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ABSTRACT: The ability to monitor patients plays a major role in the success of kidney transplants. However, transplant
monitoring still depends on relatively outdated, inadequate technologies. The aim of this study was to reveal the
metabolomic profile of the kidney allograft using the metabolomic screening technique and to identify specific eGFR-
based biomarkers to monitor individuals with different levels of post-transplantation graft dysfunction. In the current
study, urine samples from 131 unique kidney transplant recipients were collected and analyzed by ultra-high
performance liquid chromatography and benchtop QTof mass spectrometer (Xevo G2 XS QTof). Acquired data were
first pre-processed by Progenesis QI 2.3 (Nonlinear Dynamics, Waters, UK). Putative annotation was performed against
the HMDB database following multivariate statistical analysis. Post-transplant biomarker panels that can distinguish
stages of renal dysfunction were created by combining the significant markers and taking their ratios. Overall, 8
metabolites were significantly altered within three groups of kidney transplant recipients:4,5-Dihydroorotic acid, N2-
Succinyl-L-glutamic acid 5-semialdehyde, Valyl-Arginine, Pantothenic acid, L-phenylalanyl-L-hydroxyproline,
MG(0:0/24:0/0:0), QYNAD and 12-Hydroxy-13-O-D-glucuronoside-octadec-9Z-enoate as biomarker candidates
(p<0.05). The ratio of 4,5-Dihydroorotic acid to Pantothenic acid (panel-1) can be used to monitor kidney function.
Specifically, these metabolite ratios were found to be more sensitive to changes in kidney function than panel-2, which
consisted of 7 metabolites, excluding QYNAD, of the 8 major metabolites. Our results may contribute to the monitoring
of kidney transplant patients based on post-transplant eGFR-based kidney function stages, thus providing a method
for the early evaluation and monitoring of the kidney transplant recipient after transplantation for kidney transplant
patient management.

KEYWORDS: Urine Metabolites; metabolome profiling; metabolomics; UPLC/ESI/QTOF-MS/MS; Kidney
Transplantation

1. INTRODUCTION

Chronic kidney disease (CKD), defined by a progressive loss in kidney function for more than a few
months, is a recently recognized global public health problem[1-4] Complications such as diabetes,
hypertension and dyslipidemia can cause CKD, as well as increase cancer risk in end-stage kidney disease
(ESKD) and kidney transplant populations [5]. Patients with ESRD must receive dialysis treatment or a kidney
transplant to survive, however, transplantation is always the best treatment of choice when compared to
hemodialysis or peritoneal dialysis, in view of morbidity and mortaliteyi, life quality, and cost efficiency. The
number of people receiving kidney replacement therapy was more than two million worldwide in 2015 and
this number is expected to increase significantly by 2030 [6].

Current treatment decisions and monitoring of kidney function of patients after kidney transplantation
are generally based on serum creatinine (Scr) originating from muscle mass, which is a breakdown product of

How to cite this article: Yozgat |, Sahin B, Yildirim Saral N, Ulusoy ZB, Kilercik M, Celik H, Danisoglu ME, Duman S, Oktay B, Serteser M, Baykal AT.
Untargeted urinary metabolomic profiling in post-kidney transplant with different levels of kidney function. J Res Pharm. 2023; 27(4): 1673-
1686.

2023 Marmara University Press http://dx.doi.org/10.29228/jrp.451
ISSN: 2630-6344

1673


http://dx.doi.org/10.29228/jrp.451
mailto:ahmet.baykal@acibadem.edu.tr
https://orcid.org/0000-0002-0065-4480
https://orcid.org/0000-0001-8663-5741
https://orcid.org/0000-0002-6091-5048
https://orcid.org/0000-0002-7736-1862
https://orcid.org/0000-0001-6837-8892
https://orcid.org/0000-0002-7107-431X
https://orcid.org/0000-0001-7212-2419
https://orcid.org/0000-0002-7232-9660
https://orcid.org/0000-0002-0065-0340
https://orcid.org/0000-0001-7868-7613
https://orcid.org/0000-0002-8814-7351

Yozgat et al. Journal of Research in Pharmac
Untargeted urinary metabolomic profiling in post-kidney transplant Research Article

creatine phosphate in muscle. This is an estimated glomerular filtration rate (eGFR) recommended by The
National Kidney Foundation Kidney Disease Outcomes Quality Initiative (KDOQI) guidelines and
proteinuria[1].

