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Abstract: This study investigated the effects of boron-, copper-, and chitosan-based nanoparticles (synthesized by 
the green synthesis method) on organic acid contents of strawberries and sweet cherries during storage. The fruits 
were dipped in nanoparticle solutions for 2 minutes and stored under cold conditions (0 ± 0.5 °C for sweet cherries, 
1 ± 0.5 °C for strawberries) at 90 ± 5% relative humidity. Malic, citric, and oxalic acid levels were evaluated. In 
strawberries, the Boron1 treatment (500 ppm boron nanoparticle) was the most effective in preserving organic 
acids, particularly citric acid, which remained at 2431.5 mg kg⁻¹ fw by the end of storage compared to 1702.5 mg 
kg⁻¹ fw in the control group. In sweet cherries, Chitosan (1% nanochitosan solution) treatment preserved the 
highest level of malic acid (2256.7 mg kg⁻¹ fw), while Boron1 contributed to the retention of citric acid (20.75 mg 
kg⁻¹ fw), exceeding even the initial harvest value. Oxalic acid degradation was slowed in the treated groups 
compared to the control in both fruits. The results suggest that nanoparticle-assisted edible coatings may offer a 
promising strategy for extending shelf life and partially preserving phytochemical content. Moreover, it was 
observed that the dominant organic acid varied by fruit species, i.e., citric acid in strawberries and malic acid in 
sweet cherries. These �indings support the view that nanoparticle applications should be tailored to fruit type and 
may contribute to the development of more sustainable postharvest preservation approaches. 
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Yeşil sentez yöntemiyle elde edilen nanopartiküllerin çilek ve kirazda depolama süresince 
organik asitler üzerine etkisi 

 
Öz: Bu çalışma, yeşil sentez yöntemiyle elde edilen bor, bakır ve kitosan temelli nanopartiküllerin, çilek ve kiraz 
meyvelerinin depolama süresince organik asit içerikleri üzerindeki etkilerini araştırmaktadır. Meyveler, 2 dakika 
boyunca nanopartikül çözeltilerine daldırılmış ve soğuk koşullarda (kirazlar için 0 ± 0.5 °C, çilekler için 1 ± 0.5 °C) 
%90 ± 5 bağıl nem ortamında muhafaza edilmiştir. Çalışma kapsamında malik, sitrik ve okzalik asit düzeyleri 
değerlendirilmiştir. Çilekte, Boron1 uygulaması (500 ppm bor nanopartikülü) organik asitlerin korunmasında en 
etkili yöntem olmuş; özellikle sitrik asit, depolama sonunda 2431.5 mg kg⁻¹ t.a. düzeyinde korunarak kontrol 
grubundaki 1702.5 mg kg⁻¹ t.a. seviyesinin üzerinde kalmıştır. Kirazda ise, Kitosan uygulaması (%1 nanochitosan 
çözeltisi) malik asidin en yüksek düzeyde korunmasını sağlamış (2256.7 mg kg⁻¹ t.a.), Boron1 uygulaması ise sitrik 
asidin korunmasına katkı sağlamış ve bu bileşik, hasat değerini aşarak 20.75 mg kg⁻¹ t.a. düzeyine ulaşmıştır. Her 
iki meyvede de, okzalik asit bozunumu uygulama gruplarında kontrol grubuna göre daha yavaş gerçekleşmiştir. 
Elde edilen sonuçlar, nanopartikül destekli yenilebilir kaplama uygulamalarının raf ömrünü uzatmada ve 
�itokimyasal içeriği kısmen korumada umut verici bir yaklaşım olabileceğini göstermektedir. Ayrıca, baskın organik 
asit içeriğinin meyve türüne göre değiştiği; çilekte sitrik asidin, kirazda ise malik asidin öne çıktığı belirlenmiştir. 
Bu bulgular, nanopartikül uygulamalarının meyve türüne özel olarak planlanması gerektiğini ve sürdürülebilir 
hasat sonrası koruma tekniklerinin geliştirilmesine katkı sağlayabileceğini ortaya koymaktadır. 
 
