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Abstract 

Floods have consistently been one of the most significant natural disasters affecting humans. In a country like Iran, their 

impact is particularly pronounced due to the irregular patterns of rainfall both in space and time. Flood routing is a crucial 

aspect of hydraulic engineering, as it enables the prediction of how floods will rise and recede at specific points along a 

river. Various techniques and methods are employed to address routing problems. This Manuscript explores routing using 

Muskingum's method, the least squares error method, and neural networks. First, three proposed neural network models 

with different transfer functions were evaluated to identify the best-performing model. The results were then compared 

using the least squares method and validated against the model proposed by Choudhury and Sankarasubramanian (2009). 

Ultimately, both models yielded acceptable results; however, considering the RMSE values, the least squares error method's 

results are closer to those proposed by Choudhury and Sankarasubramanian (2009). 
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1. INTRODUCTION 
 

Flood flow in a channel refers to the movement of a wave, 

making it crucial for engineers to accurately predict how 

flood levels will rise and fall at specific locations along the 

channel. Flood routing involves a series of operations that 

use the known upstream flow hydrograph to determine the 

downstream flow hydrograph. In other words, computatio-

nal operations for analyzing flood patterns in streams 

(channels and rivers) involve predicting changes in hydra-

ulic variables, flow geometry, and flood waveforms over-

time at one or more points along the stream (Mirzazade, 

2013). Using routing techniques and a single-point flood 

hydrograph, the desired flood height can be determined at 

any location along the river's course. Various hydraulic and 

hydrological methods are available to route floods. If data 

and statistics of output sections are not needed, hydraulic 

methods can be used, where output data is obtained through 

hydraulic routing at any section. Flood routing by hydrolo-

gical methods is relatively simple and reasonably accurate 

but requires multiple inflow and outflow hydrograph data.  

 

The most common river routing method is the Muskingum 

method. This method was first developed by McCarthy for 

flood control studies of the Muskingum River basin in 

Ohio in 1938. This method uses the continuity equation to 

perform river routing. Perumal (1994) derived the Muskin-

gum method with variable parameters for flood wave rou-

ting in fixed-section channels directly from the Saint-Ve-

nant equations by assuming a constant water level gradient 

along a small span of the channel and establishing a steady 

flow between the depth in the middle of the span and the 

discharge at a section downstream. Mohan (1997) propo-

sed a genetic algorithm for estimating the parameters of 

two nonlinear Muskingum methods.  

 

This study compared the results of the proposed genetic al-

gorithm with those obtained from nonlinear least squares 

and conjugate gradient regression methods. Unlike other 

techniques, the genetic algorithm does not require an initial 

estimation of parameters. The application of this method to 

the nonlinear relationship between storage and flow de-

monstrated that the genetic algorithm effectively estimates 

the parameters of the nonlinear model. 

 

Al-Humoud and Esen (2006) used an approximate and 

straightforward method to determine the coefficients of the 

Muskingum method. This method is estimated based on 

calculating the slope of the inflow and outflow hydrog-

raphs at their junction. Chu and Chang (2009) used an 

adaptive inference system in the MATLAB environment to 

determine the flood trend using the Muskingum method.  

 

 

 

 

They compared the results obtained from the neural-fuzzy 

network with the genetic algorithm. They concluded that 

the values obtained from the fuzzy neural network can be 

used in the Muskingum method and have a better match 

with the observational data than other methods. Easa 

(2013) used the variable parameter method in flood rou-

ting. In his study, he used three flood hydrographs and con-

sidered the exponential parameter in the nonlinear Muskin-

gum method as a variable. In his research, the exponential 

parameter changes with the amount of inflow. The inflow 

is divided into five parts, and a separate exponential para-

meter is considered for each part. Niazkar and Afzali 

(2014) used the modified Honey Bee Mating Optimization 

algorithm (HBMO) to find the parameters of the Muskin-

gum method.  

 

The primary advantage of this approach is its ability to qu-

ickly reach an optimal value across a wide range of para-

meters. Moghaddam et al. (2016) initially estimated the pa-

rameters of the nonlinear Muskingum method using Par-

ticle Swarm Optimization (PSO). They then applied this 

method to a new form of the four-parameter Muskingum 

method, utilizing three sample hydrographs and one real 

hydrograph from Iran. Their findings demonstrated that, 

although the new Muskingum method was more complex, 

it provided a better fit to the observational data, particularly 

for hydrographs with multiple flow peaks. katipoğlu and 

Sarıgöl (2023) for flood routing prediction applying empi-

rical model decomposition (EMD) and neural networks. 