These diagnostic tests are used in daily clinical practice because they are a stable compound and very
inexpensive in routine clinical use. Besides the advantages of being easy and inexpensive to perform these
diagnostic tests, there are also some disadvantages including creatinine-based estimates of Scr concentration
are affected by biological confounders such as age, gender, and particularly muscle mass and causes an
overestimation of kidney function due to the fact that Glomerulus capture both which are produced at a fairly
constant rate depending on muscle mass and secreted creatinine actively secreted in the proximal tubule[7,8].
Alternative tests of creatinine clearance and serum creatinine are not suitable in most clinical situations. Inulin
clearance is difficult to perform due to technical difficulties in testing and a lack of adequate sources of inulin
for clinical use. [51Cr] EDTA, [125]] iothalamate and [99Tcm] DTPA are radiolabeled compounds to measure
the eGFR. These compounds are not useful owing to fact that some radiation is exposed, radiopharmaceuticals
are more expensive, and skilled personnel and the use of a gamma camera are needed [9]. Monitoring of
diagnostic tests used currently for patients who need therapy may provide inaccurate results and may be
insufficient in monitoring kidney function. Diagnostic tests that are currently used show poor sensitivity and
specificity for the detection of kidney damage.

OMICS refers to the fields of study in biology that ends in "omics" such as genomics, proteomics,
transcriptomics, or metabolomics. These are the branches of science that study molecules' structure and
functions at the gene level, the protein level, and the metabolic level in a biological organism, organ, tissue, or
cell [10,11]. Metabolomics defined an omnibus analytical approach to study all small molecular weight species
typically defined as <1500 Da, in easily accessible biofluids present such as urine, blood, feces, or tissues [12].
The primary purpose of metabolomics is to conduct an all-inclusive study on metabolites, which are
intermediate products of living organisms' biochemical processes [13].

Metabolomics study includes the use of high-throughput technologies such as capillary electrophoresis
mass spectrometry, Raman spectroscopies, nuclear magnetic resonance, ultra-performance liquid
chromatography coupled with electrospray ionization/quadrupole-time-of-flight mass spectrometry,
infrared, gas-chromatography and mass-spectrometry to comprehensively identify and quantify untargeted
and targeted small molecule metabolites [14-16].

In this study, we enrolled 131 participants that had a renal transplant and subdivided them into three
groups based on their estimated GFR: 53 in eGFR >60 ml/min/1.73 m2(S1), 56 in 30<eGFR <60 ml/min/1.73
m?2 (S2) and 22 in eGFR <30 ml/min/1.73 m2 (S3). (S1, S2, and S3 indicate patient groups with eGFR>60,
30<eGFR<60, and eGFR<30, respectively ). Using Xevo G2 XS QTof with enhanced selectivity, sensitivity, and
reproducibility we aimed to reveal the metabolomic profile of the kidney allograft using the metabolomic
screening technique and to identify specific eGFR-based biomarkers to monitor individuals with varying
degrees of post-transplantation graft dysfunction.

2. RESULTS

2.1 Patient baseline characteristics

The clinical and demographic characteristics of the subjects are described in Table 1. A cohort of 131
kidney transplant individuals were enrolled in our cross-sectional study and stratified according to tertiles of

eGFR distribution as follows: 53 in eGFR >60 ml/min/1.73 mz(Sl), 56 in 30<eGFR <60 ml/min/1.73 m? (52)

and 22 in eGFR <30 ml/min/1.73 rn2 (S3) (S1, S2, and S3 indicate patient groups with eGFR>60, 30<eGFR<60,
and eGFR<30, respectively). There were no statistically significant differences between groups in terms of age,
lipid profile (cholesterol, LDL and triglyceride), Body mass index (BMI), hypertension and cigarette smoking.
Diabetes Mellitus (DM) and gender differed significantly between these groups.
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Table 1. Basic characteristics of the participants in this study. All values are expressed as mean * SD, median (25th, 75th
percentiles) or counts n and n (%). M, Male; F, Female; eGFR, Glomerular Filtration Rate; BMI, Body Mass Index; BUN,
Blood Urea Nitrogen; NS, not significant.

| Patient characteristics | S1 (n=53) | S2 (n=56) | S3 (n=22) | P value |
Age 47.50£13.26 46.6+10.51 52.0£14.31 NS
Gender (F/M) (n) 18/35 16/40 13/9 0.038
BMI (kg/m2) 27.16£5.13 27.02+4.41 27.16+4.98 NS
eGFR(ml/min/1.73m?2) 79.00+15.54 46.64+7.98 19.64+5.80 <0.001
Smoking status
Never (%) 62.3 62.3 76.2 NS
Former (%) 17 9.4 9.5 NS
Smoking occasionally 16.7 24.5 9.5 NS
(%)
Smoking Regularly 3.8 3.8 4.8 NS
Every (%)
Serum concentrations
BUN (mg/dL) (%) 24.0 (16.5-37) 21.5 (14.75-28.0) 25.5 (18.5-57.25) NS
Cholesterol, LDL 113.56+48.26 110.11+36.68 110.77+40.99 NS
(mg/dL) (%)
Triglyceride (mg/dL) 143.0 (96.75-233.75) 140.0 (105.0-181.0) 144.0 (104.0- NS
(%) 254.0)
Diabetes Mellitus (%) 74 9.1 39.1 0.01
Hypertension (%) 9.3 7.3 18.2 NS

