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ABSTRACT 

Printed Circuit Board (PCB) defect detection is critical in electronics manufacturing, as undetected faults can 

lead to severe quality control issues. Recent advancements in deep learning, particularly object detection 

models, have significantly improved inspection systems' accuracy and speed. This study explores the 

performance of the YOLO11 (You Only Look Once version 11) object detection architecture on a multi-class 

PCB defect dataset. Five YOLO11 variants—YOLO11n, YOLO11s, YOLO11m, YOLO11l, and 

YOLO11x—were trained and evaluated under identical conditions using high-resolution images containing 

six defect types. Metrics such as mAP@50, mAP@50-95, and FPS were used for evaluation. Results 

demonstrate that YOLO11l achieved the highest mAP@50-95 of 0.551, while YOLO11n achieved up to 166 

Frame Per Second (FPS) on an NVIDIA A100 GPU, confirming its real-time capability. Comparative analysis 

against state-of-the-art models confirms that YOLO11 variants offer an effective trade-off between accuracy 

and efficiency. This study positions YOLO11 as a strong candidate for real-time PCB inspection systems. 
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ÖZET  

Baskılı Devre Kartı (PCB) hata tespiti, elektronik üretiminde kritik bir süreçtir; tespit edilemeyen hatalar ciddi 

kalite kontrol problemlerine yol açabilir. Derin öğrenme ve özellikle nesne tespiti modellerindeki son 

gelişmeler, denetim sistemlerinin doğruluk ve hızında önemli iyileştirmeler sağlamıştır. Bu çalışma, çok sınıflı 

bir PCB arıza tespit veri kümesi üzerinde YOLO11 (You Only Look Once versiyon 11) nesne tespiti 

mimarisinin performansını incelemektedir. YOLO11 ailesine ait beş farklı varyant—YOLO11n, YOLO11s, 

YOLO11m, YOLO11l ve YOLO11x—altı farklı arıza türü içeren yüksek çözünürlüklü görüntüler 

kullanılarak, aynı eğitim koşulları altında değerlendirilmiştir. Değerlendirme için mAP@50, mAP@50-95 ve 

FPS gibi metrikler kullanılmıştır. Sonuçlar, YOLO11l modelinin 0.551 mAP@50-95 ile en yüksek doğruluk 

değerine ulaştığını, YOLO11n modelinin ise NVIDIA A100 GPU üzerinde saniyede 166 kareye (FPS) kadar 

gerçek zamanlı performans sergilediğini göstermektedir. Yapılan karşılaştırmalar, YOLO11 ailesinin 

doğruluk ve verimlilik arasında etkili bir denge sunduğunu doğrulamaktadır. Bu çalışma, YOLO11 

mimarisinin gerçek zamanlı PCB denetim sistemleri için güçlü bir aday olduğunu ortaya koymaktadır. 

Anahtar Kelimeler: PCB Hata Tespiti, Derin Öğrenme, YOLO11. 
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1. Introduction 

 
Printed Circuit Boards (PCBs) are fundamental components in modern electronic devices, 

enabling functionality by providing electrical connections between various electronic components. 

However, defects can occur during or after the manufacturing process, and if left undetected, these 

defects can degrade system performance and lead to significant quality control issues. 

To ensure product integrity, defect inspection is typically conducted using two primary 

approaches: manual inspection and Automatic Optical Inspection (AOI) systems [1-3]. Manual 

inspection involves visual checking by human operators and is feasible for small-scale production or 

prototyping. However, it is inherently prone to subjectivity, fatigue-induced errors, and limited 

repeatability, making it unsuitable for high-volume manufacturing. AOI systems, on the other hand, 

offer automated, high-speed visual analysis using high-resolution cameras and predefined rules or 

templates [4]. Although more scalable, traditional AOI systems are often sensitive to variations in 

lighting, orientation, and PCB layout. Their reliance on rigid image processing rules also limits 

adaptability to novel or irregular defect types. 

To overcome the limitations of conventional approaches, researchers have explored classical 

computer vision and machine learning methods. Techniques such as edge detection, thresholding, 

morphological filtering, and template matching have been applied to highlight structural inconsistencies 

in PCB imagery [5-8]. While computationally efficient and interpretable, these methods tend to perform 

poorly under noise, background variation, or slight misalignments. Machine learning models like 

Support Vector Machines (SVM), k-Nearest Neighbors (k-NN), and Random Forests have also been 

employed [9-11], often in combination with hand-crafted feature extractors such as Histogram of 

Oriented Gradients (HOG) or Local Binary Patterns (LBP) [12]. While these hybrid systems improved 

accuracy over rule-based methods, their performance is limited by dependence on domain-specific 

feature engineering and insufficient generalization to complex PCB layouts. 

