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ABSTRACT: Studies on the development of safe anti-inflammatory agents targeting the inhibition of the mPGES-1
enzyme responsible for PGE, production are increasing day by day. Moreover, selective inhibition of the mPGES-1
enzyme which modulates the tumor microenvironment and inhibits tumor growth, making the mPGES-1 enzyme one of
the important macromolecular targets in cancer therapy. The aim of our study was to develop selective mPGES-1
inhibitors and to determine their in silico mPGES-1 enzyme inhibition potential. In this study, the binding affinities of 14
novel designed 5-benzylidene-2-(arylsulfonylhydrazono)thiazolidine-4-one derivatives were investigated against
mPGES-1 and COX-2 enzymes by computer-aided molecular modeling studies. Among the designed compounds 1-14, it
was presented with in silico data that compound 8-14, which does not interact with the active site of the COX-2 enzyme,
exhibited selective binding with mPGES-1 enzyme. Moreover, compounds 10-13 have been suggested as selective
mPGES-1 inhibitors with a better in silico binding energy than the first discovered mPGES-1 inhibitor MK886. Finally,
ADMET profiles of compounds 1-14 were calculated. None of these compounds violated the Lipinski and Veber rules.
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1. INTRODUCTION

The mechanism of action of NSAIDs has been revealed as controlling inflammatory reactions in which
prostacyclin and prostaglandins play a role by inhibiting cyclooxygenase [1]. The cardiovascular and
gastrointestinal side effects associated with the use of NSAIDs restrict the use of these drugs in the treatment
of inflammation. Therefore, the medical need for alternative drugs continues. Prostaglandins (PG), members
of the eicosanoid family, are lipid mediators that are not stored by cells. Because they are produced by
almost all cells in the body, they play a role in many biological events. Two important pathways that play a
role in the synthesis of prostaglandins primarily from arachidonic acid occur via cyclooxygenase (COX) and
lipoxygenase (LOX) enzymes [2]. Although the COX-1 and COX-2 enzymes in human cells perform basically
the same catalytic reaction, they differ in terms of their location of release, function and structure [3].
Synthesis of prostaglandins occurs structurally or in response to trauma, stimulus or signaling molecules in
cells, by the action of COX enzymes.

PGE; is the most abundant prostanoid in the human body and acts as an important bioactive mediator
for physiological and pathological events such as inflammation, pain, fever, cancer and neurological diseases
by activating prostanoid receptors, which are effective in the modulation of various pathways that conduct
cellular proliferation, apoptosis and inflammation [4,5]. There are three isoforms of PGE: synthases:
microsomal PGES-1 (mPGES-1), microsomal PGES-2 (mPGES-2) and cytosolic PGES (cPGES). Excess PGE»
synthesized by COX-2 and mPGES-1 enzymes has a role in the development of vascular inflammatory
diseases [6]. However, while selective COX-2 inhibitors (coccibs) provide a potent anti-inflammatory and
analgesic effect without the side effects caused by non-selective COX inhibitors, long-term use of these
agents can lead to cardiovascular side effects [7]. Since inhibition of the mPGES-1 enzyme does not block
PGL production, selective mPGES-1 inhibitors are not expected to cause cardiovascular side effects [8-10].
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mPGES-1 is a membrane-bound, 16 kDa microsomal enzyme from the MAPEG family, consisting of
152 amino acids [11]. Although many potent inhibitors from various chemotypes have been developed
following the discovery of the mPGES-1 enzyme in 1999, most of them have only SAR analyzes reported,
whereas in vivo inhibition studies of the mPGES-1 enzyme are limited to a small number of molecules [12].
Although the first discovered mPGES-1 inhibitor MK-886 (1-[(4-chlorophenyl)methyl]-3-[(1,1-
dimethylethyl)thio]-a,a-dimethyl-5-(1-methylethyl)-1H-indole-2-propanoic acid) [13] is used as a reference
molecule in enzyme inhibition studies, it has not found a place in the clinic. The development of selective,
potent and orally administered inhibitors has been continuing for many years [14-20]. There is no mPGES-1
inhibitor approved by the FDA yet. Expression of mPGES-1 enzyme is increased in the presence of
inflammation. The design of selective new mPGES-1 inhibitors as anticancer [21-23] and anti-inflammatory
[24] agents aiming to block PGE; production by inhibiting the mPGES-1 enzyme remains up-to-date [25].