Anahtar kelimeler: Kaplama, nanopartikül, organik asit, depolama, sürdürülebilir tarım 
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1. Introduction 

Strawberry (Fragaria × ananassa) and sweet cherry 
(Prunus avium L.) are among the fruits highly 
appreciated by consumers of all age groups due to their 
distinctive �lavors and rich aroma pro�iles. The appeal 
is further enhanced by their richness in bioactive 
compounds such as vitamin C, polyphenols, and 
anthocyanins, which contribute to their nutritional and 
functional value (Alnıak et al., 2025; Xing et al., 2025). 
Both fruits also hold signi�icant economic importance 
in global horticultural markets. According to 2023 data 
from the Food and Agriculture Organization (FAO), 
Türkiye produced ~676,818 tons of strawberries, 
ranking 4th globally, and led global sweet cherry 
production with 736,791 tons, securing the �irst 
position globally. These fruits are primarily cultivated 
in the Mediterranean and Central Anatolian regions and 
are valuable not only for domestic consumption but 
also as key export commodities. 

Despite their nutritional and commercial signi�icance, 
strawberries and cherries are highly susceptible to 
physiological deterioration and mechanical injury due 
to their soft textures and high respiration rates 
(Chiabrando et al., 2019; Ozturk et al., 2022). 
Consequently, considerable postharvest losses may 
occur, leading to reduced quality and �inancial returns. 
Therefore, the development and implementation of 
effective, sustainable postharvest preservation 
strategies are essential to extend shelf life, maintain 
quality, and minimize economic loss throughout the 
supply chain. 

A variety of traditional and modern preservation 
techniques such as low-temperature storage, modi�ied 
atmosphere packaging, irradiation, and coating are 
widely utilized to maintain food quality for extended 
periods and prevent spoilage (Ocalan et al., 2023; Çezik 
et al., 2024). Edible coatings offer safe and 
environmentally friendly alternatives among these 
methods. These coatings reduce moisture loss and 
microbial decay by forming a protective barrier on the 
surface of the fruit, thereby preserving quality and 
extending shelf life (Gidado et al., 2025). Chitosan, a 
natural polysaccharide obtained by the deacetylation of 
chitin, is one of the edible coating materials. The effects 
of chitosan on the storage of fruits and vegetables have 
been extensively studied, both alone (Emadifar et al., 
2025; Jongsri et al., 2016; Parvin et al., 2023) and in 
combination with various other components (Iñiguez & 
González, 2025; Isvand et al., 2024; Kumar et al., 2021). 

Nanotechnology is an innovative approach that offers 
signi�icant advantages in food preservation. 
Applications of nanotechnology in edible �ilms involve 
the integration of nanomaterials into the �ilm in a way 
that forms a thin layer and enables production at the 
nanoscale, with the aim of imparting speci�ic 
functionalities to the �ilms (Şen & Güner, 2023). Edible 
�ilms enriched with nanocomposite materials exhibit 
superior thermal, mechanical, and biological properties 
compared to conventional composites (Ananda et al., 
2017; Korkmaz, 2020; Korkmaz et al., 2024). 
Considering the positive effects of nanomaterials, 
researchers are currently investigating the impact of 
both pure nanomaterials and diverse nanocomposite 
structures on the preservation ef�icacy of fruits and 
vegetables. Numerous studies have been conducted 
using chitosan/zein nanocellulose in mango (Xiao et al., 
2021), nano-SiO₂ and nano-TiO₂ in blueberries (Li et al., 
2021), nano-SiO₂ in melon (Sami et al., 2021), and 
SeNp/nano-chitosan in strawberries (Tayel et al., 
2025). The common �indings of these studies indicate 
that edible coating materials enriched with 
nanoparticles positively preserve the physical 
properties and phytochemical components of fruits 
during storage. 

