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Abstract

This paper deals with the existence of solutions for nonlinear fractional differential inclu-
sions supplemented with three-point boundary conditions. First, we investigate it for L1-
Caratheodory convex-compact valued multifunction. Then, we investigate it for nonconvex-
compact valued multifunction via some conditions. Two illustrative examples are presented
at the end of the paper to illustrate the validity of our results.

1. Introduction

The concept of fractional calculus has played an important role in improving the work based on integer-order (classical) calculus in several
diverse disciplines of science and engineering. In fact, quantum calculus has a rich history and the details of this basic notions, results and
methods can be found in the text [2, 26, 37] and papers [10, 22]. The nonlocal nature of a fractional order differential operator, which take
into account hereditary properties of various material and processes, has helped to improve the mathematical modeling of many natural
phenomena and physical processes, see for example [4, 5, 21]. The increasing interest of fractional differential equations and inclusions are
motivated by their applications in various fields of science such as physics chemistry, biology, economics, fluid mechanics, control theory, etc,
we refer the reader to [9, 17, 30] and the references therein. Realistic problems arising from economics, optimal control, stochastic analysis
can be modelled as differential inclusion. So much attention has been paid by many authors to study this kind of problems, see [4, 5, 36].
On the other hand boundary value problems with local and nonlocal boundary conditions constitute a very interesting and important class of
problems. They include two, three and multipoint boundary value problems. The existence and multiplicity of positive solutions for such prob-
lems have received a great deal of attentinos. To identify a few, we refer the reader to [8, 11, 13, 18, 19, 20, 24, 25, 27, 28, 29, 31, 32, 33, 34].

In this paper, we are interested in the existence of solutions for the Caputo fractional differential inclusion
cDα u(t) ∈ F

(
t,u(t) ,u′ (t)

)
, t ∈ J = [0,1] , (1.1)

subject to three-point boundary conditions 
βu(0)+ γu(1) = u(η) ,

u(0) =
∫ η

0 u(s)ds,
β cDpu(0)+ γcDpu(1) = cDpu(η) ,

(1.2)

where 2 < α ≤ 3, 1 < p≤ 2, 0 < η < 1, β ,γ ∈ R+, f ∈C
(
[0,1]×R2,R

)
and cDα denotes the Caputo fractional derivative of order α .

The current paper is organized as follows. In section 2, we introduce some definitions and preliminary results that will be used in the
remainder of the paper. In section 3, we present existence results for the problem (1.1)− (1.2) when the right-hand side is convex-compact
as well as nonconvex-compact values. In the first result we use the fixed-point theorem (Lemma 2.12) for multivalued maps (see [3]) while
in the second result we prove the existence by applying a fixed-point theorem for contraction multivalued maps due to Covitz and Nadler and
we give two examples to illustrate our results.
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2. Preliminaries

In this section, we introduce some necessary definitions and lemmas of fractional calculus to facilitate the analysis of the problem (1.1)−(1.2).
These details can be found in the recent literature; see [1, 12, 16] and the references therein.

Definition 2.1. Let α > 0, n−1 < α < n, n = [α]+1 and u ∈C ([0,∞) ,R). The Caputo derivative of fractional order α for the function u
is defined by

cDα u(t) =
1

Γ(n−α)

t∫
0

(t− s)n−α−1 u(n) (s)ds.

where Γ(·) is the Euler gamma function.

Definition 2.2. The Riemann-Liouville fractional integral of order α > 0 of a function u : (0,∞)→ R is given by

Iα u(t) =
1

Γ(α)

t∫
0

(t− s)α−1 u(s)ds, t > 0,

where Γ(·) is the Euler gamma function, provided that the right side is pointwise defined on (0,∞).

Lemma 2.3. [22] Let α, β ≥ 0 and u ∈ Lp (0,1) , 0≤ p≤+∞. Then the next formulas hold.

(i)
(

Iβ Iα u
)
(t) = Iα+β u(t),

(ii)
(

Dβ Iα u
)
(t) = Iα−β u(t),

(iii) (Dα Iα u)(t) = u(t).

Lemma 2.4. [26] Let α > 0, n−1 < α < n and the function g : [0,T ]→ R be continuous for each T > 0. Then, the general solution of the
fractional differential equation cDα g(t) = 0 is given by

g(t) = c0 + c1t + · · ·+ cn−1tn−1,

where c0,c1, ...,cn−1 are real constants and n = [α]+1.

Lemma 2.5. [4] Assume that u ∈C [0,1]∩L1 (0,1) with a Caputo fractional derivative of order α > 0 that belongs to u ∈Cn [0,1], then

Iα cDα u(t) = u(t)+ c0 + c1t + · · ·+ cn−1tn−1,

where c0,c1, ...,cn−1 are real constants and n = [α]+1.

We will present notations, definitions and preliminary facts from multivalued analysis which are used throughout this paper. Here (C [0,1] ,R)
denotes the Banach space of all continuous functions from [0,1] into R with the norm ‖u‖= sup{|u(t)| : f or all t ∈ [0,1]} , L1 ([0,1] ,R),
the Banach space of measurable functions u : [0,1]→ R which are Lebesgue integrable, normed by ‖u‖L1 =

∫ 1
0 |u(t)|dt, and ACi ([0,1] ,R)

the space of i− times differentiable functions u : [0,1]→ R whose i− th derivative u(i) is absolutely continuous.
Let (X ,d) be a metric space induced from the normed space (X ,‖·‖). We denote

P0 (X) = {A ∈ P(X) : A 6= φ} ,

Pb (X) = {A ∈ P0 (X) : A is bounded} ,

Pcl (X) = {A ∈ P0 (X) : A is closed} ,

Pcp,cv (X) = {A ∈ P0 (X) : A is compact and convex} ,

Pb,cl (X) = {A ∈ P0 (X) : A is closed and bounded} .

