but are systemically at risk can be incorporated into the model. For instance, in a hospital,
an asymptomatic individual, while not exhibiting direct symptoms, may carry a risk due to past contact
with symptomatic individuals. The inability to integrate such indirect information into the classical
soft set structure leads to deficient decision-making processes; the isotonic operator-extended soft sets
aim to bridge this gap.

The core problem of this study is the inability of classical soft sets to systematically model indirect and
potential information; the central hypothesis, on the other hand, posits that “soft sets extended with
isotonic operators will be an effective tool in incorporate implicit relationships into decision systems by
enhancing their sensitivity”. The studies conducted in this direction in the literature are quite limited
and mostly confined to specific examples. This study aims to reveal the structural properties of the
isotonic extension at a theoretical level and demonstrate the model’s functionality through a real-world
application scenario.

Within this framework, the structure of the study is organized as follows: The second section presents the
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necessary preliminary information and conceptual foundation. The third section provides definitions of
soft sets defined on isotonic spaces and the fundamental definitions for the extension of these structures.
The fourth section examines the structural properties of the isotonic extension in detail and presents
various theoretical results. The fifth section, on the other hand, conducts an exemplary application
on infectious disease risk in a hospital setting, discussing the advantages of the isotonic extension
compared to classical models. Finally, the conclusion section provides a general evaluation based on
the findings obtained and offered by suggestions for future research.

2. Preliminaries

In this section, we lay the groundwork by introducing essential definitions and concepts from soft set
theory and topology, fundamental to understanding the proposed methodology.

Definition 2.1. [1] Let U be a universe of discourse and E be the set of all parameters associated
with the elements of U . The ordered pair (F, E) is called a soft set over U , where F : E → P (U) is a
set-valued function.

Definition 2.2. [18] Let (F, E) be a soft set over U . Then, the family

APP (F, E) = {F (p) | p ∈ E}

is designated as a family of approximate descriptions, contingent upon the selection of E.

Definition 2.3. [18] Let (F, E1) and (G, E2) be two soft sets over a universe U .

i. (F, E1) and (G, E2) are termed equal soft sets, denoted by (F, E1) = (G, E2), if E1 = E2 and F = G.

ii. (F, E1) and (G, E2) are termed equivalent soft sets, denoted by (F, E1) ∼= (G, E2), if APP (F, E1) =
APP (G, E2).

Note that this equivalence holds if and only if for every p ∈ E1, there exists a q ∈ E2 such that
F (p) = G(q), and for every q ∈ E2, there exists a p ∈ E1 such that G(q) = F (p).

Definition 2.4. [18] Let U be a universe of discourse.

i. A unary operation Φ on soft sets is a mapping over U that associates a soft set (F, E1) with another
soft set (G, E2), i.e., Φ(F, E1) = (G, E2). Moreover, Φ is deemed correct if (F, E1) ∼= (G, E2) ⇒
Φ(F, E1) ∼= Φ(G, E2).

ii. A binary operation Θ on soft sets is a mapping that assigns to any two soft sets (F, E1) and (G, E2)
over U , a novel soft set (H, E3), i.e., Θ((F, E1), (G, E2)) = (H, E3). Moreover, Θ is considered correct
if (F1, E1) ∼= (F2, E2) ∧ (G1, E3) ∼= (G2, E4) ⇒ Θ((F1, E1), (G1, E3)) ∼= Θ((F2, E2), (G2, E4)).

iii. A relationship Ω between two soft sets (F, E1) and (G, E2) is a mapping assigning the values 0 or 1
to Ω((F, E1), (G, E2)). If Ω((F, E1), (G, E2)) = 1, then it is denoted by (F, E1)Ω(G, E2). Moreover, Ω
is correct if (F1, E1) ∼= (F2, E2) ∧ (G1, E3) ∼= (G2, E4) ⇒ Ω((F1, E1), (G1, E3)) = Ω((F2, E2), (G2, E4)).