The recent rise of deep learning has led to a paradigm shift in automated defect detection, 

particularly with the success of Convolutional Neural Networks (CNNs). Deep learning models have 

demonstrated superior performance in both classification and localization by learning hierarchical 

features directly from raw image data. Object detection architectures such as Faster R-CNN (Region 

Convolutional Neural Network, SSD (Single Shot Detector), and the YOLO (You Only Look Once) 

family have gained widespread adoption in industrial inspection tasks due to their ability to 

simultaneously identify and localize defects in real time [13-15]. 

YOLO-based models, in particular, are well-suited for PCB defect detection owing to their 

compact architecture, high inference speed, and ability to handle multiple objects in a single forward 

pass. From YOLOv1 to YOLOv8, successive versions have introduced improvements in accuracy, 

speed, and generalizability. However, challenges remain in detecting small, low-contrast, or densely 

distributed defects—especially in high-resolution PCB images with diverse component layouts. 

The latest advancement in the YOLO family, YOLO11, incorporates several architectural 

improvements to address these challenges. These include an enhanced YOLO Feature Pyramid Network 

(YFPN) for improved multi-scale representation, Channel and Spatial Attention modules (e.g., C2f and 

PSA) for better focus on defect-relevant regions, and an optimized decoupled detection head to improve 

localization accuracy and convergence stability [16]. Additionally, YOLO11’s lightweight variants, 

such as YOLO11n and YOLO11s, achieve high frame rates on edge devices, making them highly 

suitable for real-time deployment in constrained industrial environments. 

This study presents a comprehensive evaluation of YOLO11 for multi-class PCB defect 

detection. Five model variants—YOLO11n, YOLO11s, YOLO11m, YOLO11l, and YOLO11x—are 

trained and benchmarked on a standardized dataset comprising six defect classes: missing hole, mouse 

bite, open circuit, short circuit, spur, and spurious copper. The evaluation considers accuracy (mAP@50 

and mAP@50-95), inference speed (FPS), and model complexity (parameters and FLOPs). By 

comparing YOLO11 against state-of-the-art alternatives, the study aims to assess its practical utility and 

readiness for integration into real-world PCB inspection workflows. 
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2. Related Works 

 

Early studies in PCB defect detection primarily relied on traditional image processing and 

manual feature extraction. Dave et al. [17] developed an embedded system utilizing image subtraction 

techniques for anomaly detection. Zhou [18] employed Principal Component Analysis (PCA) to 

improve image registration and defect localization, while Chang et al. [19] enhanced traditional 

segmentation approaches using Particle Swarm Optimization (PSO) combined with Speeded Up Robust 

Features (SURF). 

With the rise of deep learning, CNN-based methods became dominant. Zhang et al. [20] 

leveraged deep feature learning to surpass shallow feature engineering approaches. Hu and Wang [21] 

improved Faster R-CNN by integrating a Feature Pyramid Network (FPN) and a Guided Anchor Region 

Proposal Network (GARPN) to enhance small-scale defect detection. Shao et al. [22] proposed 

MobileNet-YOLOv3, replacing Darknet-53 with MobileNet to achieve a more lightweight architecture 

suitable for PCB defect detection. 

YOLO-based models soon gained prominence due to their real-time detection capabilities. 

Chaudhari et al. [23] enhanced YOLOv3 through multi-scale predictions and improved feature fusion. 

Liang et al. [24] introduced improvements to YOLOv5 by integrating Density-Based Spatial Clustering 

of Applications with Noise (DBSCAN), refined anchor generation, Global Attention Mechanism 

(GAM), and a Decoupled-Head design. Parallel to these developments, lightweight and fast detection 

models were explored. Zhang et al. [25] developed a channel-pruned YOLOv5s-based detector, 

achieving significant model size reductions with minimal accuracy loss. 