Definition 2.6. A multivalued maps G : X → P(X).
(1) is convex (closed) valued if G(X) is convex (closed) for all u ∈ X,
(2) is bounded on bounded sets if G(B) = ∪

u∈B
G(u) is bounded in X for all B ∈ Pb (X) i.e. sup

u∈B
{sup{|v| , v ∈ G(u)}}< ∞,

(3) is called upper semicontinuous (u.s.c) on X if for each u0 ∈ X, the set G(u0) is a nonempty closed subset of X and if for each open set N
of X containing G(u0) there exists an open neighborhood N0 of u0 such that G(N0)⊆ N,
(4) is said to be completely continuous if G(B) is relatively compact for every B ∈ Pb (X),
(5)has a fixed point if there is u ∈ X such that u ∈ G(X). The fixed point set of the multi-valued operator G will be denote by Fix G.

Remark 2.7. It is well known that, if the multi-valued map G is completely continuous with nonempty compact values, then G is u.s.c if and
only if G has closed graph i.e., un→ u, vn→ v, vn ∈ G(un) imply v ∈ G(u).
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Definition 2.8. A multi-valued maps G : [0,1]→ Pcl (R) is said to be measurable if for every y ∈ R the function

t 7−→ d (y,G(t)) = in f {‖y− z‖ : z ∈ G(t)} ,

is measurable.

Definition 2.9. A multi-valued maps F : [0,1]×R×R→ 2R is said to be Caratheodory if,
(i) t 7−→ F (t,u,v) for all u, v ∈ R,
(ii) t 7−→ F (t,u,v) is upper semi-continuous for almost all t ∈ [0,1]. Further a Caratheodory function is called L1− Caratheodory,
(iii) for each ρ > 0, there exists φρ ∈ L1 ([0,1] ,R+

)
such that ‖F (t,u,v)‖= sup{|v| , v ∈ F (t,u,v)} ≤ φρ (t), for all |u| , |v|< ρ .

Definition 2.10. Let Y be a nonempty closed subset of a Banach spase E and G : Y → Pcl (E) be a multivalued operator with nonempty
closed values. G is said to be lower semicontinuous (l.s.c) if the set {x ∈ X : G(x)∩U 6= φ} is open for any open set U in E.

For y ∈ (C [0,1] ,R), define the set of selection of F by

SF,u =
{

v ∈ AC ([0,1] ,R) ,v ∈ F
(
t,u(t) ,u′ (t)

)
, f or almost all t ∈ [0,1]

}
.

For P(X) = 2X , consider the Pompeiu-Hausdorff metric (see[?])
Hd : 2X×2X→ [0,∞) given by

Hd (A,B) = max
{

sup
a∈A

d (a,B) ,sup
b∈B

d (b,A)
}
,

where d (a,B) = in f
b∈B

d (a,b) and d (b,A) = in f
a∈A

d (a,b). Then
(
Pb,cl (X) ,Hd

)
is a metric space and (Pcl (X) ,Hd) is a generalized metric space

see [7].

Let Y be a nonempty closed subset of a Banach spase E and G : Y → Pcl (E) be a multivalued operator with nonempty closed values.
G is said to be lower semicontinuous (l.s.c) if the set {x ∈ X : G(x)∩U 6= φ} is open for any open set U in E.
G has a fixed point if there is x ∈ Y such that x ∈ G(x). For more details on the multi-valued maps, see the book of Aubin and Celina [14],
Demling [15], Gorniewicz [16] and Hu and Papageorgiou [35].

Lemma 2.11. [1] Let X be a Banach space. F : [0,1]×X→ Pcp,cv (X) an L1−Caratheodory multifunction and Θ a linear continuous
mapping from L1 ([0,1] ,X) to C ([0,1] ,X) . Then the operator (Θ◦SF )(u) = Θ

(
SF,u

)
is a closed graph operator in C ([0,1] ,X)×

C ([0,1] ,X).

Lemma 2.12. [3] Let E be a Banach space. C a closed convex subset of E, U an open subset of C and 0∈U. Suppose that F : U→ Pcp,cv (C)
is an upper semi-continuous compact map, where Pcp,cv (C) denotes the family of nonempty, compact convex subset of C. Then either F has
a fixed point in U or there exist u ∈ ∂U and λ ∈ (0,1) such that u ∈ λF (U).

Lemma 2.13. [12] A multifunction F : X →C (X) is called a contraction whenever there exists γ ∈ (0,1) such that Hd (N (u) ,N (v))≤
γd (u,v) for all u,v ∈ X

Lemma 2.14. ( Covitz-Nadler) Let (X ,d) be a complete metric space. If N : X → Pcl (X) is a contraction, then FixN 6= /0.