Definition 2.5. [18] The complement of a soft set (F, E) is defined as a unary operation, denoted by
(F, E)c = (F c, E), where F c(p) = U \ F (p), for all p ∈ E.

Definition 2.6. [18] Let (F, E1) and (G, E2) be two soft sets over a universe U .

i. The intersection of (F, E1) and (G, E2) is a binary operation denoted by (F, E1)∩̃(G, E2) = (H, E1 ×
E2), where H(p, q) = F (p) ∩ G(q), for all (p, q) ∈ E1 × E2.

ii. The union of (F, E1) and (G, E2) is a binary operation denoted by (F, E1)∪̃(G, E2) = (K, E1 × E2),
where K(p, q) = F (p) ∪ G(q), for all (p, q) ∈ E1 × E2.
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Definition 2.7. [18] Let (F, E1) and (G, E2) be two soft sets over a universe U .

i. (F, E1) is termed an internal approximation of (G, E2), denoted by (F, E1)⊆̃(G, E2), if, for all q ∈ E2

such that G(q) ̸= ∅, there exists a p ∈ E1 that satisfies ∅ ̸= F (p) ⊆ G(q).

ii. (F, E1) is termed an external approximation for (G, E2), denoted by (F, E1)⊇̃(G, E2), if, for all
q ∈ E2 such that G(q) ̸= ∅, there exists a p ∈ E1 which satisfies U ̸= F (p) ⊇ G(q).

Definition 2.8. [18] Let (F, E) be a soft set over a universe U .

i. (F, E) is classified as a null soft set, denoted by ∅̃, if and only if APP (F, E) = {∅}.

ii. (F, E) is classified as an absolute soft set, denoted by Ũ, if and only if APP (F, E) = {U}.

Definition 2.9. [4] Let U ̸= ∅. Then, a function µ : P (U) → P (U) is called a Kuratowski closure
operator if it satisfies the following properties, for all X, Y ∈ P (U):

(K0) µ(∅) = ∅ (groundedness)

(K1) X ⊆ Y ⇒ µ(X) ⊆ µ(Y ) (isotonicity)

(K2) X ⊆ µ(X) (expansiveness)

(K3) µ(X ∪ Y ) ⊆ µ(X) ∪ µ(Y ) (sub-additivity)

(K4) µ(µ(X)) = µ(X) (idempotence)

Definition 2.10. [4, 5] Let U ̸= ∅ and µ : P (U) → P (U) be a function.

i. A topological space (U, µ) can be defined by a Kuratowski closure operator µ, where closed sets are
the sets X ⊆ U satisfying the condition µ(X) = X.

ii. An ordered pair (U, µ) is called a closure space such that µ satisfies the conditions (K0)-(K3), where
µ is called a closure operator.

Lemma 2.11. [5] Let (U, µ) be a closure space. Then, the following hold:

i. µ(X) ∪ µ(Y ) ⊆ µ(X ∪ Y ), for all X, Y ∈ P (U)

ii. µ(X ∩ Y ) ⊆ µ(X) ∩ µ(Y ), for all X, Y ∈ P (U)

Definition 2.12. [11–13] Let U ̸= ∅ and µ : P (U) → P (U) be a function. Then, the ordered pair
(U, µ) is called an isotonic space if µ satisfies the conditions (K0) and (K1).

Example 2.13. Let U = {a, b} and consider the function µ : P (U) → P (U) defined by µ(∅) = ∅,
µ({a}) = {b}, µ({b}) = {b}, and µ(U) = U . It can be observed that µ is grounded. Furthermore, it is
isotonic because µ(A) ⊆ µ(B), for all A ⊆ B. Therefore, (U, µ) is an isotonic space. It must be noted
that µ is not a Kuratowski closure operator and not a closure operator because {a} ⊈ µ({a}).

3. Soft Sets over Isotonic Spaces

In this section, we provide some results based on the relationship between soft sets and isotonic and
closure spaces. Unless otherwise claimed, we consider the parameter set E for all soft sets.