Organic acids, which are among the key quality 
parameters of fruits, play a crucial role in taste pro�ile, 
microbial resistance, and physiological deterioration 
processes (Zhang et al., 2023). Changes in the levels of 
these acids during storage are critical for the freshness 
and shelf life of fruits. Maintaining their concentrations 
supports �lavor balance by regulating sweetness-to-
acidity ratios, and enhances microbial stability by 
lowering tissue pH. Moreover, organic acids such as 
oxalic acid have been shown to delay senescence and 
reduce postharvest physiological disorders by 
modulating stress-related pathways (Hasan et al., 
2023). The compartmentalization of these acids, 
particularly within vacuoles, is also closely linked to 
fruit biochemical stability and sensory quality during 
storage (Liu et al., 2023). 

In recent years, nanoparticle-based postharvest 
applications have predominantly focused on delaying 
senescence, reducing microbial spoilage, and 
enhancing antioxidant defense mechanisms in various 
fruit commodities. For instance, Bahmani et al. (2024a) 
investigated the effects of chitosan–putrescine 
nanoparticles on postharvest decay and reactive 
oxygen species (ROS) scavenging activity. Similarly, 
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Bahmani et al. (2024b) evaluated chitosan and glycine 
betaine nanoparticle coatings with regard to �irmness, 
respiration rate, and antioxidant capacity. Taha et al. 
(2022) reported that starch-based coatings embedded 
with silver nanoparticles extended storage time by 
reducing microbial load and decay. These studies 
primarily focus on external quality attributes and 
oxidative metabolism-related parameters. 

However, there remains a critical gap in the literature 
concerning the impact of nanoparticle treatments—
particularly those involving boron and copper—on 
internal biochemical quality factors such as organic 
acid pro�iles. To date, no published studies have directly 
examined how these speci�ic nanoparticles affect malic, 
citric, or oxalic acid contents in soft fruits during cold 
storage. This study aims to �ill this signi�icant research 
gap by evaluating the effects of boron- and copper-
based nanoparticles, alone and in combination with 
chitosan, on the organic acid metabolism of strawberry 
and sweet cherry fruits. The results are expected to 
contribute novel insights into the biochemical 
mechanisms underlying fruit preservation and support 
the advancement of sustainable postharvest practices. 

2. Materials and Methods 

2.1. Fruit materials and harvesting 

In the present study, Fragaria × ananassa ‘Monterey’ 
strawberries and Prunus avium ‘0900 Ziraat’ sweet 
cherries were utilized as experimental materials. The 
strawberries were procured from a commercial 
production enterprise (Çok Çilek) located along the 
Tokat–Turhal highway, while the sweet cherries were 
harvested from the orchards of Tokat Gaziosmanpaşa 
University Application and Research Center. All fruits 
were collected at commercially mature stages, based on 

standard horticultural maturity indicators. 
Strawberries were harvested when approximately two-
thirds of the fruit surface had developed red coloration, 
indicating commercial ripeness. Sweet cherries were 
picked at full skin coloration when the soluble solids 
content (SSC) was around 15 °Brix, consistent with 
optimum harvest maturity for the cultivar. Immediately 
after harvest, all fruits were subjected to a precooling 
treatment at 4 °C for 6 hours to remove �ield heat, and 
then promptly transported under controlled conditions 
to the laboratory for further analysis. 

2.2. Nanoparticles 

Copper (Copper1 and Copper2) and boron (Boron1 and 
Boron2) based nanoparticles, as well as nanochitosan 
(Chitosan), were used in this study. These nanoparticles 
were synthesized within the scope of the TUÜ BIİTAK-
supported project numbered “222O604”. In addition, 
composite formulations were prepared by combining 
each nanoparticle type with chitosan, resulting in 
copper-chitosan (Copper1 + Chitosan, Copper2 + 
Chitosan) and boron-chitosan (Boron1 + Chitosan, 
Boron2 + Chitosan) treatments. 