Many methods are given in the literature for synthetic access to 4-thiazolidinone compounds. Some of
the prominent methods are as follows:

- Treatment of thiosemicarbazides [26,27] or thiosemicarbazone [28] derivatives in ethanol with ethyl
bromoacetate in the presence of sodium acetate.

- Treatment of 2-chloroacetamides with ammonium thiocyanate in a suitable solvent [29,30].

- Treatment of thioureas with chloroacetylchloride or chloroacetic acid in suitable solvent in the presence
of TEA or sodium acetate [31,32].

According to the previous reports in the literature, reaction of 2-imino-1,3-thiazolidin-4-ones with
substituted arylaldehydes could give their corresponding 5-arylmethylene derivatives in several catalyst and
solvent combinations, such as ethanol-piperidine [31], sodium acetate-anhydrous acetic acid [33], sodium
acetate-ethanol [34], and sodium methoxide-ethanol [35-38].

So far, antiviral [39], antibacterial [40], antimycobacterial [26,27], anticancer [41], anti-inflammatory
[42], antihypertensive-antiarrhythmic [34], HCV-NS5B inhibitory [36] and mPGES-1 inhibitory [43,44] effects
have been reported for 5-arylidene-1,3-thiazolidin-4-one derivatives, which are target structures.

2. RESULTS and DISCUSSION

2.1. Molecular docking studies

To prevent the overexpression of PGE>, which causes by COX-2 and mPGES-1 enzymes is among the
current strategies in the treatment of cancer and inflammation. However, many studies have been reported
for the development of selective mPGES-1 inhibitors in recent years due to the cardiovascular side effects of
long-term use of COX-2 inhibitors. In this study, the interactions of the designed compounds with the both
the mPGES-1 and COX-2 enzymes were evaluated with in silico studies to examined their selectivity profiles.
The binding energies of 14 new 5-(arylmethylene)-2-imino-1,3-thiazolidinone derivatives against mPGES-1
and COX-2 enzymes are given in Table 1. MK886 and celecoxib were used as reference compounds.

Table 1. Binding energies of compounds 1-14 to active site of both mPGES-1 and COX-2.

Designed structure Compound R; R> mPGES-1 COX-2

1 -H -H 53 113

2 -H -OH -6.1 -12.2

o 3 -H -F 6.3 12,7

Ry 4 -H -Cl 6.4 125

N 5 -H -OCH; -6.4 -11.6

/L = 6 -H -OCF; 6.6 118

o NS 7 H -N(CH3)» 6.1 99

W _NH 8 -CH; -H 6.1 n.ib.

Y 9 -CH, -OH 6.2 n.i.
/O/ © . 10 -CH; -F 6.4 n.i.
HyC 2 11 -CHs -Cl -6.5 n.i.
12 -CH;3 -OCH; 6.4 n.i.

13 -CH;3 -OCF; 6.3 n.i.

14 -CH; -N(CH3), 59 n.i.

MK8862 6.2
Celecoxib -12.0

aFirst discovered mPGES-1 inhibitor [13].
bn.i.: no interaction observed.
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mPGES-1, which is responsible for the conversion of PGH> to PGEy, uses glutathione as a cofactor
for this conversion. Glutathione exhibits hydrogen bonding interactions with ARG 38, ARG73, ASN74,
GLU?77, HIS113, TYR117, ARG126 and SER127 residues besides hydrophobic interaction with TYR130.
In molecular modeling studies, a grid box containing both substrate and cofactor binding site was
chosen. Previously reported studies indicate that the U-shaped structure of a potential inhibitor is
important for the binding to the enzyme [45]. Therefore, compounds 1-14 containing two exocyclic
double bonds were prepared in (2Z,5Z) conformation for docking studies. This conformation also has
similar to conformation of the selective COX-2 inhibitor celecoxib. These designed compounds have
exhibited similar and even higher (-5.3 kcal/mol to -6.5 kcal/mol) binding energies than the reference
compound MK886 (AG= -6.2 kcal/mol) against mPGES-1 enzyme. As seen in Figure 1a, all of the
designed compounds were located at the glutathione binding site. Therefore, it has been thought that
our compounds inhibited the mPGES-1 enzyme competitively with the cofactor.