Definition 3.1. Let (U, µ) be an isotonic space and (F, E) and (G, E) be soft sets over U . If µ◦F = G,
i.e., (µ ◦ F )(p) = G(p), for all p ∈ E, then (G, E) is called an isotonic extension of (F, E) and denoted
by (µF, E).

This definition allows for to extend a soft set by incorporating external information, such as indirect
contact or inferred proximity, through the isotonic operator. It can be observed that Definition 3.1
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yields the following commutative diagram:

E
F //

µF
!!

P (U)
µ

��

P (U)

Furthermore, since the operator µ defines a new soft set, it functions as a unary operation among soft
sets. Consequently, the following proposition is derived.

Proposition 3.2. Let (U, µ) be an isotonic space and (F, E) and (G, E) be soft sets over U . If
(F, E) ∼= (G, E), then (µF, E) ∼= (µG, E).

Proof. Let (U, µ) be an isotonic space, (F, E) and (G, E) be soft sets over U , and (F, E) ∼= (G, E).
Then, there exist p, q ∈ E such that F (p) = G(q). Thus, µ(F (p)) = µ(G(q)). Hence, there exist p, q ∈ E

such that (µ ◦ F )(p) = (µ ◦ G)(q). Therefore, APP (F, E) = APP (G, E) and thus (µF, E) ∼= (µG, E).

It should be noted that the converse of this proposition is not always true. For example, let U = {1, 2, 3}
and E = {p} and define the soft sets (F, E) and (G, E) such that F (p) = {1} and G(p) = {1, 2}.

Consider the isotonic operator µ : P (U) → P (U) given by µ(X) =
{

X ∪ {2}, X = {1}
X, otherwise

. Since

µ({1}) = {1, 2} and µ({1, 2}) = {1, 2}, then (µ ◦ F )(p) = µ(F (p)) = µ({1}) = {1, 2} and (µ ◦ G)(p) =
µ(G(p)) = µ({1, 2}) = {1, 2} and thus (µF, E) ∼= (µG, E) and (F, E) ≇ (G, E).

Corollary 3.3. Let (U, µ) be an isotonic space. Then, the isotonic extension operation Φ on soft sets
over U defined by Φ(F, E) = (µF, E) is correct.

Proposition 3.4. Let (U, µ) be an isotonic space. Then, the null soft set ∅̃ is preserved the under
isotonic extension in Corollary 3.3.

Proof. Let (U, µ) be an isotonic space and ∅̃ = (F, E). Then, APP (F, E) = {∅}. By the property of
groundedness, µ(∅) = ∅. Thus, APP (µF, E) = {∅}. Hence, Φ

(
∅̃
)

= ∅̃.

This result implies that the isotonic operator preserves the structure of complete absence (null soft
set), ensuring no unintended elements are added during extension.

Proposition 3.5. Let (U, µ) be an isotonic space. Then, the absolute soft set Ũ is preserved under
isotonic extension if and only if µ(U) = U .

Proof. Let (U, µ) be an isotonic space and (F, E) = Ũ.

(⇒): Suppose that the absolute soft set (F, E) is preserved under isotonic extension. Then, APP (F, E) =
{U} = {µ(U)} = APP (µF, E). Thus, µ(U) = U .

(⇐): Suppose that µ(U) = U . Then, µ(F (p)) = µ(U) = U , for all p ∈ E. Thus, APP (µF, E) = {U}.
Hence, Φ(F, E) = (F, E). Therefore, the absolute soft set (F, E) is preserved under isotonic extension.

3.1. Structural Properties of Isotonic Extensions

In this subsection, we provide structural properties of isotonic extensions. These properties collectively
show that isotonic extension behaves structurally consistently, preserving logical relations among soft
sets and enabling risk propagation mechanisms.
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Proposition 3.6. Let (U, µ) be an isotonic space, (F, E) and (G, E) be two soft sets over U , and
(H, E × E) = (F, E)∪̃(G, E). Then, the following hold:

i. (µF, E)∪̃(µG, E)⊆̃(µH, E × E)

ii. If µ is preserved under the union operation, then (µH, E × E) = (µF, E)∪̃(µG, E)

The proof can be observed from Lemma 2.11 (i).