Transformers and attention mechanisms have also influenced the field. Li et al. [26] introduced 

PCB-DETR, extending Deformable Detection Transformer (Deformable-DETR) structures with spatial 

attention offset modules. Pan et al. [27] proposed YOLOx-Plus, combining Simple Attention Module 

(SimAM) and Scaled Intersection over Union (SIoU) loss, while optimizing inference speed for FPGA 

(Field Programmable Gate Array)-based deployments. Extensions of the YOLOv8 framework have also 

been explored. Huang and Li [28] proposed YOLO-HB, incorporating Hybrid Attention Transformer 

(HAT) and Bidirectional Feature Pyramid Network (BiFPN) for enhanced multi-scale feature 

representation. Gu et al. [29] optimized YOLOv8 by integrating partial convolution modules. Zeng et 

al. [30] introduced LSDM-PCB, combining Residual Feature Attention Convolution (RFAConv) and 

Global-Local Mixed Attention (GLMA) to boost small defect sensitivity. 

Alternative approaches based on generative models have also been explored. You [31] proposed 

a Generative Adversarial Network (GAN)-based pipeline enhanced with Edge-Enhanced Super-

Resolution GAN (EESRGAN) to improve low-resolution PCB defect detection. For unsupervised 

learning, Chen et al. [32] developed U2D2PCB, an uncertainty-aware dual-network model combining 

reconstruction and discrimination tasks to detect defects without labeled data. 

Lang and Lv [33] proposed SEPDNet, a simple and effective network customized for small 

target detection on PCBs. Zhu and Zhao [34] developed SRN_Net, integrating global context attention 

and residual aggregation to enhance detection accuracy of small PCB defects. Zhao et al. [35] introduced 

PSDDNet, a lightweight YOLOv8-based model optimized through multi-branch streaming convolution 

(MSC) and gather-distribute feature fusion mechanisms (GDLite), achieving high accuracy and fast 

inference with minimal parameters, making it highly suitable for real-time PCB surface inspection. 

SSD-based approaches also contributed to PCB defect detection [36]. Kang et al. [37] proposed 

mSSD, an improved SSD model utilizing a ResNet50 backbone and a small-target feature prediction 

layer. Survey studies by Anoop et al. [38] and Ling and Isa [39] have comprehensively reviewed PCB 

defect detection methods, from early machine vision techniques to modern deep learning-based 

approaches, and highlighted ongoing challenges and future opportunities. 

Collectively, these studies mark a transition from manual visual inspection to sophisticated deep 

learning-driven frameworks, emphasizing higher accuracy, faster inference, reduced model sizes, and 

improved robustness against small and complex defects. Despite these advancements, the fast-paced 
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development of detection models highlights the need for continuous benchmarking to assess their 

practical applicability. 

Currently, although the YOLO11 family (YOLO11n, YOLO11s, YOLO11m, YOLO11l, and 

YOLO11x) has been introduced in the academic community, no systematic evaluation has yet been 

conducted specifically for PCB defect detection tasks, where precision on small and complex defects is 

critical. Therefore, this study aims to fill this gap by benchmarking the anticipated YOLO11 variants 

under identical experimental conditions and comparing their performance against established detectors. 

Through this comprehensive evaluation, practical insights are provided into the deployment potential of 

these models in real-world manufacturing environments. 

 

3. Material and Method 

 

This section details the dataset preparation, model architecture, training strategy, and evaluation 

metrics used in our application of YOLO11 for PCB defect detection. 

 

3.1 Dataset Preparation 

 

The dataset used in this study is based on the publicly available PCB defect dataset originally 

released by the Intelligent Robot Development Laboratory of Peking University [40]. This dataset has 

become a widely accepted benchmark in the literature for evaluating the performance of defect detection 

models in printed circuit boards. It comprises high-resolution images containing six types of common 

manufacturing defects: missing hole, mouse bite, open circuit, short circuit, spur, and spurious copper 

(Figure 1). Each image has been meticulously annotated with bounding boxes that localize defects. 

To convert these annotations into a format compatible with YOLO11, we transformed the 

original labels into the standard YOLO format, which includes normalized coordinates of the bounding 

box center (x, y), width, height, and the corresponding class label. The dataset was then divided into 

training (70 %), validation (15 %), and testing (15 %) subsets, ensuring a representative distribution of 

all defect types across splits. This structured partitioning allows for consistent evaluation and 

comparison with prior work utilizing the same dataset. 