All nanoparticles were synthesized via a green 
synthesis method using aqueous extracts obtained 
from sweet cherry tree pruning waste leaves. These 
extracts acted as natural reducing and stabilizing 
agents during synthesis. The use of plant-based 
materials eliminated the need for toxic chemicals and 
complied with environmentally sustainable practices 
(Korkmaz et al., 2025). Characterization of the 
synthesized nanoparticles was performed using UV–Vis 
spectrophotometry, X-ray diffraction (XRD), scanning 
electron microscopy (SEM), and energy-dispersive X-
ray spectroscopy (EDX) to con�irm structural integrity 
and composition. 

Table 1. Doses and abbreviations of the nanoparticles used in the study 

Application Abbreviation Doses Applications 

Control – Control (untreated fruits) 

Chitosan 1% Nanochitosan 

Copper1 1000 ppm Copper Oxide Nanoparticle 

Copper2 2000 ppm Copper Oxide Nanoparticle 

Copper1+Chitosan 1000 ppm + 1% Copper Oxide Nanoparticle + Nanochitosan 

Copper2+Chitosan 2000 ppm + 1% Copper Oxide Nanoparticle + Nanochitosan 

Boron1 500 ppm Boron Nanoparticle 

Boron2 1000 ppm Boron Nanoparticle 

Boron1+Chitosan 500 ppm + 1% Boron Nanoparticle + Nanochitosan 

Boron2+Chitosan 1000 ppm + 1% Boron Nanoparticle + Nanochitosan 
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2.3. Coating and storage procedures 

Harvested fruits were transported to the laboratory 
after the precooling process. Following physical 
inspections, the fruits were dipped into solutions 
prepared with Copper1, Copper2, Boron1, Boron2, and 
Chitosan. Each compound was �irst dispersed in 
distilled water and homogenized using an ultrasonic 
processor (Bioevopeak, China) for 30 minutes to ensure 
uniform nanoparticle dispersion. In addition, 
composite coatings of Copper1+Chitosan, 
Copper2+Chitosan, Boron1+Chitosan, and 
Boron2+Chitosan were prepared and applied using the 
same method. The dipping process lasted for 2 minutes, 
in accordance with previous studies where this 
immersion time was found to be suf�icient for achieving 
a uniform and effective coating layer on fruit surfaces 
(Ali et al., 2022). After dipping, the fruits were air-dried 
at room temperature and placed into transparent, 
lidded trays. Each treatment group consisted of 3 
replicates, and each replicate included 20 fruits, 
totaling 60 fruits per treatment. The coated fruits were 
stored at 0 ± 0.5 °C for sweet cherries and 1 ± 0.5 °C for 
strawberries under 90 ± 5% relative humidity. Sweet 
cherries were stored for 35 days and strawberries for 
20 days, with quality analyses performed at 
predetermined intervals. 

2.4. Organic acids 

In this study, oxalic acid, malic acid, and citric acid were 
measured. The measurements were performed 
according to the method described by Bevilacqua and 
Califano (1989). Five grams of sample were mixed with 
20 mL of 0.009 N H₂SO₄ and vortexed for one hour. 
Afterward, the samples were centrifuged at 19,000 × g 
for 15 minutes. The supernatant obtained after 
centrifugation was �iltered through a 0.45 μm 
membrane �ilter (Millipore, USA) and a Sep-Pak C18 
cartridge. The analysis of organic acids was carried out 
using an Agilent HPLC system (Germany) equipped 
with a diode array detector (DAD) set at 214 and 280 
nm. Separation was performed on an Aminex HPX-87H 
column (300 × 7.8 mm, Bio-Rad Laboratories, USA) 
maintained at 30 °C. A 0.009 N H₂SO₄ solution, �iltered 
through a 0.45 μm membrane �ilter, was used as the 
mobile phase at a �low rate of 0.6 mL/min. The injection 
volume was 20 μL, and the total run time for each 
sample was approximately 25 minutes. Organic acids 
were identi�ied and quanti�ied by comparing their 
retention times and peak areas with those of external 

standards. The results were expressed as mg kg⁻¹ fresh 
weight (fw) (Ozturk et al., 2019). 