3. Existence results

Let X = {u : u, u′ ∈C ([0,1] ,R)} endowed with the norm defined by ‖u‖= sup
t∈[0,1]

|u(t)|+ sup
t∈[0,1]

|u′ (t)| such that ‖u‖< ∞. Then (X ,‖.‖) is

a Banach space.

Lemma 3.1. Let y ∈C ([0,1] ,R). Then the integral solution of the linear fractional differential equation
cDα u(t) = y(t) t ∈ [0,1] , α ∈ (2,3] , (3.1)

subject to three-point boundary conditions

βu(0)+ γu(1) = u(η) , β ≥ 0, γ ≥ 0, (3.2)

u(0) =

η∫
0

u(s)ds, η ∈ (0,1) , (3.3)

β
cDpu(0)+ γ

cDpu(1) =c Dpu(η) , p ∈ (1,2] , (3.4)

is given by

u(t) =

t∫
0

(t− s)α−1

Γ(α)
y(s)ds+

1
1−η

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
y(τ)dτ

ds− Λ1 (t)
Q1 (1−η)

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
y(τ)dτ

ds

− Λ2 (t)M1

6(1−η)Q1

 η∫
0

(η− s)α−p−1

Γ(α− p)
y(s)ds− γ

1∫
0

(1− s)α−p−1

Γ(α− p)
y(s)ds


+

Λ1 (t)
Q1 (β + γ−1)

 η∫
0

(η− s)α−1

Γ(α)
y(s)ds− γ

1∫
0

(1− s)α−1

Γ(α)
y(s)ds

 , (3.5)
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where

Λ1 (t) = (β + γ−1)
(

η
2 +2(1−η) t

)
, M1 =

Γ(3− p)
γ−η2−p

Λ2 (t) =
(

η
3 (β + γ−1)+3

(
γ−η

2
)
(1−η)

)(
η

2 +2(1−η) t
)
−Q1

(
η

3 +3(1−η) t2
)
,

and

Q1 = 2(1−η)(γ−η)+η
2 (β + γ−1) 6= 0.

Proof. In view of Lemma 2.3 and Lemma 2.5, the solution of equation (3.1) can be written as

u(t) = Iα y(t)+ c0 + c1t + c2t2 =

t∫
0

(t− s)α−1

Γ(α)
y(s)ds+ c0 + c1t + c2t2, (3.6)

where c0,c1,c2 ∈ R are arbitrary constants.
Differentiating both sides of (3.6) and applying Definition 2.1, Lemma 2.3 and Lemma 2.5, we obtain

cDpu(t) = Iα−py(t)+ c2
2t2−p

Γ(3− p)
=

t∫
0

(t− s)α−p−1

Γ(α− p)
y(s)ds+

2t2−p

Γ(3− p)
c2, (3.7)

where α ∈ (2,3] and p ∈ (1,2].
Integrating both sides of (3.6), we obtain

η∫
0

u(t)dt =

η∫
0

 t∫
0

(t− s)α−1

Γ(α)
y(s)ds

dt + c0η +
1
2

c1η
2 +

1
3

c2η
3. (3.8)

By using the boundary condition (3.2) in (3.6), we obtain

c0 (β + γ−1)+ c1 (γ−η)+ c2

(
γ−η

2
)
=

η∫
0

(η− s)α−1

Γ(α)
y(s)ds− γ

1∫
0

(1− s)α−1

Γ(α)
y(s)ds (3.9)

By using the boundary condition (3.3) in (3.6) and (3.8), we obtain

(1−η)c0−
η∫

0

(η− s)α−1

Γ(α)
y(s)ds− 1

2
c1η

2− 1
3

η
3 = 0. (3.10)

By using the boundary condition (3.4) in (3.7), we obtain

c2 =
M1

2

 η∫
0

(η− s)α−p−1

Γ(α− p)
y(s)ds− γ

1∫
0

(1− s)α−p−1

Γ(α− p)
y(s)ds

 . (3.11)

Solving the above system of the equations (3.9), (3.10) and (3.11) for c0, c1, c2, we get

c2 =
M1

2
(
Iα−py(η)− γIα−py(1)

)
=

M1

2

 η∫
0

(η− s)α−p−1

Γ(α− p)
y(s)ds− γ

1∫
0

(1− s)α−p−1

Γ(α− p)
y(s)ds

 ,

c0 = −2η2 (β + γ−1)
2(1−η)Q1

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
y(τ)dτ

ds+
1

1−η

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
y(τ)dτ

ds

−
(
η2 [η3 (β + γ−1)+3

(
γ−η2)(1−η)

]
−η3Q1

)
M1

2(1−η)Q1

[
Iα−py(η)− γIα−py(1)

]
+

η2

Q1

 η∫
0

(η− s)α−1

Γ(α)
y(s)ds− γ

1∫
0

(1− s)α−1

Γ(α)
y(s)ds

 ,
and

c1 =
−2(β + γ−1)

Q1

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
y(τ)dτ

ds−
(
η3 (β + γ−1)+3

(
γ−η2)(1−η)

)
M1

3Q1

[
Iα−py(η)− γIα−py(1)

]

+
2(1−η)

Q1

 η∫
0

(η− s)α−1

Γ(α)
y(s)ds− γ

1∫
0

(1− s)α−1

Γ(α)
y(s)ds

 ,
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where

Iα−py(η)− γIα−py(1) =

η∫
0

(η− s)α−p−1

Γ(α− p)
y(s)ds− γ

1∫
0

(1− s)α−p−1

Γ(α− p)
y(s)ds.