 

 
                                        (a)                                     (b)                                     (c)  

 
                                        (d)                                     (e)                                     (f)  

Figure 1. Illustration of the six PCB defect classes included in the dataset. (a) missing hole; (b) mouse 

bite; (c) open circuit; (d) short circuit; (e) spur; (f) spurious copper. 
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Table 1. Summary of the PCB defect dataset 

Type of Defect Number of  

Original Images 

Number of 

Augmented Images 

Total Images 

Missing Hole 115 115 230 

Mouse Bite 115 115 230 

Open Circuit 

Short Circuit 

Spur 

Spurious Copper 

Total 

116 

116 

115 

116 

693 

116 

116 

115 

116 

693 

232 

232 

230 

232 

1,386 

 

The dataset used in this study consists of 1,386 images, with half of them being original and the 

other half generated through random rotation augmentation. The distribution of images across the six 

PCB defect classes is shown in Table 1. 

 

3.2 Model Architecture   

 

YOLO11 is a modern deep learning architecture designed for real-time object detection tasks. 

As illustrated in Figure 2, the model consists of three core components: the Backbone, the Neck, and 

the Head. These components operate sequentially, transforming the input image into rich feature 

representations and ultimately yielding object class predictions and precise bounding box localizations. 

 

 
Figure 2. The architecture of YOLO11 [41] 

 

Backbone 

The backbone is responsible for extracting low- and high-level semantic features from the input 

image. It consists of repeated Conv (Convolutional) layers and C3k2 blocks. The C3k2 modules, 

featuring residual connections and multi-path convolutions, enable the model to learn spatially diverse 

and deep feature representations. 
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A key enhancement in the YOLO11 backbone is the inclusion of the SPPF (Spatial Pyramid 

Pooling - Fast) block, which consolidates contextual information from multiple receptive fields using 

parallel max-pooling operations. This is followed by the C2PSA (Channel and Spatial Attention) 

module, which improves feature map quality by selectively focusing on informative channels and spatial 

locations. These attention-based mechanisms are particularly useful for detecting fine-grained and subtle 

defects in complex PCB layouts [16]. 

Neck 

The Neck functions as a feature aggregation and transmission layer. It fuses multi-scale feature 

maps obtained from the backbone using Upsampling, Concatenation, and additional C3k2 blocks. This 

hierarchical combination of features facilitates better object detection across scales [42]. 

The Neck follows a similar philosophy to Feature Pyramid Networks (FPN) and Path 

Aggregation Networks (PANet), ensuring both bottom-up and top-down information flow. As a result, 

fine spatial details and strong semantic signals are preserved, enabling robust detection of both small 

and large objects [43]. 

Head 

The detection Head consists of three parallel branches that operate on feature maps of different 

resolutions. Each branch terminates in a Detect module, which outputs: 

• Bounding box coordinates, 

• Objectness scores, and 

• Class probability distributions. 

This multi-scale output structure allows YOLO11 to detect defects of varying sizes 

simultaneously and efficiently in a single forward pass. 

Loss Function 

The total loss ℒ𝑡𝑜𝑡𝑎𝑙 is expressed as a weighted sum of three components. The YOLO11 model 

is trained using a composite loss function that balances three key objectives in object detection: accurate 

localization of object boundaries, reliable objectness confidence, and precise classification of defect 

types. The total loss function is formulated as: 

 

ℒ𝑡𝑜𝑡𝑎𝑙 = 𝜆𝑙𝑜𝑐 . ℒ𝐶𝐼𝑜𝑈 + 𝜆𝑜𝑏𝑗. ℒ𝑜𝑏𝑗 + 𝜆𝑐𝑙𝑠. ℒ𝑐𝑙𝑠 (1) 

 

 where ℒ𝐶𝐼𝑜𝑈, Complete Intersection over Union (𝐶𝐼𝑜𝑈) loss is used for bounding box 

regression. It incorporates the overlap area (𝐼𝑜𝑈), the distance between the predicted and ground-truth 

box centers, and the aspect ratio consistency. 

 

ℒ𝐶𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
𝜌2(𝑏, 𝑏𝑔𝑡)

𝑐2
+ 𝛼𝑣 (2) 

 

 In this formulation, 𝑏 and 𝑏𝑔𝑡denote the center points of the predicted and ground truth bounding 

boxes, respectively. The term 𝜌(𝑏, 𝑏𝑔𝑡) represents the Euclidean distance between centers, and 𝑐 is the 

diagonal length of the smallest enclosing box covering both bounding boxes. The term 𝑣 measures the 

similarity of aspect ratios between the predicted and actual boxes, and 𝛼 is a positive scalar used to 

balance its influence. This comprehensive formulation allows the model to optimize for spatial accuracy, 

scale alignment, and geometric consistency [44]. 