Figure 1. a) Binding poses of compounds 1-14 in mPGES-1 active site, b) Binding poses of compounds 1-7 in
COX-2 active site.

As seen in Figure 1b, compounds 1-7 have located as like as the celecoxib in the active site of the
COX-2 enzyme. However, no interaction was found between the active site of the COX-2 enzyme and
the compounds 8-14 bearing the methyl group at the 3rd position of the thiazolidinone ring. Compound
3 (AG= -12.7 kcal/mol) was observed to have a higher binding energy than the reference compound
celecoxib (AG= -12.07 kcal/mol). The active site interactions of compound 3 were given Figure 2. There
are two hydrogen bonds interaction that the hydrozono nitrogen (-N=) in the 2nd position of the
thiazolidinone ring with TYR341 residue and the sulfonyl group (SO.) with ARG106 residue, besides
various hydrophobic interactions. It is noteworthy that the substitution of the 3rd position of the
thiazolidinone ring with the methyl group sterically prevents the hydrozono (-N=) group in the 2nd
position of the ring from approaching the active site. Therefore, compounds 8-14 could not enter the
active site of COX-2 enzyme. These data have shown that compounds 8-14 might be selective inhibitors
of mPGES-1.
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Figure 2. Interactions of compound 3 with COX-2 enzyme as 3D and 2D diagrams
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The 3D diagram of the interactions of compounds 8-14 with the active site of the mPGES-1
enzyme is given in Figure 3. As all designed compounds, it was observed that compound 8-14 which
exhibited selective mPGES-1 enzyme inhibition, provides a U-shape location in the active site of the
relevant enzyme.

Compound 13 Compound 14
Figure 3. 3D Diagram of interactions of compounds 8-14 with mPGES-1 enzyme.

The hydrogen bond interactions of both the thiazolidinone ring and the sulfahydrozono group of
the compounds 8-14 with the ARG73 were given in Figure 4. In addition, pi-cation interactions were
observed between the ARG73 and the phenyl ring of the aryl methylidene group. It was also determined
that the p-toluenesulfonyl group increases the affinity by exhibiting hydrophobic interaction between
methyl moiety and HIS113, ARG126, TYR130 residues.
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Figure 4. 2D Diagram of interactions of compounds 8-14 with mPGES-1 enzyme.

For the designed compounds, the substitution of the 3rd position of the thiazolidinone ring
reveals the selectivity against the mPGES-1 enzyme, while the substitution of the benzylidene ring is a
modification that determines the affinity for the mPGES-1 enzyme. Active site interactions of
compounds 10-12 with the highest mPGES-1 binding energy are given in Table 2.
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Table 2. Interactions of compounds 10-12 with mPGES-1 active site.

Binding H-Bond Interactions Other Interactions
Compound enery Rz . Distance Residue Distance
(kcal/mol) Group Residue (A) Group (Interaction) (A)
B ARG73 2.83 A (ﬁlﬁg;l) 4,77
D ARG73 3.63 A 121%12)6 4,40
A Tyr130
10 64 F R, HOH2049 3.39 (alky) 458
Arg70
R, HOH2050 2.65 Ar (rioatka) 5.10
C HOH2086 2.02 Ary Arg73 3.84
(pi-cation)
HOH2087 2.62
His113
B ARG73 2.83 A (oi-alky) 474
D ARG73 3.63 A ‘Xlgklﬁf 4,40
11 6.5 -l C  HOH2086 2.2 A (2211:;;) 4,56
o HOH2087 2.62 Ary Arg70 5.04
(pi-alkyl)
Arg73
Ar, (pi-cation) 421
His113
R, ARG70 3.17 A (pi-alky) 4,93
B ARG73 2.80 A /Xlgklﬁf 455
D ARG73 3.78 A Tyr130 445
(pi-alkyl)
2 6.4 -OCH; R, HOH2045  2.77 A Arg70 5.07
(pi-alkyl)
HOH2086 3.36 Ar, Arg73 421