Substituting the values of constants c0,c1 and c2 in (3.6), we get (3.5). The proof is complete.

Throughout the paper, we let

M =
Γ(3− p)∣∣γ−η2−p

∣∣ 6= 0, |β + γ−1| 6= 0,
∣∣∣γ−η

2
∣∣∣ 6= 0, Q =

∣∣∣2(1−η)(γ−η)+η
2 |β + γ−1|

∣∣∣ 6= 0,

A(t) = |β + γ−1|
(

η
2 +2(1−η) t

)
,

and

B(t) =
(

η
3 |β + γ−1|+3

∣∣∣γ−η
2
∣∣∣(1−η)

)(
η

2 +2(1−η) t
)
−Q

(
η

3 +3(1−η) t2
)
.

The following inequalities hold:

|A(t)| ≤ |β + γ−1|
(

η
2 +2(1−η)

)
= A1,

|B(t)| ≤
∣∣∣(η

3 |β + γ−1|+3
∣∣∣γ−η

2
∣∣∣(1−η)

)(
η

2 +2(1−η)
)
−Q

(
η

3 +3(1−η)
)∣∣∣= B1,

∣∣A′ (t)∣∣≤ 2 |β + γ−1|(1−η) = A
′

1,

and ∣∣B′ (t)∣∣≤ 2(1−η)
∣∣∣(η

3 |β + γ−1|+3
∣∣∣γ−η

2
∣∣∣(1−η)

)
−3Q

∣∣∣= B
′

1.

To simplify the proofs in the forthcoming theorems, we establish the bounds for the integrals arising in the sequel.

Lemma 3.2. For y ∈C ([0,1] ,R), we have∣∣∣∣∣∣
η∫

0

 s∫
0

(s− τ)α−1

Γ(α)
y(τ)dτ

ds

∣∣∣∣∣∣≤ ηα+1

Γ(α +2)
‖y‖ .

Proof. Obviously,
s∫

0

(s− τ)α−1

Γ(α)
dτ =

[
− (s− τ)α

Γ(α)

]s

0
=

sα

αΓ(α)
=

sα

Γ(α +1)
.

Hence ∣∣∣∣∣∣
η∫

0

 s∫
0

(s− τ)α−1

Γ(α)
y(τ)dτ

ds

∣∣∣∣∣∣≤ ‖y‖
η∫

0

sα

Γ(α +1)
ds =

ηα+1

Γ(α +2)
‖y‖ .

For the sake of brevity, we set

41 =
ηα+1

(1−η)Γ(α +2)
+

A1ηα+1

Q(1−η)Γ(α +2)
+

MB1
(
ηα−p + γ

)
(1−η)QΓ(α− p+1)

+
A1 (η

α + γ)

Q |β + γ−1|Γ(α +1)
+

1
Γ(α +1)

, (3.12)

and

42 =
A
′

1ηα+1

Q(1−η)Γ(α +2)
+

MB
′

1
(
ηα−p + γ

)
(1−η)QΓ(α− p+1)

+
A
′

1 (η
α + γ)

Q |β + γ−1|Γ(α +1)
+

1
Γ(α)

. (3.13)

An element u ∈ AC2 ([0,1,R]) is called a solution of the problem (1.1) whenever it satisfies the integral boundary conditions and there exists
a function y ∈ SF,u such that

u(t) =

t∫
0

(t− s)α−1

Γ(α)
y(s)ds+

1
1−η

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
y(τ)dτ

ds− B(t)M
6(1−η)Q

 η∫
0

(η− s)α−p−1

Γ(α− p)
y(s)ds− γ

1∫
0

(1− s)α−p−1

Γ(α− p)
y(s)ds


+

A(t)
Q |β + γ−1|

 η∫
0

(η− s)α−1

Γ(α)
y(s)ds− γ

1∫
0

(1− s)α−1

Γ(α)
y(s)ds.

− A(t)
Q(1−η)

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
y(τ)dτ

ds. (3.14)

for all t ∈ J.
For investigation of the problem (1.1)− (1.2) we provide two different methods.
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Theorem 3.3. . Suppose that F : J×R×R→ Pcp,cv (R) is L1−Caratheodory multifunction and there exist a bounded continuous
nondecreasing map
ψ : [0,∞)→ (0,∞) and a continuous function p : J→ (0,∞) such that
‖F (t,u(t)) ,u′ (t)‖= sup{|v| : v ∈ F (t,u(t) ,u′ (t))≤ p(t)ψ (‖u‖)}, for all t ∈ J and u ∈ X. Then the inclusion problem (1.1)− (1.2) has
at least one solution.