ℒ𝑜𝑏𝑗, objectness loss is calculated using Binary Cross-Entropy (BCE), measuring the confidence 

that an object exists in a predicted region. 

ℒ𝑐𝑙𝑠, classification loss evaluates the predicted class probabilities against ground truth labels. 

Either BCE or Focal Loss (FL) may be used, depending on the model configuration and class imbalance 

severity.  

The weighting factors 𝜆𝑙𝑜𝑐, 𝜆𝑜𝑏𝑗, 𝜆𝑐𝑙𝑠 are empirically selected to balance the contribution of 

each component and ensure effective learning during training. 
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3.3 Training Strategy  

 

In this study, the YOLO11 model was trained on the PCB defect dataset [40] using Google 

Colab, leveraging both NVIDIA A100 and Tesla T4 GPUs to accelerate the training process. The 

training was conducted for 100 epochs with an image input size of 640×640 pixels and a batch size of 

16. The model was optimized using the AdamW optimizer, with the learning rate ranging from 0.0001 

to 0.01 throughout the training. The implementation was developed using Python 3.11.2 and PyTorch 

2.0.1 with CUDA 11.8 support, and the Ultralytics YOLO11 framework (version 8.3.111) was employed 

for training and evaluation. [45] 

To explore the performance variability and capabilities across different architectural scales, we 

trained all five variants of the YOLO11 family—YOLO11n, YOLO11s, YOLO11m, YOLO11l, and 

YOLO11x. These versions vary in terms of model size, number of parameters, and computational 

complexity, enabling a comparative analysis between speed and accuracy trade-offs. All training runs 

adhered to the same hyperparameter settings unless otherwise specified by the model’s configuration. 

Optimization was performed using Stochastic Gradient Descent (SGD) with momentum, and learning 

rate scheduling was automatically managed by the YOLO11 training pipeline. 

The performance of each variant was evaluated using standard object detection metrics such as 

mean Average Precision (mAP), mAP@50-95, and inference speed (FPS). The training times, model 

complexities, and accuracy results are reported in the Results and Discussion section to offer a 

comprehensive assessment. 

 

3.4 Evaluation Metrics   

 

To comprehensively evaluate the YOLO11 models applied in the PCB defect detection task, we 

utilized a range of quantitative evaluation metrics that are standard in the field of object detection. These 

metrics are crucial for assessing the model’s ability to both correctly identify (classification) and 

accurately localize (detection) defect instances in PCB imagery. The following subsections provide 

detailed definitions, formulations, and roles of these metrics in our analysis. 

Intersection over Union (𝑰𝒐𝑼) 

𝐼𝑜𝑈 measures the extent of overlap between the predicted bounding box and the ground truth 

bounding box. It is a critical metric for localization tasks, defined mathematically as: 

 

𝐼𝑜𝑈 =
|𝐵𝑝 ∩ 𝐵𝑔𝑡|

|𝐵𝑝 ∪ 𝐵𝑔𝑡|
× 100 (3) 

 

where 𝐵𝑝 is the predicted bounding box, and 𝐵𝑔𝑡 is the ground truth bounding box. An 𝐼𝑜𝑈 

threshold (typically 0.5 or 0.75) is used to determine if a predicted box is considered a true positive. 

 

 
Figure 3. Intersection over union [46] 
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Figure 3 illustrates the 𝐼𝑜𝑈 concept in a visual format. The orange area represents the 

overlapping region (intersection) between the predicted 𝑏𝑜𝑥𝑝 and the actual ground truth 𝑏𝑜𝑥𝑔𝑡. The 

union area, which includes both boxes, is used as the denominator. This visual summary also explains 

the rule-based decision: if 𝐼𝑜𝑈 > ∝ the detection is a True Positive (𝑇𝑃); otherwise, it is a False Positive 

(𝐹𝑃). 

Confusion Matrix  

A confusion matrix is a tabular representation used to evaluate the performance of a 

classification model by comparing the model’s predicted class labels with the true labels. In the context 

of multi-class problems—such as PCB defect detection involving multiple defect categories—the 

confusion matrix provides detailed insights into how well the model is performing on a per-class basis. 