2.5. Statistical analysis 

Experiments were conducted using a randomized 
complete design with three replications. Each 
replication consisted of 20 fruits for both strawberry 
and sweet cherry. The experimental data were 
subjected to one-way analysis of variance (ANOVA) 
using SAS 9.3 software (SAS Institute Inc., Cary, NC, 
USA). Signi�icant differences between treatment means 
were compared using Duncan’s multiple range test at a 
p < 0.05 signi�icance level. 

3. Results 

Table 2 presents the effects of different treatments on 
the organic acid contents of strawberry fruits. 
Regarding oxalic acid values, the lowest content was 
observed in the control (321.60 mg kg⁻¹ fw) at the end 
of the storage period, whereas the highest value was 
detected in the Boron2 treatment (466.77 mg kg⁻¹ fw). 
This difference was statistically signi�icant. It appears 
that the nanoparticle treatments were effective in 
preserving oxalic acid content compared to the control. 

Similarly, , the lowest malic acid levels was recorded in 
the control (852.90 mg kg⁻¹ fw), while the highest value 
was observed in the Boron1 treatment (1226.80 mg 
kg⁻¹ fw) at the end of the storage period. Except for the 
15th day of storage, the differences observed between 
the groups at all other time points were statistically 
signi�icant. 

Regarding citric acid contents, the lowest value was 
measured in the control (1702.50 mg kg⁻¹ fw), while 
the highest value was recorded in the Boron1 treatment 
(2431.50 mg kg⁻¹ fw) at the end of the storage period. 
Overall, it is concluded that Boron1 and Boron2 
treatments were effective in preserving the organic acid 
content of strawberries during storage. 

The effects of treatments on organic acid content of 
sweet cherry fruits are presented in Table 3. The initial 
value of oxalic acid at harvest was 158.720 mg kg⁻¹ fw. 
The highest oxlic acid level was observed in the 
Chitosan treatment (128.933 mg kg⁻¹ fw) at the end of 
the storage period. This was followed by the 
Copper1+Chitosan treatment (107.387 mg kg⁻¹ fw). 
Other treatments showed results similar to the control. 
Although �luctuations in oxalic acid values were 
observed during the storage period, a general 
decreasing trend was detected over time. 
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Table 2. Organic acid contents of strawberries 

a) Oxalic Acid (mg kg −1 fw) 

Treatment Harvest 5 Days 10 Days 15 Days 20 Days 

CONTROL 

410.59 

415.90 ab 392.24 bc 372.37 321.60 b 

Chitosan 471.21 ab 370.69 bc 382.41 463.99 a 

Copper1 482.74 ab 370.92 bc 325.10 426.63 ab 

Copper2 401.19 b 352.60 c 383.87 452.45 a 

Copper1+Chitosan 522.71 a 509.70 a 379.73 405.59 ab 

Copper2+Chitosan 460.17 ab 363.57 bc 365.43 419.90 ab 

Boron1 426.63 ab 337.51 c 407.73 443.28 a 

Boron2 379.82 b 310.21 c 371.22 466.77 a 

Boron1+Chitosan 453.73 ab 388.65 bc 425.43 439.09 a 

Boron2+Chitosan 466.90 ab 457.18 ab 419.07 461.41 a 

b) Malic Acid (mg kg −1 fw) 