Proof. Define the operator

N (u) =



h ∈ X , : there exists y ∈ SF,u such that h(t) =
∫ t

0
(t−s)α−1

Γ(α)
y(s)ds

− B(t)M
6(1−η)Q

[∫ η

0
(η−s)α−p−1

Γ(α−p) y(s)ds− γ
∫ 1

0
(1−s)α−p−1

Γ(α−p) y(s)ds
]

+
A(t)

Q|β+γ−1|

[∫ η

0
(η−s)α−1

Γ(α)
y(s)ds− γ

∫ 1
0

(1−s)α−1

Γ(α)
y(s)ds

]
+ 1

1−η

∫ η

0

(∫ s
0
(s−τ)α−1

y(τ)dτ

)
ds− A(t)

Q(1−η)

∫ η

0

(∫ s
0
(s−τ)α−1

Γ(α)
y(τ)dτ

)
ds, t ∈ J


We show that the operator N has a fixed point. First, we show that N maps bounded sets of X into bounded sets. Suppose that r > 0 and
Br = {u ∈ X : ‖u‖ ≤ r}. Let u ∈ Br and h ∈ N (u). Choose v ∈ SF,u such that h(t) defined above for almost all t ∈ J. Thus

|h(t)| ≤
t∫

0

(t− s)α−1

Γ(α)
|y(s)|ds+

1
1−η

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
|y(τ)|dτ

ds+
|A(t)|

Q(1−η)

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
|y(τ)|dτ

ds

+
|B(t)|M

12(1−η)Q

 η∫
0

(η− s)α−p−1

Γ(α− p)
|y(s)|ds+ γ

1∫
0

(1− s)α−p−1

Γ(α− p)
|y(s)|ds


+

(γ−η) |A(t)|
2Q(β + γ−1)

 η∫
0

(η− s)α−1

Γ(α)
|y(s)|ds+ γ

1∫
0

(1− s)α−1

Γ(α)
|y(s)|ds


≤ ∆1 ‖p‖

∞
ψ (‖u‖) ,

and

∣∣h′ (t)∣∣ ≤ t∫
0

(t− s)α−2

Γ(α−1)
|y(s)|ds+

|A′ (t)|
Q(1−η)

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
|y(τ)|dτ

ds

+
|B′ (t)|M

12(1−η)Q

 η∫
0

(η− s)α−p−1

Γ(α− p)
|y(s)|ds+ γ

1∫
0

(1− s)α−p−1

Γ(α− p)
|y(s)|ds


+
(γ−η) |A′ (t)|
2Q(β + γ−1)

 η∫
0

(η− s)α−1

Γ(α)
|y(s)|ds+ γ

1∫
0

(1− s)α−1

Γ(α)
|y(s)|ds


≤ ∆2 ‖p‖

∞
ψ (‖u‖) ,

for all t ∈ J, where ‖p‖
∞
= sup

t∈J
|p(t)|.

Hence,

‖h‖= max
t∈J
|h(t)|+max

t∈J

∣∣h′ (t)∣∣≤ (∆1 +∆2)‖p‖
∞

ψ (‖u‖)

Now, we show that N maps bounded sets into equicontinuous subsets of X . Let u ∈ Br and t1, t2 ∈ J with t1 < t2. Then we have

|h(t2)−h(t1)| ≤
t2∫

0

(t2− s)α−1

Γ(α)
|y(s)|ds+

t1∫
0

(t− s)α−1

Γ(α)
|y(s)|ds

+
|B(t2)−B(t1)|M

12(1−η)Q

 η∫
0

(η− s)α−p−1

Γ(α− p)
|y(s)|ds+ γ

1∫
0

(1− s)α−p−1

Γ(α− p)
|y(s)|ds


+
(γ−η) |A(t2)−A(t1)|

2Q(β + γ−1)

 η∫
0

(η− s)α−1

Γ(α)
|y(s)|ds+ γ

1∫
0

(1− s)α−1

Γ(α)
|y(s)|ds


+

1
1−η

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
|y(τ)|dτ

ds+
|A(t2)−A(t1)|

Q(1−η)

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
|y(τ)|dτ

ds
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≤
t1∫

0

(t2− s)α−1− (t1− s)α−1

Γ(α)
[‖p‖

∞
ψ (‖u‖)]ds+

t2∫
t1

(t− s)α−1

Γ(α)
[‖p‖

∞
ψ (‖u‖)]ds

+
|B(t2)−B(t1)|M

12(1−η)Q

 η∫
0

(η− s)α−p−1

Γ(α− p)
[‖p‖

∞
ψ (‖u‖)]ds+ γ

1∫
0

(1− s)α−p−1

Γ(α− p)
[‖p‖

∞
ψ (‖u‖)]ds


+
(γ−η) |A(t2)−A(t1)|

2Q(β + γ−1)

 η∫
0

(η− s)α−1

Γ(α)
[‖p‖

∞
ψ (‖u‖)]ds+ γ

1∫
0

(1− s)α−1

Γ(α)
[‖p‖

∞
ψ (‖u‖)]ds


+

1
1−η

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
[‖p‖

∞
ψ (‖u‖)]dτ

ds+
|A(t2)−A(t1)|

Q(1−η)

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
‖p‖

∞
ψ (‖u‖)dτ

ds,

It is seen that |(h)(t2)− (h)(t1)| → 0, as t2→ t1. Also, we have

∣∣h′ (t2)−h′ (t1)
∣∣ ≤ t2∫

0

(t2− s)α−2

Γ(α−1)
|y(s)|ds+

t1∫
0

(t− s)α−2

Γ(α−1)
|y(s)|ds

+
|B′ (t2)−B′ (t1)|M

12(1−η)Q

 η∫
0

(η− s)α−p−1

Γ(α− p)
|y(s)|ds+ γ

1∫
0

(1− s)α−p−1

Γ(α− p)
|y(s)|ds


+
(γ−η) |A′ (t2)−A′ (t1)|

2Q(β + γ−1)