Each row of the matrix represents the actual class, while each column represents the predicted 

class. The diagonal elements indicate correct predictions (True Positives), whereas off-diagonal 

elements represent misclassifications (False Positives and False Negatives). Figure 4 illustrates the 

confusion matrix table. 

This matrix helps identify which defect classes are accurately classified and which ones tend to 

be confused. For example, subtle defects like spur or open circuit may be misclassified more often than 

clearly visible ones like missing hole. Analyzing such patterns supports targeted improvements in model 

training, such as using data augmentation or loss weighting for underperforming classes. 

 

 
Figure 4. Confusion Matrix 

 

Precision and Recall 

These two metrics are used to evaluate classification performance: 

• Precision indicates the proportion of true positive detections among all predicted positive 

instances: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4) 

 

• Recall measures the proportion of actual positives that were correctly identified: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (5) 

 

Precision is crucial when the cost of false positives is high, whereas recall is vital when false 

negatives are costly. 

Precision-Recall Curve 

In addition to precision and recall as scalar metrics, the Precision-Recall (PR) curve provides a 

comprehensive view of the trade-off between these two metrics across varying classification thresholds. 



M. Dayıoğlu and et al Journal of Northern Aegean Technical Sciences and Technology Volume 2, Number 1, Page 33-50 2025 

41 

 

It is especially informative in scenarios with imbalanced classes, such as PCB defect detection, where 

certain defect types may be significantly rarer than others. 

The PR curve plots precision (x-axis) against recall (y-axis) for different confidence score 

thresholds. As the threshold decreases, the model tends to make more positive predictions, increasing 

recall but potentially reducing precision. A well-performing model maintains high precision and recall 

across thresholds, resulting in a curve that bends toward the top-right corner of the plot. An illustrative 

example of such behavior is shown in Figure 5. 

 

 
Figure 5. Examples of PR curve. The red curve represents an ideal PR curve, while the blue curve 

depicts a typical PR curve obtained in practical experiments. Arrows indicate the direction of 

increasing threshold levels [47].  

 

Mean Average Precision (𝒎𝑨𝑷) 

Mean Average Precision (𝑚𝐴𝑃) is a widely used evaluation metric in object detection tasks, 

measuring the detector's performance across all classes and multiple Intersection over Union (𝐼𝑜𝑈) 

thresholds. It summarizes both the precision and recall characteristics into a single scalar value. The 

Average Precision (𝐴𝑃) for a single class is defined as the area under the precision-recall curve: 

 

𝐴𝑃 = ∫ 𝑃(𝑅)𝑑𝑅
1

0

 (6) 

 

where 𝑃(𝑅) denotes the precision as a function of recall 𝑅. 

The overall mean Average Precision (𝑚𝐴𝑃) across 𝑁 classes are computed as: 

 

𝑚𝐴𝑃 =
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

 (7) 

 

where 𝐴𝑃𝑖 represents the Average Precision for the 𝑖𝑡ℎ class, and 𝑁 is the total number of 

classes. 

Additionally, a more detailed evaluation metric, 𝑚𝐴𝑃50−95, is often used. Instead of evaluating 

𝐴𝑃 at a single 𝐼𝑜𝑈 threshold, 𝑚𝐴𝑃50−95 computes the mean 𝐴𝑃 across ten 𝐼𝑜𝑈 thresholds, ranging from 

0.50 to 0.95 with an increment of 0.05, and is defined as: 

 

𝑚𝐴𝑃50−95 =
1

10
× (𝐴𝑃@0.50 + 𝐴𝑃@0.55 + ⋯ + 𝐴𝑃@0.95) (8) 

 

where 𝐴𝑃@𝑡 denotes the Average Precision at a specific 𝐼𝑜𝑈 threshold t. 

Higher values of 𝑚𝐴𝑃 and 𝑚𝐴𝑃50−95 indicate better detection performance, combining both 

the model’s classification accuracy and localization precision. 
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Inference Time 

Inference time refers to the amount of time a trained model takes to process an input and generate 

a prediction. In the context of object detection, it measures the time required for the model to detect 

objects within a single image, typically reported in milliseconds (ms) or frames per second (FPS). 