CONTROL 

871.44 

861.89 ab 805.53 790.81 bc 852.9 c 

Chitosan 700.94 b 852.36 802.67 bc 932.0 bc 

Copper1 907.41 a 781.30 826.37 bc 1012.2 abc 

Copper2 790.42 ab 881.61 766.15 c 994.5 abc 

Copper1+Chitosan 765.95 ab 959.09 864.83 abc 873.9 bc 

Copper2+Chitosan 792.41 ab 883.69 725.71 c 1061.0 abc 

Boron1 865.23 ab 827.61 924.52 ab 1226.8 a 

Boron2 733.55 b 812.57 996.82 a 1129.7 ab 

Boron1+Chitosan 793.41 ab 764.80 838.01 bc 987.7 abc 

Boron2+Chitosan 796.60 ab 830.20 822.24 bc 902.7 bc 

c) Citric Acid (mg kg −1 fw) 

CONTROL 

1485.76 

1450.2 b 1381.1 b 1322.2 d 1702.5 b 

Chitosan 1501.6 ab 1471.6 b 1583.0 abcd 1844.3 b 

Copper1 1681.3 ab 1404.3 b 1740.3 ab 1813.2 b 

Copper2 1605.9 ab 1528.0 b 1361.3 cd 1900.5 ab 

Copper1+Chitosan 1558.4 ab 2059.5 a 1592.1 abcd 1950.0 ab 

Copper2+Chitosan 1629.6 ab 1543.4 b 1368.7 cd 2000.5 ab 

Boron1 1770.6 a 1631.4 ab 1864.4 a 2431.5 a 

Boron2 1561.7 ab 1430.0 b 1654.3 abc 2050.1 ab 

Boron1+Chitosan 1519.0 ab 1427.1 b 1502.9 bcd 1649.6 b 

Boron2+Chitosan 1739.4 ab 1483.4 b 1561.6 abcd 1724.7 b 
 

The groupings indicated by lowercase letters within the columns are based on tests performed within each storage period. Means 
that do not differ signi�icantly from each other are indicated with the same lowercase letter. (p < 0,05). 

 

The initial value of malic acid contents at harvest was 
3028.6 mg kg⁻¹ fw, and the highest level and at the end 
of the storage period was noted in Chitosan treatment 
(2256.7 mg kg⁻¹ fw). The lowest malic acid levels were 
measured in the Copper2 (1015.0 mg kg⁻¹ fw), Control 
(1031.8 mg kg⁻¹ fw), and Copper1 (1104.8 mg kg⁻¹ fw) 
treatments, respectively. A general decrease in malic 
acid levels was observed during the storage period, 
similar to citric acid, although the Chitosan treatment 

was more effective in preserving both organic acids. 
The initial citric acid content at harvest was 18.85 mg 
kg⁻¹ fw, and the highest level at the end of the storage 
period was recorded in Boron1 treatment (20.75 mg 
kg⁻¹ fw). All other treatments remained similar to the 
control. By the end of the storage period, citric acid 
levels were lower compared to harvest in all 
treatments, except for Boron1, where the citric acid 
content exceeded the initial harvest value. 
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Table 3. Organic acid contents of sweet cherries 

a) Oxalic Acid (mg kg −1 fw) 