 η∫
0

(η− s)α−1

Γ(α)
|y(s)|ds+ γ

1∫
0

(1− s)α−1

Γ(α)
|y(s)|ds


+
|A′ (t2)−A′ (t1)|

Q(1−η)

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
|y(τ)|dτ

ds

≤
t1∫

0

(t2− s)α−2− (t1− s)α−1

Γ(α−1)
[‖p‖

∞
ψ (‖u‖)]ds+

t2∫
t1

(t− s)α−2

Γ(α−1)
[‖p‖

∞
ψ (‖u‖)]ds

+
|B′ (t2)−B′ (t1)|M

12(1−η)Q

 η∫
0

(η− s)α−p−1

Γ(α− p)
[‖p‖

∞
ψ (‖u‖)]ds+ γ

1∫
0

(1− s)α−p−1

Γ(α− p)
[‖p‖

∞
ψ (‖u‖)]ds


+
(γ−η) |A′ (t2)−A′ (t1)|

2Q(β + γ−1)

 η∫
0

(η− s)α−1

Γ(α)
[‖p‖

∞
ψ (‖u‖)]ds+ γ

1∫
0

(1− s)α−1

Γ(α)
[‖p‖

∞
ψ (‖u‖)]ds


+
|A′ (t2)−A′ (t1)|

Q(1−η)

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
‖p‖

∞
ψ (‖u‖)dτ

ds.

Again, we see that |(h)(t2)− (h)(t1)| → 0, as t2→ t1. Also, we have ‖(h)(t2)− (h)(t1)‖→ 0, as t2→ t1. Thus N is equicontinuous and so
N is relatively compact on Br. Consequently the Ascoli-Arzela theorem implies that N is compact on Br.

Now, we show that N has a closed graph. Let un→ u0, hn ∈ N (un) for all n and h→ h0. We prove that h0 ∈ N (u0). For each n choose
yn ∈ SF,un such that, for all t ∈ J,

hn (t) =

t∫
0

(t− s)α−1

Γ(α)
yn (s)ds+

1
1−η

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
yn (τ)dτ

ds− A(t)
Q(1−η)

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
yn (τ)dτ

ds

− B(t)M
12(1−η)Q

 η∫
0

(η− s)α−p−1

Γ(α− p)
yn (s)ds− γ

1∫
0

(1− s)α−p−1

Γ(α− p)
yn (s)ds


+

(γ−η)A(t)
2Q(β + γ−1)

 η∫
0

(η− s)α−1

Γ(α)
yn (s)ds− γ

1∫
0

(1− s)α−1

Γ(α)
yn (s)ds

 .
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Consider the continuous linear operator θ : L1 (J,R)→ X defined by

θ (y)(t) =

t∫
0

(t− s)α−1

Γ(α)
y(s)ds+

1
1−η

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
y(τ)dτ

ds− A(t)
Q(1−η)

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
y(τ)dτ

ds

− B(t)M
12(1−η)Q

 η∫
0

(η− s)α−p−1

Γ(α− p)
y(s)ds− γ

1∫
0

(1− s)α−p−1

Γ(α− p)
y(s)ds


+

(γ−η)A(t)
2Q(β + γ−1)

 η∫
0

(η− s)α−1

Γ(α)
y(s)ds− γ

1∫
0

(1− s)α−1

Γ(α)
y(s)ds

 .
By using Lemma 2.13, θ ◦SF is closed graph operator. Since un→ u and hn ∈ θ

(
SF,un

)
for all n ∈ N, there exist y0 ∈ SF,,u0 such that

h0 (t) =

t∫
0

(t− s)α−1

Γ(α)
y0 (s)ds+

1
1−η

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
y0 (τ)dτ

ds− A(t)
Q(1−η)

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
y0 (τ)dτ

ds

− B(t)M
12(1−η)Q

 η∫
0

(η− s)α−p−1

Γ(α− p)
y0 (s)ds− γ

1∫
0

(1− s)α−p−1

Γ(α− p)
y0 (s)ds


+

(γ−η)A(t)
2Q(β + γ−1)

 η∫
0

(η− s)α−1

Γ(α)
y0 (s)ds− γ

1∫
0

(1− s)α−1

Γ(α)
y0 (s)ds

 .
Thus N has a closed graph.
Now we show that N (u) is convex for all u ∈ X . Let h1, h2 ∈ N (u) and w ∈ [0,1]. Choose y1, y2 ∈ SF,u. Then

wh1 (t)− (1−w)h2 (t) =

t∫
0

(t− s)α−1

Γ(α)
[wy1 (s)− (1−w)y2 (s)]ds+

1
1−η

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
[y1 (τ)− (1−w)y2 (τ)]dτ

ds

− A(t)
Q(1−η)

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
[y1 (τ)− (1−w)y2 (τ)]dτ

ds

− B(t)M
12(1−η)Q

 η∫
0

(η− s)α−p−1

Γ(α− p)
[wy1 (s)− (1−w)y2 (s)]ds− γ

1∫
0

(1− s)α−p−1

Γ(α− p)
[wy1 (s)− (1−w)y2 (s)]ds


+

(γ−η)A(t)
2Q(β + γ−1)