Proposition 3.7. Let (U, µ) be an isotonic space, (F, E) and (G, E) be two soft sets over U , and
(H, E × E) = (F, E)∩̃(G, E). Then,

i. (µH, E × E)⊆̃(µF, E)∩̃(µG, E)

ii. If µ is preserved under the intersection operation, then (µH, E × E) = (µF, E)∩̃(µG, E)

The proof can be observed from Lemma 2.11 (ii).

It is important to note that the complement of the isotonic extension of a soft set may not be equal to
the isotonic extension of the complement of the soft set. Indeed, consider the soft set (F, E), where
U = {1, 2, 3}, E = {p}, and F (p) = {1}. Let the isotonic operator µ : P(U) → P(U) be defined by

µ(X) =
{

X ∪ {2}, X = {1}
X, otherwise

Since F c(p) = U \ F (p) = {2, 3}, then (µ ◦ F c)(p) = µ({2, 3}) = {2, 3}. Furthermore, (µ ◦ F )(p) =
µ({1}) = {1, 2} and (µ ◦ F )c(p) = U \ {1, 2} = {3}. Therefore, (µ ◦ F c)(p) ̸= (µ ◦ F )c(p).

Proposition 3.8. Let (U, µ) be an isotonic space. If (F, E)⊆̃(G, E), then (µF, E)⊆̃(µG, E).

Proof. Let (U, µ) be an isotonic space and (F, E)⊆̃(G, E). According to the definition of internal
approximation, for all q ∈ E, there exists a p ∈ E such that ∅ ̸= F (p) ⊆ H(q). Since µ is grounded
and isotonic, µ(F (p)) ⊆ µ(H(q)). Thus, (µF, E)⊆̃(µH, E).

Proposition 3.9. Let (U, µ) be an isotonic space. If the closure operator is extensive, then
(F, E)⊆̃(µF, E).

Proof. Let (U, µ) be an isotonic space and µ be extensive. Then, for all p ∈ E such that (µF )(p) ̸= ∅,
∅ ̸= F (p) ⊆ (µF )(p). Thus, (F, E) is an internal approximation of (µF, E), i.e., (F, E)⊆̃(µF, E).

Definition 3.10. Let (U, µ) be an isotonic space and (F, E) be a soft set over U . If (µF, E) = (F, E),
then (F, E) is called a µ-closed soft set over U .

Proposition 3.11. Let (U, µ) be an isotonic space and (F, E) be a soft set over U . Then, (F, E) is a
µ-closed soft set over U if and only if for all p ∈ E, F (p) is closed in the isotonic space (U, µ).

Proof. Let (U, µ) be an isotonic space and (F, E) be a soft set over U .

(⇒): Suppose that (F, E) is a µ-closed soft set over U . Then, (µF, E) = (F, E). Thus, µ(F (p)) = F (p),
for all p ∈ E. Hence, F (p) is closed in the isotonic space (U, µ), for all p ∈ E.

(⇐): Suppose that F (p) is closed in the isotonic space (U, µ), for all p ∈ E. Then, µ(F (p)) = F (p), for
all p ∈ E. Hence, (µF, E) = (F, E). Therefore, (F, E) is a µ-closed soft set over U .