(pi-cation)
HOH2086 3.41
HOH2086 2.11
HOH2087 2.36

NNO0O =

2.2. In silico ADMET predictions

Because the physicochemical properties of a drug affect the pharmacokinetic and metabolic profile of
that drug in the body, the predicted physicochemical properties of compounds 1-14 were calculated using
SwissADME (http://www.swissadme.ch/) (Table 3). In this study, we used consensus LogP, which is an
average of the predictions of five different methods which atomistic, knowledge-based, topological, in-house
physics-based, hybrid piecemeal methods. Our designed compounds 1-14 exhibited moderate water
solubility according to LogS calculated by estimating aqueous solubility from the molecular structure. We
determined that all designed compounds had LogP values less than 5. Additionally, it was observed that
number of hydrogen acceptors<8, number of hydrogen donors<3, number of rotatable bonds<6 for these
compounds. As result of this, it was found that compounds 1-14 do not violate any of the rule by Lipinski [2]
and Veber [3]. Finally, % ABS of our designed compounds were calculated in the range of 60.17-70.13%.
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Tablo 3. Solubility and molecular descriptors of compounds 1-14 from SwissADME.

Lipinski Veber’s

Compound MW 1oeP,. D98 [ON  nOHN  nRot  TPSA  %ABS  Rule  Rule

(g/mol) (ESOL) nviol nviol
1 37345 2.66 458 1 2 1 12131 6715 0 0
2 389.45 2.66 458 5 3 4 14154 6017 0 0
3 391.44 2.66 458 5 2 4 12131 6715 0 0
4 407.89 2.66 458 4 2 4 12131 6715 0 0
5 403.48 2.66 458 5 2 5 13054  63.96 0 0
6 45745 3.60 5.65 8 2 6 13054  63.96 0 0
7 416,52 2.72 482 4 2 5 12455  66.03 0 0
8 387.48 2.72 482 4 1 4 11252 7018 0 0
9 403.48 2.72 482 5 2 4 13275 63.20 0 0
10 40547 2.72 482 5 1 4 11252 7018 0 0
11 421.92 2.72 482 4 1 4 11252 7018 0 0
12 417.50 2.72 482 5 1 5 121.75  67.00 0 0
13 47147 2.72 482 8 1 6 12175  67.00 0 0
14 430.54 2.72 482 4 1 5 11576 69.06 0 0

MW: Molecular weight; LogPo/w: Consensus; LogS (ESOL): Estimating aqueous solubility from molecular structure; nON:
Number of hydrogen acceptors; nOHN: Number of hydrogen donors; nRot: Number of rotatable bonds; TPSA:Topological
polar surface area; % ABS: Percentage of absorption was estimated using the equation: % ABS=109-(0.345xTPSA), according to
Zhao et al.

In this study, we used SwissADME web server for boiled egg plot denotes shown in Figure 5. As none
of the compounds 1-14 are located in the yellow region, which indicates effective brain penetration with
positive intestinal absorption, it is predicted that these compounds will not cross the blood-brain barrier.
While most of the designed compounds exhibited good intestinal absorption by being located in the white
region, compounds 2, 6 and 13 have exhibited poor intestinal absorption (located in the gray region). Finally,
none of these compounds are potential substrates of P-glycoprotein according to prediction studies.

" ©
| Remarks ]
R "
E‘H E'-:;' ?8
?

Figure 5. Graphical distribution of compounds 1-14 according to the boiled egg predictive model.
3. CONCLUSION