 η∫
0

(η− s)α−1

Γ(α)
[wy1 (s)− (1−w)y2 (s)]ds− γ

1∫
0

(1− s)α−1

Γ(α)
[wy1 (s)− (1−w)y2 (s)]ds


for all t ∈ J. Since F has convex values, SF,u is convex and so wh1 (t)− (1−w)h2 (t) ∈ N (u).
If there exists λ ∈ (0,1) such that u ∈ λN (u) then there exists y ∈ SF,u such that

u(t) =

t∫
0

(t− s)α−1

Γ(α)
y(s)ds+

1
1−η

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
y(τ)dτ

ds− A(t)
Q(1−η)

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
y(τ)dτ

ds

− B(t)M
12(1−η)Q

 η∫
0

(η− s)α−p−1

Γ(α− p)
y(s)ds− γ

1∫
0

(1− s)α−p−1

Γ(α− p)
y(s)ds


+

(γ−η)A(t)
2Q(β + γ−1)

 η∫
0

(η− s)α−1

Γ(α)
y(s)ds− γ

1∫
0

(1− s)α−1

Γ(α)
y(s)ds

 ,
for almost all t ∈ J. Choose L > 0 such that L

(∆1+∆2)‖p‖
∞

ψ(‖u‖) > 1 for all u ∈ X . Thus ‖u‖ < L. Now, put U = {u ∈ X : ‖u‖< L+1}.
Note there are no u ∈ ∂U and λ ∈ (0,1) such that u ∈ λN (u) and the operator N : U → Pcp,cv

(
U
)

is upper semi-continuous because it is
completely continuous. Now, by using Lemma 2.12, N has fixed point in U which is solution of the inclusion problem (1.1). This complete
the proof.

We provide another result about the existence of solutions for the problem (1.1)− (1.2) by changing the assumptions of convex values for
multifunction.

Theorem 3.4. Let m ∈C
(
J,R+

)
be such that ‖m‖

∞
(∆1 +∆2)< 1.

Suppose that F : J×R×R×R→ Pcp (R) is an integrable bounded multifunction such that the map t 7−→ F (t,u,v,w) is measurable and
Hd
(
F
(
t,u1,u2,u3

)
,F (t,v1,v2,v3)

)
≤ m(t)(|u1− v1|+ |u2− v2|+ |u3− v3|) for almost all t ∈ J and u,v,w,u1,u2,u3,v1,v2,v3 ∈ R. Then

the problem (1.1)− (1.2) has a solution.
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Proof. Note that, the multivalued map t 7−→ F (t,u(t) ,v(t) ,w(t)) is measurable and closed for all u ∈ X . Hence, it has a measurable
selection and so the set SF,u is nonempty. Now, consider the operator N : X → 2X defined by

N (u) =
{

h ∈ X : there exists v ∈ SF,u such that h(t) = u(t) , t ∈ J
}
,

where u(t) defined by (3.5), for all t ∈ J.
First, we show that N (u) is a closed subset of X for all u ∈ X . Let u ∈ X and {un}n≥1 be a sequence in N (u) with un→ u for each n, such
that

un (t) =

t∫
0

(t− s)α−1

Γ(α)
yn (s)ds+

1
1−η

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
yn (τ)dτ

ds− A(t)
Q(1−η)

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
yn (τ)dτ

ds

− B(t)M
12(1−η)Q

 η∫
0

(η− s)α−p−1

Γ(α− p)
yn (s)ds− γ

1∫
0

(1− s)α−p−1

Γ(α− p)
yn (s)ds


+

(γ−η)A(t)
2Q(β + γ−1)

 η∫
0

(η− s)α−1

Γ(α)
yn (s)ds− γ

1∫
0

(1− s)α−1

Γ(α)
yn (s)ds

 ,
for almost all t ∈ J. Since F has compact values, {yn}n≥1 has a subsequence which converges to some y ∈ L1 (J,R). It is easy to check that
y ∈ SF,u and un (t)→ u(t) for all t ∈ J. This implies that u ∈ N (u). Thus the multifunction N has closed values.
Now, we show that N is a contractive multifunction with constant
l = ‖m‖

∞
(∆1 +∆2)< 1.

Let u, v ∈ X and h1 ∈ N (v). Choose y1 ∈ SF,,v such that

h1 (t) =

t∫
0

(t− s)α−1

Γ(α)
y1 (s)ds+

1
1−η

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
y1 (τ)dτ

ds− A(t)
Q(1−η)

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
y1 (τ)dτ

ds

− B(t)M
12(1−η)Q

 η∫
0

(η− s)α−p−1

Γ(α− p)
y1 (s)ds− γ

1∫
0

(1− s)α−p−1

Γ(α− p)
y1 (s)ds


+

(γ−η)A(t)
2Q(β + γ−1)

 η∫
0

(η− s)α−1

Γ(α)
y1 (s)ds− γ

1∫
0

(1− s)α−1

Γ(α)
y1 (s)ds

 ,
for almost all t ∈ J. Since
Hd (F (t,u(t) ,u′ (t)) ,F (t,v(t) ,v′ (t)))≤m(t)(|u(t)− v(t)|+ |u′ (t)− v′ (t)|) for almost all t ∈ J there exists w ∈ F (t,u(t) ,u′ (t)) such that

|y1 (t)−w| ≤ m(t)
(
|u(t)− v(t)|+

∣∣u′ (t)− v′ (t)
∣∣) ,

for almost all t ∈ J.
Define the multifunction U : J→ 2R by

U (t) =
{

w ∈ R : |y1 (t)−w| ≤ m(t)
(
|u(t)− v(t)|+

∣∣u′ (t)− v′ (t)
∣∣) f or almost all t ∈ J

}
.