Treatment Harvest 7 Days 14 Days 21 Days 28 Days 35 Days 

CONTROL 

158.72 

186.16 a 109.56 b 140.25 abc 107.52 bc 73.470 c 

Chitosan 125.66 cd 185.34 a 163.04 a 134.20 ab 128.933 a 

Copper1 125.35 cd 111.48 b 127.69 abcd 140.01 a 83.293 c 

Copper2 130.90 cd 117.06 b 112.18 bcd 129.32 ab 82.077 c 

Copper1+Chitosan 142.27 abcd 174.62 a 143.81 abc 134.80 ab 71.223 c 

Copper2+Chitosan 146.52 abcd 215.48 a 149.17 ab 133.54 ab 107.387 b 

Boron1 169.39 abc 219.03 a 131.25abcd 112.36 abc 90.953 bc 

Boron2 179.84 ab 193.27 a 144.25 abc 99.35 cd 92.520 bc 

Boron1+Chitosan 133.03 bcd 132.44 b 107.14 dc 72.23 de 70.437 c 

Boron2+Chitosan 103.45 d 109.56 b 93.65 d 62.33 e 73.180 c 

b) Malic Acid 

CONTROL 

3028.6 

3341.4ab 2202.3 c 2584.1 a 2053.3 bc 1031.8 e 

Chitosan 2645.0 c 3295.9 ab 2443.5 ab 2150.2 bc 2256.7 a 

Copper1 3092.0 abc 2606.0 bc 2268.9 bc 2553.5 a 1104.8 e 

Copper2 2911.1 bc 2925.3 abc 2258.1 bc 2270.5 abc 1015.0 e 

Copper1+Chitosan 2835.5 bc 3196.4 ab 2284.9 abc 2362.1 ab 1492.6 d 

Copper2+Chitosan 3017.1 bc 3414.8 a 2394.8 ab 2334.0 ab 1872.1 bc 

Boron1 2817.1 bc 3542.1 a 2026.8 c 2028.5 bc 1912.0 bc 

Boron2 2830.4 bc 2916.2 abc 2051.3 c 2078.0 bc 1759.8 bc 

Boron1+Chitosan 3609.1 a 2900.9 abc 2212.2 bc 2140.3 bc 2001.4 b 

Boron2+Chitosan 2697.2 c 2574.8 bc 2580.8 a 1943.4 c 1679.7 cd 

c) Citric Acid 

CONTROL 

18.85 

16.10 c 17.97bc 22.73 b 19.29 a 14.41 b 

Chitosan 14.13 c 20.78 bc 37.34 a 11.79 cd 12.25 b 

Copper1 14.20 c 18.59 bc 16.72 b 12.51 bcd 13.22 b 

Copper2 15.58 c 24.37 b 15.52 b 15.94 abc 16.00 b 

Copper1+Chitosan 17.31 bc 22.73 bc 19.66 b 11.69 cd 13.71 b 

Copper2+Chitosan 16.18 c 34.50 a 20.80 b 10.03 d 11.82 b 

Boron1 15.85 c 21.16 bc 20.76 b 17.44 ab 20.75 a 

Boron2 22.27 b 20.45 bc 17.82 b 15.62 abc 14.80 b 

Boron1+Chitosan 27.96 a  21.16 bc 22.16 b 11.60 cd 12.78 b 

Boron2+Chitosan 15.99 c 13.88 c 15.33 b 13.08 bcd 13.03 b 
 

The groupings indicated by lowercase letters within the columns are based on tests performed within each storage period. Means 
that do not differ signi�icantly from each other are indicated with the same lowercase letter.  (p < 0,05). 

 

4. Discussion 

Citric acid was identi�ied as the predominant organic 
acid in strawberry fruits, followed by malic and oxalic 
acids. This pro�ile is consistent with previous �indings 
reported by Holcroft and Kader (1999), Pelayo et al. 
(2003), and Ali et al. (2022). The application of boron-
based nanoparticles (particularly Boron1 and Boron2) 
was more effective in preserving all three organic acids 
throughout the storage period. In contrast, Eroğul et al. 

(2024), who worked on the Albion cultivar, reported 
malic acid as the dominant organic acid. These 
differences may be attributed to genotypic variation 
among cultivars, growing conditions, and pre-harvest 
factors. 

Malic acid was the dominant organic acid in sweet 
cherry fruits, followed by citric and oxalic acids. This 
distribution aligns with �indings reported by Hayaloğlu 
and Demir (2015), Wang et al. (2016), and Karaat et al. 
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(2019). However, Çolak et al. (2025) found that succinic 
acid was dominant in cherries treated with spermidine, 
highlighting how treatment type, cultivar, and 
environmental conditions can in�luence acid 
composition. In our study, chitosan-based treatments 
were most effective in preserving malic acid levels in 
cherry, while boron-based treatments had a noticeable 
effect on citric acid. 