Proposition 3.12. Let (U, µ) be an isotonic space and (F, E) and (G, E) be two soft sets over U . If
(F, E) and (G, E) are µ-closed soft sets over U and µ is extensive, then (F, E)∩̃(G, E) is a µ-closed
soft set over U .
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Proof. Let (U, µ) be an isotonic space, (F, E) and (G, E) be two soft sets over U , (F, E) and (G, E)
be µ-closed soft sets over U , µ be extensive, and (F, E)∩̃(G, E) = (H, E × E). By Proposition 3.7 (i),
(µH, E × E)⊆̃(µF, E)∩̃(µG, E). Since (F, E) and (G, E) are µ-closed soft sets over U , (µF, E) = (F, E)
and (µG, E) = (G, E), which implies (µH, E × E)⊆̃(H, E × E). Moreover, since µ is extensive,
H(p, q) ⊆ µ(H(p, q)), for all (p, q) ∈ E × E. Thus, (µH, E × E) = (H, E × E). Hence, (F, E)∩̃(G, E)
is a µ-closed soft set over U .

Proposition 3.13. Let (U, µ) be an isotonic space and (F, E) and (G, E) be two soft sets over U . If
(F, E) and (G, E) are µ-closed soft sets over U and µ is sub-additive, then (F, E)∪̃(G, E) is a µ-closed
soft sets over U .

The proof can be observed from Proposition 3.6 and the property of sub-additivity.

4. An Application of Isotonic Extensions of Soft Sets to Medical Diagnosis

To demonstrate the practical utility of isotonic extensions of soft sets, we consider an example involving
infectious disease surveillance in a hospital setting. The goal is to detect symptomatic patients and those
with potential exposure risks. This section details a novel approach to infectious disease surveillance
through soft set-based risk modeling.

Algorithm 1 Core Algorithm Implemented in the Application
Input
1. The universal set U is defined as the collection of all patients or individuals.
2. The parameter set E whose elements represent symptoms or risk indicators.
3. The initial soft set (F, E), where the observed individuals are considered for each parameter.
4. The exposure rule R = {(Ci, ai) | Ci ⊆ U, ai ∈ U}.
Output
1. The isotonic extension (µF, E).
2. Risk frequencies obtained by the function risk : U → N defined by risk(h) = |{p ∈ E | h ∈
(µF )(p)}|.
3. Priority ranking descending by risk scores.
Steps
Step 1. Define the isotonic operator µ(X) = X ∪ {ai | (Ci, ai) ∈ R and X ∩ Ci ̸= ∅}.
Step 2. Obtain the isotonic extension (µF, E).
Step 3. Calculete risk frequencies, for each individual.
Step 4. Apply the prioritization rule, i.e., rank individuals in descending order according to their risk
frequencies. Determine arbitrary priority for equal risk scores and consider additional criteria.

Following a respiratory disease outbreak, a metropolitan hospital faces a subtle yet significant challenge:
identifying not only patients who exhibit overt symptoms but also asymptomatically infected individuals
who may be silently transmitting the disease within the hospital environment. Conventional diagnostic
methodologies predominantly focus on symptomatic individuals; however, the transmission dynamics
of infectious diseases often transcend such clinical presentations.

In this paper, we introduce an innovative soft set-based decision support model that extends beyond the
analysis of observable symptoms by incorporating exposure-based information through the application
of an isotonic operator. The central objective is to develop a mathematical framework, utilizing soft
sets enriched with contact-tracing semantics, to effectively model latent infection risk within a hospital
milieu.
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Consider patients who present without symptoms yet have a documented history of sharing rooms or
interacting with confirmed cases. Their seemingly benign status raises a critical question: Are they
truly risk-free?

4.1. Soft Set Modeling of Symptom Data

We define the universal set of patients as follows:

U = {h1, h2, h3, h4, h5, h6}

Let the set of pertinent symptoms be represented by E = {p1, p2, p3}, where p1: Fever, p2: Cough, and
p3: Sore throat. Consider the soft set (F, E) defined by

F (p1) = {h1, h2}, F (p2) = {h1, h3}, and F (p3) = {h5}

Moreover, (F, E) can also be represented as shown in Table 1:

Table 1. A representation of (F, E)
Pertinent symptoms Patients exhibiting the symptom

Fever (p1) {h1, h2}
Cough (p2) {h1, h3}

Sore throat (p3) {h5}

4.2. Integration of Related Contact Data (Exposure (Semantics) Rules)

To enhance the model’s granularity, we incorporate hospital contact data:

i. Patient h4 shared a room with patients h1 and h2.

ii. Patient h6 had close contact with patient h5.