It is easy to chek that the multifunction U (·)∩F (·) ,u(·) ,u′ (·) is measurable. Thus, we can choose y2 ∈ SF,u such that

|y1 (t)− y2 (t)| ≤ m(t)
(
|u(t)− v(t)|+

∣∣u′ (t)− v′ (t)
∣∣) ,

for almost all t ∈ J. Now, consider h2 ∈ N (u) which is defined by

h2 (t) =

t∫
0

(t− s)α−1

Γ(α)
y2 (s)ds+

1
1−η

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
y2 (τ)dτ

ds− A(t)
Q(1−η)

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
y2 (τ)dτ

ds

− B(t)M
12(1−η)Q

 η∫
0

(η− s)α−p−1

Γ(α− p)
y2 (s)ds− γ

1∫
0

(1− s)α−p−1

Γ(α− p)
y2 (s)ds


+

(γ−η)A(t)
2Q(β + γ−1)

 η∫
0

(η− s)α−1

Γ(α)
y2 (s)ds− γ

1∫
0

(1− s)α−1

Γ(α)
y2 (s)ds

 .
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Hence, we get

|h1 (t)−h2 (t)| ≤
t∫

0

(t− s)α−1

Γ(α)
|y1 (s)− y2 (s)|ds+

1
1−η

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
|y1 (τ)− y2 (τ)|dτ

ds

+
|A(t)|

Q(1−η)

η∫
0

 s∫
0

(s− τ)α−1

Γ(α)
|y1 (τ)− y2 (τ)|dτ

ds

+
|B(t)|M

12(1−η)Q

 η∫
0

(η− s)α−p−1

Γ(α− p)
|y1 (s)− y2 (s)|ds+ γ

1∫
0

(1− s)α−p−1

Γ(α− p)
|y1 (s)− y2 (s)|ds


+

(γ−η) |A(t)|
2Q(β + γ−1)

 η∫
0

(η− s)α−1

Γ(α)
|y1 (s)− y2 (s)|ds+ γ

1∫
0

(1− s)α−1

Γ(α)
|y1 (s)− y2 (s)|ds


≤ ∆1 ‖m‖∞

‖u− v‖ ,

and so ‖h1−h2‖ ≤ (41 +42)‖m‖∞
‖u− v‖= l ‖u− v‖. This implies that the multifunction N is a contraction which closed values. Thus,

by using the result of Covitz and Nadler, N has a fixed point which is solution for the inclusion problem.

We construct two examples to illustrate the applicability of the results presented.

Example 3.5. Consider the problem

cD3u(t) ∈ F (t,u,v) , t ∈ [0,1] , (3.15)

subject to the three-point boundary conditions
1

100 u(0)+ 1
10 u(1) = u

( 1
2
)
,

u(0) =
∫ 0,5

0 u(s)ds,
1

100
c
D

3
2 u(0)+ 1

10
c
D

3
2 u(1) =c D

3
2 u
( 1

2
) , (3.16)

where η = 0,5,β = 0,01,γ = 0,1, p = 1,5 and F (t,u,v) : [0,1]×R2→ 2R multivalued map given by

u 7−→ F (t,u,v) =

(3+ t2

4

)(
|u|

1+u
+ sin(v)

)
,

|u|3

2
(

1+ |u|3
) +5t3 +4

 , u,v ∈ R

verifying (H1).
Obviously, for f ∈ F, we have

| f |= max

(3+ t
2

4

)(
|u|

1+ |u|
+ sin(v)

)
,

|u|3

2
(

1+ |u|3
) +5t3 +4

≤ 19
2
, u,v ∈ R.

Thus

‖F (t,u)‖= sup{| f | : f ∈ F (t,u,v)} ≤ 19
2
, u,v ∈ R,

where p(t) = 1 and ψ (t) = 19
2 , then one can check that the assumptions of Theorem 3.3 hold. and so the problem (3.15)− (3.16) has at

least one solution.

Example 3.6. Consider the problem (3.15)−(3.16), where η = 0,5,β = 0,01,γ = 0,1, p= 1,5 and F (t,u,v) : [0,1]×R2→ 2R multivalued
map given by

u 7−→ F (t,u,v) =

0,
t |u|

2(1+ |u|)
+

|v|3

2
(

1+ |v|3
)
 , u,v ∈ R.

Obviously,

Hd (F (t,u1,u2) ,F (t,v1,v2))≤
(

t
2
+

1
2

) 2

∑
i=1
|ui− vi| , u,v ∈ R, t ∈ [0,1] .

If m(t) = t
2 +

1
2 for all t ∈ [0,1] Hd (F (t,u1,u2) ,F (t,v1,v2))≤ m(t)

2
∑

i=1
|ui− vi|.

On the other hand, it can be easily found that M = 1,4597546147, Q = 9
400 , ∆1 ∼= 0,4141664514 and ∆2 ∼= 0?9758011659.

Finally, since ‖m‖
∞
(41 +42)∼= 0,143492 < 1, thus all assumptions of Theorem 3.4 are satisfied. Hence, The inclusion problem has at

least one solution.
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