The average inference time per image can be calculated as: 

𝑡𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝑇𝑡𝑜𝑡𝑎𝑙

𝑁
 (9) 

 

where 𝑇𝑡𝑜𝑡𝑎𝑙 is the total time taken to infer 𝑁 images during testing. 

Alternatively, the inference speed is often reported as Frames Per Second (𝐹𝑃𝑆), calculated as: 

 

𝐹𝑃𝑆 =
1

𝑡𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒
 (10) 

 

Lower inference times and higher FPS values are crucial for real-time applications, particularly 

in industrial settings where rapid and accurate defect detection is necessary. In this study, inference 

times are evaluated across different YOLO11 variants to assess their suitability for real-time PCB 

inspection. 

 

4. Results and Discussion 

 

To validate the performance of the proposed YOLO11 variants, comprehensive experiments 

were conducted and compared with the most widely used object detection models.  Table 2 summarizes 

the performance metrics, including mAP@0.5, mAP@0.5-0.95, inference speed (FPS), model size, 

computational cost (GFLOPs), hardware platform, and training time. 

 

Table 2. Performance comparison of different models on the PCB defect detection dataset. (The best 

results in each column are highlighted in bold). 

Model mAp50 

(%) 

mAP50-

95 (%) 

FPS Parame

ters (M) 

GFLOPs System Train 

Time 

YOLOv5 [48] 95.97 - 92.5 92.3 - Nvidia RTX3090 - 

YOLOx-Plus [49] 90.1 - 72.6 9.18 - PYNQ-Z2 FPGA - 

YOLOv8n [50] 94.8 37.3 124 5.96 8.2  - 

CDI-YOLO [51] 98.3 51.1 128 5.76 12.6  - 

YOLOv8-s [52] 90.8 - - 5.79 - AMD E5-2698B  - 

YOLOv7 [53] 92.8 - 48.6 - -  - 

Faster R-CNN [54] 73.14 - 6 522.98 - Nvidia RTX2070 - 

SSD [54] 81.53 - 14 100.27 - Nvidia RTX2070 - 

Transformer 

YOLO [54] 

97.0  21 93.95  Nvidia RTX2070  

YOLO11n 97.7 51.9 166 2.5 6.3 Nvidia A100 0.174 

YOLO11n 98.3 51.8 27 2.5 6.3 Tesla T4 1.031 

YOLO11s 94.8 52.9 100 2.6 9.4 Nvidia A100 0.178 

YOLO11m 98.8 53.8 38 20 67.7 Nvidia A100 0.215 

YOLO11l 98.5 55.1 32 25.5 86.6 Nvidia A100 0.268 

YOLO11l 99.2 54.6 6 25.5 86.6 Tesla T4 1.340 

YOLO11x 98.6 52.9 21 65.8 194.4 Nvidia A100 0.332 

 

The experimental results demonstrate that the YOLO11 family achieves competitive 

performance compared to other object detection models reported in the literature. As presented in Table 

2, the YOLO11n variant reached a mAP@50 of 0.983 and a mAP@50-95 of 0.518 on the Tesla T4 
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platform, while maintaining an inference speed of 27 FPS. On the NVIDIA A100, the same model 

reached up to 166 FPS, significantly outperforming traditional models such as Faster R-CNN (6 FPS) 

and SSD (14 FPS), and showing better speed-accuracy trade-off than YOLOv7 (48.63 FPS) and 

YOLOx-Plus (72.6 FPS). 

Although CDI-YOLO and YOLOv8n demonstrated high inference speeds (128 FPS and 124.8 

FPS respectively), YOLO11 variants such as YOLO11m and YOLO11l achieved better overall accuracy 

while preserving real-time capability. For instance, YOLO11m achieved a mAP@50-95 of 0.538 with 

38 FPS, and YOLO11l delivered the highest mAP@50-95 value of 0.551 at 32 FPS. Even the largest 

variant, YOLO11x, maintained a reasonable speed of 21 FPS on the A100 while achieving strong 

detection results. 