This study showed that the EMD model can improve the 

performance of machine learning models, and the EMD 

model was the most successful algorithm in flood routing 

computation. The aim of the study of Sari Sarıgöl (2024) is 

to compare the performance of machine learning, deep le-

arning, and hybrid algorithms for flood routing prediction 

models in the Büyük Menderes River. In the research deep 

learning model Long-Short Term Memory (LSTM), mac-

hine learning model Artificial Neural Network (ANN), and 

hybrid machine learning models empirical mode decompo-

sition (EMD)-ANN, and particle swarm optimization 

(PSO)-ANN algorithms were compared to forecast the 

flood routing results in two discharge observation stations 

in the Büyük Menderes river. The results showed that the 

hybrid algorithm PSO-ANN was the most successful in fo-

recasting flood routing results among other models. In the 

present study, flood routing was performed using the Mus-

kingum method by the least squares method and neural 

networks. There have been relatively limited studies in the 

field of reservoir routing using artificial intelligence mo-

dels, and this is one of the innovations of the present article. 
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2. METHODOLOGY 

2.1. Muskingum Method 

 
Flood routing methods can be divided into hydraulic and 

hydrological. In hydraulic routing, the continuity equation 

and the equation of motion of unsteady flow are used, and 

in hydrological routing, which is a standard method in 

water engineering, the equation of motion is generally ig-

nored, and the continuity equation for a control volume is 

used as follows: 

dt

ds
OI =−  (1) 

Where I, O, and S are the inflow and outflow rates and the 

storage volume of the control volume, respectively. The 

governing relationship for the Muskingum method, which 

is obtained through the scaling curve equation, is in the 

form of Equation 2. 

 

)( OIKXKOS −−=  (2) 

In the equation above, K represents the reservoir coeffici-

ent, while X denotes the weight coefficient. The parameter 

K reflects the river's travel time, which is determined by 

the river's length and the speed of the flood wave. In cont-

rast, X signifies the influence of flood inflows and outflows 

on the river's storage volume, typically varying between 0 

and 0.5. By assessing these two parameters, it is possible 

to calculate the flood outflow hydrograph for each flood 

event in the river. The following equation (Equation 3) are 

utilized for this calculation: 

 

tttt OCICICO 31211 ++= ++  (3) 

Where It and It+1 are the flood inflow discharges at times t 

and t+1 from the flood inflow hydrograph, respectively, Ot 

and Ot+1 the flood outflow discharges at times t and t+1 

(from the flood outflow hydrograph), C1, C2 and C3 are the 

routing coefficients. These coefficients are determined 

from equations (4-6): 
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Which Δt is the time step of the calculations. Equation (3) 

is used iteratively to calculate the outflow flood hydrog-

raph by determining the trending coefficients. 

 
2.2. Flood estimation model by Choudhury and San-

karasubramanian  

The equation proposed by Choudhury and Sankarasubra-

manian (2009) is represented by equation (7): 

 

tttt ICCOCIC +−−−=+ )1( 3131 
 (7) 

In this equation, c1 and c3 are Muskingum parameters and 

α and β are the upstream hydrograph evolution parameters, 

which are functions of the upstream watershed, river 

branch, and sudden change characteristics such as storms. 

The parameters c1, c3, α and β for a branch of the river are 

obtained by minimizing the objective functions (equations 

(8-11)). 
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In the equations mentioned above, i and q represents the 

predicted flow in the upstream section, while i   and q   
denotes the predicted flow in the downstream section. 

These correspond to the observed inflow and outflow va-

lues, respectively. The Muskingum parameters have been 

derived by minimizing these equations. When used for pre-

diction in two future time steps, the obtained parameters 

will have prediction errors due to measurement and estima-

tion errors. The error at time t+2 may be present in the error 

terms at time t+1. To estimate the possible error at the next 

time step during the flow predictions, two other objective 

functions are formed as given in equations 12 and 13. 
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In the above equation, E is the error indicator and   is the 

parameter that defines the propagation of the error. The op-

timal estimation of parameters 
i

  and 
q

  defines a linear 

relation between the error at times t+1 and t+2 for the upst-

ream and downstream stations, respectively. Minimizing 

the six objective functions mentioned (Equations 8 to 13) 

makes it possible to estimate the model parameters and the 

error. With the parameter values obtained for the river 

branch, the model may be used for long-range prediction 

of the upstream and downstream stations. 

 

2.3. Least Squares Error Method 

 

This method minimizes the difference between the obser-

ved and estimated storage. Therefore, we formulate and 

minimize the error function in the following form. 