The present study also supports growing evidence that 
nanoparticle coatings can signi�icantly preserve 
organic acid pro�iles in soft fruits. For instance, 
Bahmani et al. (2022) demonstrated that proline-
enriched chitosan nanoparticles slowed citric acid 
degradation in strawberries under cold storage. 
Likewise, Sani et al. (2025) found that zinc oxide 
nanoparticles combined with chitosan helped maintain 
titratable acidity in strawberries and reduce decay. Ma 
et al. (2019) observed that nitric oxide-releasing 
chitosan nanoparticles preserved malic acid content in 
cherry during cold storage by slowing respiration. 
Similarly, Yıldız et al. (2025) reported that chitosan–
selenium microparticles reduced acid loss in sweet 
cherries, likely due to their barrier-forming and 
antioxidant effects. 

The collective �indings suggest that nanoparticles 
incorporated into edible coatings form semi-permeable 
layers that reduce oxygen permeability and suppress 
respiration rates. Since malic and citric acids are among 
the primary substrates utilized in the respiratory cycle, 
slowing their consumption helps delay senescence and 
maintain quality. Therefore, higher acid retention in 
nanoparticle-treated fruits in our study further 
validates the stabilizing role of nanomaterials in fruit 
storage. 

Considering the superior performance of Boron1 and 
Boron2 treatments, a deeper look at boron’s 
physiological effects is warranted. Boron is known to 
play essential roles in maintaining cell wall structure, 
regulating membrane function, and modulating key 
enzymes in carbon metabolism (Shireen et al., 2018; 
Pereira et al., 2023). Vera et al. (2024) demonstrated 
that boron improves antioxidant and osmotic 
regulation in fruit tissues under stress, which may 
explain improved acid retention in treated samples. 
Furthermore, boron may reduce vacuolar leakage, thus 
protecting organic acid compartments. Michailidis et al. 
(2023) reported that boron reprograms metabolism in 
cherry fruits, supporting the retention of citric and 
malic acids, while Zhang et al. (2024) found similar 

effects in strawberry through enhanced membrane 
integrity and cell wall strength. 

In summary, the combination of boron and copper 
nanoparticles, particularly when integrated with 
chitosan, represents a promising approach for 
preserving organic acid content and overall quality in 
strawberries and sweet cherries during cold storage. 
These �indings contribute valuable insight to the 
limited literature focused on the biochemical impacts of 
nanotechnology-based treatments on organic acid 
metabolism in soft fruits. 

5. Conclusion 

This study evaluated the effects of green-synthesized 
boron, copper, and chitosan nanoparticles on the 
organic acid pro�iles of strawberry and sweet cherry 
fruits during cold storage. The results demonstrated 
that nanoparticle-based treatments led to measurable 
improvements in the retention of key organic acids 
compared to the untreated control. In strawberries, 
Boron1 and Boron2 applications were particularly 
effective in sustaining higher concentrations of citric, 
malic, and oxalic acids throughout the storage period. 
In sweet cherries, Chitosan and Boron1 treatments 
were associated with relatively higher retention of 
malic and citric acid contents.  

Citric acid was identi�ied as the dominant organic acid 
in strawberries, while malic acid was the primary 
component in sweet cherries. The use of nanoparticle-
enriched edible coatings, particularly those 
incorporating boron and copper, may contribute to the 
biochemical stabilization of soft fruits by mitigating 
oxidative stress and slowing the depletion of organic 
acids during storage. 

Overall, the �indings of this study offer useful insights 
into the application of nanomaterials in postharvest 
handling of horticultural crops. Future research should 
focus on optimizing nanoparticle concentrations and 
composite formulations, and explore their effects 
across different fruit species and quality parameters. 
Such efforts will support the development of science-
based, sustainable postharvest strategies tailored to 
improving the storage quality of high-value perishable 
produce. 
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