 

  
(a) YOLO11n (Nvidia A100) (b) YOLO11s (Nvidia A100) 

  
(c) YOLO11m (Nvidia A100) (d) YOLO11l (Nvidia A100) 

  
(e) YOLO11x (Nvidia A100) (f) YOLO11l (Tesla T4) 

 

Figure 6. PR curves of YOLO11 variants: (a) YOLO11n (Nvidia A100); (b) YOLO11s (Nvidia 

A100); (c) YOLO11m (Nvidia A100); (d) YOLO11l (Nvidia A100); (e) YOLO11x (Nvidia A100);  

(f) YOLO11l (Tesla T4) 
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PR curves were used in our analysis to visualize the classification performance of the YOLO11 

models across all six defect classes. Figure 6 illustrates the PR curves for each class across all YOLO11 

model variants. These results further highlight the effectiveness of the YOLO11l variant within the 

YOLO11 model family. 

 

  
(a) YOLO11n (Nvidia A100) (b) YOLO11s (Nvidia A100) 

  
(c) YOLO11m (Nvidia A100) (d) YOLO11l (Nvidia A100) 

  
(e) YOLO11x (Nvidia A100) (f) YOLO11l (Tesla T4) 

 

Figure 7. Confusion matrix tables of YOLO11 variants: (a) YOLO11n (Nvidia A100); (b) YOLO11s 

(Nvidia A100); (c) YOLO11m (Nvidia A100); (d) YOLO11l (Nvidia A100); (e) YOLO11x (Nvidia 

A100); (f) YOLO11l (Tesla T4) 

 

Figure 7 shows the normalized confusion matrices for each model variant. All variants 

demonstrate strong classification performance, with high values along the diagonals indicating accurate 
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predictions across classes. Among them, YOLO11m, YOLO11l, and YOLO11x show slightly higher 

diagonal concentration, reflecting their relatively better performance in distinguishing between defect 

types. 

To illustrate real-world applicability, Figure 8 to Figure 12 shows a representative detection 

output from the YOLO11n, YOLO11s, YOLO11m, YOLO11l, YOLO11x models on a PCB image 

with multiple coexisting defect types. The model accurately identifies and localizes diverse defects in 

a single forward pass, underscoring the YOLO11 architecture’s robustness in complex industrial 

scenarios. 

These results collectively validate the efficacy of the YOLO11 family in balancing detection 

precision and computational efficiency, confirming their suitability for high-throughput, multi-class 

PCB inspection systems. 

 

 
Figure 8. Detection output of the YOLO11n model on a PCB image containing multiple defect types. 

 

 
Figure 9. Detection output of the YOLO11s model on a PCB image containing multiple defect types. 
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Figure 10. Detection output of the YOLO11m model on a PCB image containing multiple defect 

types. 

 

 
Figure 11. Detection output of the YOLO11l model on a PCB image containing multiple defect types. 

 

 
Figure 12. Detection output of the YOLO11x model on a PCB image containing multiple defect types. 
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5. Conclusions 

 

This study provided a systematic evaluation of the YOLO11 object detection family for multi-

class PCB defect detection. Through consistent training protocols and fair comparisons, we analyzed 

five model variants across multiple hardware configurations. 

Key findings from this research include: 

• YOLO11l achieved the highest overall detection accuracy (mAP@50-95 = 0.551), making it the 

most precise model for defect localization. 

• YOLO11n demonstrated outstanding inference speed (up to 166 FPS), highlighting its potential 

for real-time deployment in resource-constrained environments. 

• All YOLO11 variants showed competitive or superior performance compared to leading state-

of-the-art models in both accuracy and efficiency. 

The inclusion of advanced architectural features—such as attention mechanisms, enhanced 

feature fusion modules, and a decoupled detection head—contributed significantly to the models’ ability 

to detect small, low-contrast, and coexisting defects in high-resolution images. 

In conclusion, YOLO11 provides a robust framework for the automation of PCB inspection 

processes. It allows for flexibility in levels of model sophistication, as well as hardware interfaces, 

making it ideal for industrial settings where precision and speed are key. Research could also investigate 

further domain adaptation strategies for novel PCB layout representations, procedures for semi-

supervised classification to reduce the labeling burden, and powerful and efficient methods for 

implementation on edge and embedded systems. Also, adding reasoning for spatial and temporal 

relationships for time-series analysis of PCBs along with explainable AI could strengthen performance 

and reliability for interpretable analysis while enhancing multi-modal data analysis fusion. Building 

self-adaptive architectures combined with continual learning paradigms is likely to enable enduring 

sustained effectiveness tailored to shifting needs in the context of agile responsive manufacturing 

systems. All these approaches offer a unified adaptive view of PCB inspection quality control, bringing 

intelligence, automation, and resilience into one system. 
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