 

 
jjjj
SSBOAIE −++=

1
 (14) 

Where A=KX, B=K(1-X), S1 is the initial storage, and Sj is 

the observed relative storage at the jth time step. N is the 

number of observed values of inflow, outflow, and relative 

storage for the period under study in the river (Choudhury 

and Sankarasubramanian (2009)). After taking the deriva-

tive of the error equation and setting it equal to zero, the 

error function reaches its minimum value. The values of A 

and B will be obtained by solving the matrix form of equ-

ation 15: 
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The least squares method calculations were performed 

using a program written in MATLAB. The values of X and 

K were obtained as 0.237 and 1.631, respectively. Finally, 

based on these calculated values, the output hydrograph 

was calculated, the results of which are presented in the 

following graphs. 

 

2.4. Artificial neural network 

The concept of artificial neural networks was first introdu-

ced by Frank Rosenblatt in 1962 and then in 1986 by Rom-

melhart and McClelland with the invention and presenta-

tion of the perceptron model, which is modeled after the 

neurons in the human brain and simulates the intracellular 

behavior of brain neurons through mathematical functions 

defined. The computational weights in the communication 

lines of artificial neurons play the role of synapses in natu-

ral neurons. The breadth and flexibility of neural networks 

have made them widely used in problems of a predictive 

nature. 

The working process of a simple single-layer network is 

shown in Figure 1. The following simple network consists 

of one input and one neuron, and the role of the transfer 

function (denoted by f) is observed. The input p applied to 

the neuron is weighted by multiplying it by the weight w, 

and the result is used as an input to the transfer function f, 

and the final output is obtained. The bias input is a constant 

value of 1, a tunable parameter of the neurons, not an input, 

and its use in the MATLAB software toolbox is optional. 

The bias value is added to the product of w.p. The main 

idea of neural networks is that by changing the values of w 

and b, the network adopts a correct behavior or decision. 

 

 
Figure 1. Structure of a single-layer neural network 

 

A perceptron network has an input layer to apply inputs, a 

hidden layer, and an output layer to provide problem out-

puts. This type of network is usually trained using the 

backpropagation method. An example of this type of 

network is shown in Figure 2. 

 

 
Figure 2. Structure of a multilayer perceptron with hid-

den neurons and output neurons with a linear function 

The role of transfer functions in neural networks is to cal-

culate the output of the layers from the input network. This 
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review evaluated the performance of three different functi-

ons: logsig, tansig, and purelin. It is important to note that 

in multilayer networks, using the aforementioned transfer 

functions has been very common, but other transfer functi-

ons can also be used if desired. The diagram of these func-

tions is given in Figure 3. 

 

 
Figure 3. Diagram of transfer functions used in the neural 

network (Agami et al., 2009) 

 

Given that the range of the tansig function is in the range 

of 1 and -1 and the range of the logsig function is in the 

range of 0 and 1, the input data is normalized to the smal-

lest range, that the range of zero and one, using equation 

16: 

minmax

min'

XX

XX
X i

i
−

−
=

 (16) 

The goal of neural networks is to change the weight and 

bias matrix to reduce the error between the network output 

and the target values. In this paper, the normalized values 

of the inflow hydrograph are introduced as input, and the 

outflow hydrograph values are introduced as target data for 

simulation. 

 

2.5. Data Availability 

 

In this paper, the hydrograph from the data provided by 

Chow et al. (1988) has been routed using both neural 

networks and Muskingum's Method, employing the least 

squares error method. The results obtained from these app-

roaches have been compared and presented alongside those 

from the study by Choudhury and Sankarasubramanian 

(2009). Additionally, the impact of the type of transfer 

function on the proposed neural network model has been 

examined. Table 1 and Figure 4 and 5 show data related to 

the hydrograph values of Chow et al. (1988) and the pro-

posed model of Choudhury and Sankarasubramanian 

(2009). 

Table 1 - Simulated data and values of the proposed mo-

del by Choudhury and Sankarasubramanian (2009) 

The proposed model by Choudhury 

and Sankarasubramanian (2009) 

(m3/s) 

Observational 

Hydrograph by 

Chow et al. 