This study includes the design of safer and selective mPGES-1 enzyme inhibitors, the evaluation of
their in silico enzyme inhibition potentials and ADMET profiles. The affinities of 14 novel 5-benzylidene-2-
(arylsulfonylhydrazono)thiazolidine-4-ones (1-14) against both mPGES-1 and COX-2 enzymes were
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investigated using AutodockVina program. It has been determined that all of these compounds are located
in the cofactor binding site of the mPGES-1 enzyme and can competitively inhibit the enzyme with
glutathione. However, it was determined that compounds 8-14 were not located at the binding site of the
COX-2 enzyme. Compounds 8-14 have a methyl substitution at the 3rd position of the thiazolidinone ring. It
was concluded that the aforementioned methyl group obstructed the observed interaction between the
sulfonylhydrozono structure and the TYR341 amino acid for compounds 1-7 at the active site of the COX-2
enzyme, thus causing selective mPGES-1 enzyme inhibition. The substitution of the benzylidene group in
the 5th position of the thiazolidinone ring was decisive in the binding energy values of the designed
compounds to the active site of the mPGES-1 enzyme. Compounds 10-13 were identified as selective
mPGES-1 inhibitors by exhibiting better binding energy than reference compound MK885. Finally, drug-like
properties were calculated for all the designed compounds and it was observed that they were in compliance
with the Lipinski and Veber rules. The synthesis of the compounds determined by in silico studies and the
investigation of their in vitro effects are suggested as the subject of future research.

4. MATERIALS AND METHODS
4.1. Molecular docking studies

AutodockVina [46], an open-license soft-ware developed by Scripps Research Institute, was used in
molecular modeling studies of the designed compounds with mPGES-1 and COX-2 enzymes.

4.1.1. Preparation of the 3D structure of the mPGES-1 enzyme

The crystal structure of the mPGES-1 enzyme (pdb code: 4AL0) [5] was obtained from the protein
database. The water molecules in the crystal structure whose interaction with the active site was not detected
were removed. Octyl beta-D-glucopyranoside and palmitic acid that entered the structure during
crystallization were removed, too. After removing glutathione, which is the cofactor of the enzyme, the
enzyme was protonated using the AutoDock Tools [47] program and made ready for docking studies by
making energy minimization.

4.1.2. Preparation of the 3D structure of the COX-2 enzyme

The structure of COX-2 (PDB code:3LN1, resolution:2.4 A) [48] were obtained from the protein data
bank. The target enzyme was cleaned by removing the water molecules and cocrystallized inhibitors
celecoxib. The charge of the Fe atom in each enzyme was set to +2 manually. Then, this enzyme was
protonated using the AutoDock Tools [47] program and made ready for docking studies by making energy
minimization.

4.1.3. Preparation of 3D structures of compounds 1-14 (for docking studies)

The conformations of target 5-arylidene-1,3-thiazolidin-4-ones were scanned by the semi-experimental
PM3 method using the Spartan4 quantum chemistry program (SPARTAN 04, Wavefunction, Inc., Irvine,
USA). The most stable (2Z,5Z) conformation each compound was selected and their structures were saved in
pdb format. Subsequently, compounds 1-14 were converted to pdbqt format by using AutodockTools
program [47].

4.1.4. Molecular docking studies and analysis of results

During the docking studies, AutoDock Vina soft-ware (http://autodock.scripps.edu) was used for
flexible ligand in rigid protein. The Vina parameter “exhaustiveness” was set to the value of 10, besides a
grid spacing of 0.375 A was employed for the calculation of the energetic map of both enzymes. The grid box
size was determined as 24 A x 20 A x 18 A and center_x= 10.304, center_y= -11.033, center_z= -8.384
dimensions were used in mPGES-1 enzyme (4AL0) docking studies. The grid box size of COX-2 (3LN1) was
determined as 40 A x 40 A x 40 A center_x (30.518), center_y (-21.298), and center_z (-16.69), appropriate to
the position of co-crystallized ligand. The docking results files were analyzed using BIOVIA Discovery
Studio Visualizer program (https:/ /discover.3ds.com/).
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4.2. In silico ADMET studies

SwissADME web server [49] were used for evoluation of the solubility properties and structural
descriptors of the novel 5-(aryl methylene)-2-imino-1,3-thiazolidin-4-ones, compounds 1-14. To evaluate the
compliance of the target compounds to the Lipinski rule, their LogP's, molecular weights, and the number of
hydrogen bond acceptors/transmitters were determined, while their compliance with Veber's rule was
determined by calculating the number of rotatable bonds and the topological polar surface areas of
compounds 1-14. Moreover, %ABS and water solubility profiles of these compounds were examined, too.
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