These documented connections serve as the basis for the subsequent application of the considered
isotonic operator. This relationship is illustrated in Figure 1:

h1 h2 h3

h4 h5 h6

Figure 1. Contact network among patients

Thus, the exposure rule R is obtained as follows:

R = {({h1, h2}, h4), ({h5}, h6)}

where C1 = {h1, h2} and C2 = {h5}; a1 = h4 and a2 = h6.

4.3. Isotonic Extension Operator: Capturing Exposure Risk

Consider the function µ : P (U) → P (U) defined by

µ(X) = X ∪ {ai | (Ci, ai) ∈ R and X ∩ Ci ̸= ∅}

Then, µ is an isotonic operator on U . This operator is designed to capture the risk associated with
indirect exposure and embodies a proactive infection control strategy by identifying individuals at
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elevated risk due to their proximity to confirmed cases. The isotonic extension effectively models the
amplification of infection risk based on spatial and social proximity within the hospital environment.
The isotonic extension of the soft set can be illustrated in Figure 2.

Fever
F (p1) = {h1, h2}

Cough
F (p2) = {h1, h3}

Sore throat
F (p3) = {h5}

µF (p1) = {h1, h2, h4}

µF (p2) = {h1, h3, h4}

µF (p3) = {h5, h6}

µ

µ

µ

Figure 2. Diagram of the isotonic extension of (F, E)

4.4. Isotonic Extension of the Soft Set and Risk Frequencies

Applying the isotonic operator µ to each symptom-based patient set yields the following sets:

µF (p1) = {h1, h2, h4}, µF (p2) = {h1, h3, h4}, and µF (p3) = {h5, h6}

From these sets, we compute risk frequencies for each patient (see Table 2):

Table 2. Risk Frequencies of Patients

Patients Frequencies

h1 2
h2 1
h3 1
h4 2
h5 1
h6 1

The visual representation illustrating the risk frequencies for each patient is provided in Figure 3:

h1 h2 h3 h4 h5 h6

0

1

2

3

2

1 1

2

1 1

Patients

R
isk

Fr
eq

ue
nc

ie
s

Figure 3. Risk frequencies for each patient computed from (µF, E)
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4.5. Decision Outcome: Prioritization for Intervention

Employing a straightforward decision rule, prioritize the patient who appears in the highest number of
extended symptom sets, the analysis reveals:

i. Patients h1 and h4 appear in two symptom sets of the isotonic extension.

ii. Patient h1 is symptomatic.

iii. Patient h4 is asymptomatic but identified as high-risk due to exposure.

Consequently, the proposed system recommends that both patients should be prioritized for isolation
and further diagnostic testing. This simple yet powerful rule highlights how isotonic extension enhances
the soft set model: it successfully identifies asymptomatic individuals (e.g., h4) who, despite not
presenting symptoms, pose a risk due to documented exposure. Traditional soft set models would fail
to flag such individuals.

5. Conclusion

This paper presents a theoretical and applied framework for extending soft sets via isotonic operators.
The proposed approach addresses a key limitation in classical soft set theory: the inability to represent
indirect or latent information such as exposure risk. The study establishes a consistent and correct
unary operation that preserves equivalence on soft sets, the null soft set, and the absolute soft set
under certain conditions by introducing and formalizing the isotonic extension of a soft set. From a
practical standpoint, the application to hospital-based infection surveillance demonstrates the real-
world relevance of isotonic extensions of soft sets. The model identifies high-risk individuals not
based solely on observed symptoms but also on indirect contact information, an essential advancement
in decision-making under uncertainty. Future research may explore further generalizations using
parameter-dependent isotonic operators or the integration of temporal dynamics, enabling real-time
risk modeling in evolving systems.
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