(1988) (m3/s) Error model Flow model 

outflow 
inf-

low 
outflow 

inf-

low 
outflow 

inf-

low 

0.00 1.70 0.00 1.70 0.00 1.70 

3.31 9.60 1.58 7.27 1.19 5.10 

6.82 12.31 5.16 10.63 3.60 8.50 

10.16 15.30 8.59 13.77 6.54 12.63 

13.27 18.00 11.81 16.62 10.28 17.36 

16.12 20.35 14.79 19.16 14.55 21.97 

18.68 22.33 17.47 21.34 19.03 26.39 

20.83 23.92 19.83 23.14 23.28 26.39 

22.64 25.09 21.82 24.53 24.89 25.80 

24.05 25.84 23.42 25.50 25.40 26.65 

24.05 26.15 24.62 26.04 26.16 27.61 

25.62 26.04 25.40 26.15 27.01 27.75 

25.77 25.51 25.75 25.83 27.41 26.93 

25.51 24.58 25.68 25.11 27.07 25.20 

24.83 23.26 25.20 23.99 26.02 22.94 

23.77 21.60 24.32 22.51 24.10 20.30 

22.34 19.62 23.07 20.69 21.78 17.50 

20.58 17.36 21.46 18.57 19.17 14.55 

18.52 14.86 19.54 19.16 16.40 11.61 

16.20 12.16 17.34 13.59 13.54 8.75 

13.66 9.32 14.89 10.82 10.56 7.02 

10.94 6.38 12.00 7.92 8.55 6.48 

8.10 3.38 9.47 4.95 7.36 6.12 

5.17 0.39 6.58 1.95 6.65 5.80 

 

 

 
Figure 4.  Observational inflow and outflow hydrograph 

of Chow et al. (1988) 
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Figure 5.  Flow model proposed by Choudhury and San-

karasubramanian (2009) 

 

The reason for the difference in the data in Figure 4 and 5 

are  the use of different techniques in prediction. In this 

article, two methods includes the least squares error met-

hod, and neural networks have been used . 

 

3. RESULTS 

The networks utilized are Multi-Layer Perceptrons (MLP), 

which operate using a feed-forward back-propagation met-

hod. Research indicates that this type of network is effec-

tive for flood trend analysis and has been previously emp-

loyed in related studies. Each network is structured with 

three layers: an input layer, an intermediate layer, and an 

output layer. The input layer consists of three neurons, 

while the output layer has one neuron that produces the out-

put hydrograph. The performance function used is the 

Mean Squared Error (MSE), which evaluates the network's 

performance by calculating the average of the squared er-

rors. The limitations on the number of layers and neurons 

in these networks are primarily due to the restricted amount 

of available data. 
 

The performance of three trained networks is compared to 

the proposed model by Choudhury and Sankarasubrama-

nian (2009). Figure 6 illustrates the effectiveness of the 

three transfer functions. Based on the mean absolute mag-

nitude of the errors, we find that the tansig function has an 

error of 0.0359, the logsig function has an error of 0.0538, 

and the purelin function has an error of 0.0358. This indi-

cates that both the tansig and purelin functions provide a 

better model. However, due to the superior prediction of 

peak discharge achieved by the tansig function, we accept 

it as the preferred model.  

 

 

 

  

 
Figure 6.  Comparison of the results of neural networks 

and the proposed model of Choudhury and Sankarasubra-

manian (2009) with different transfer functions including  

(a) tansig, (b)logsig, (c)purelin 

 

In Figure 7, the proposed model is validated against the 

hydrograph developed by Choudhury and Sankarasubra-

manian (2009), referred to as the Error Model. The figure 

demonstrates that the proposed neural network model 

aligns well with the results of Choudhury and Sankarasub-

ramanian's model. 

Table 2 shows the mean absolute difference between the 

predictions of the neural network and the least squares met-

hod. From this data, we can conclude that while the neural 

network predictions are reasonably accurate, the least squ-

ares method has provided a relatively more precise value. 
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Figure 7. Comparison of results of neural networks and 

the proposed error model Choudhury and Sankarasubra-

manian (2009) 

 

Figure 8 compares the results of the least squares method 

with those of the neural network.  

 
Figure 8. Comparison of results of neural networks, least 

squares error method, and the proposed model of Choud-

hury and Sankarasubramanian (2009) 

 

Table 2 - Comparison of least squares error method and 

neural network 

least squares 

error 
neural networks Method 

3.82 4.84 RSME (%) 
4. CONCLUSION 

 

One of the most devastating disasters are Floods that can 

cause damage to ecosystems. Accurate simulation of floods 

are significantly important for flood control and the reduc-

tion of flood losses. There have been relatively limited stu-

dies in the field of reservoir routing using artificial intelli-

gence models, and this is one of the innovations of the pre-

sent article.  This paper discusses flood routing using two 

methods: neural networks and the Muskingum method, 

which employs the least squares error approach. The mo-

dels presented in this study are validated using the proposal 

by Choudhury and Sankarasubramanian (2009). Initially, 

the results of the neural network model using the transfer 

functions tansig, logsig, and purelin were examined. Ulti-

mately, the proposed model was confirmed using the tansig 

function. The results were then compared to those obtained 

using the least squares error method. It was concluded that 

although both methods provide acceptable predictions, the 

least squares error method yields a relatively more accurate 

result. 
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