2.2 Assessing The Technical Reproducibility of An Analytical Method

As seen in Figure 1, the QC samples were tightly clustered on the PCA score plot, thus confirming the
stability of the device's testing and the reliability of the metabolomics data.
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Figure 1. PCA analyses of) analysis of the data generated from the ESI-positive mode for S1-S2 group (A), S1-S3 group (B)
and S2-S3 group (C). An PCA was constructed using samples from individuals with eGFR>60 (green circles), 30<eGFR>60
(orange circles), eGFR<30 (red circles) and QC (black circles) after kidney transplantation. QC; Quality Control Sample.
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2.3 The Determination of Biomarker Candidates, Performing Combination of Panel from The

Eight Significant Metabolites and Their Ratios and ROC Analysis

To evaluate the differences of urine metabolites between S1, S2 and S3 groups, initially, metabolites
were measured in all urine samples and were then assessed by comparing values among groups (S1, S2, and
S3).

Paired comparisons revealed that 311 features exhibited significant differences between the S1 and S3
groups, whereas 371 and 589 features showed obvious differences between S1 versus the S2 and S3 group,
respectively (P < 0.05, QC<30, Max fold change (MFC) >1.2, variable importance in the projection (VIP) >1).
Of these significantly changed metabolites, we screened out eight metabolites, that candidate to major graft
monitoring molecules, with significant differences in expression between the three groups.

The spectral features that contribute most to variation or separation are identified for further analysis
through multivariate analysis (MVA) methods such as principal component analysis (PCA), Partial Least-
Squares Discriminant Analysis (PLS-DA) and Orthogonal Partial Least-Squares Discriminant Analysis (OPLS-
DA)[17]. A two-dimensional OPLS-DA was created to find potential biomarker candidates that could
genuinely reveal individual differences between groups. OPLS-DA score plots highlighted the difference
between the patients in the S1-S2, S1-S3 and S2-S3 groups, and displayed metabolic profiles in groups that
were separated clearly (respectively, (A) R?Y=0.64, Q?=0.50 (S1-52); (B) R*Y=0.98, Q2=0.82 (S1-S3)
;(C) R2Y' =0.70 Q2=0.55 (S2-S3)) (Figure 2-A,B,C).

VIP is an estimate of the importance of each variable in the projection used in the OPLS-DA model as a
quantitative estimate of the discriminatory power of each feature. Variables with a VIP score of =1 were
considered significant in the OPLS-DA model[18]. In this study, VIP plots of the OPLS-DA were built to verify
the differentiated metabolites between the groups VIP and were calculated to identify distinguishing variables
in the data set. Significant variables (VIP value) were selected as potential markers (Figure 2-D, E, F).

Test of variance analysis of cross-validated predictive residuals (CV-ANOVA) and a permutation test
(with n = 200) were used to evaluate and validate the predictive ability and reliability of the models obtained
(Table 2).

Table 2. (A) Display CV-ANOVA TEST for S1/S2 Group; (B) CV-ANOVA TEST for S1/S3 Group (C) CV-
ANOVA TEST for S2/S3 Group.

A
M40(Untitled) SS DF MS F ) SD
Total corr. 107 107 1 1
Regression 53.841 4 13.46 26.08 6.08E-15 3.67
Residual 53.159 103 0.52 0.72
B
M9(Untitled) SS DF MS F P SD
Total corr. 68 68 1 1
Regression 56.26 8 7.03 35.93 4.15E-20 2.65
Residual 11.74 60 0.196 0.44
C
M4(Untitled) SS DF MS F p SD
Total corr. 76 76 1 1
Regression 42.42 4 10.60 22.74 3.59E-12 3.26
Residual 33.58 72 0.466 0.68
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The p-value of cross-validation ANOVA test at 6.082E-15 (S1-52), 4.15137E-20 (S51-S3) and 3.59E-12 (S2-
S3) showed the strong predictive power of the model.

In the permutation test, this is performed by randomly assigning two different groups, after which the
OPLS-DA models are fitted to each permuted class variable. Then, the values of R2 and Q2 for the permuted
models are calculated and compared with the values of the true model, and therefore the calculated real OPLS-
DA models are statistically much better than the 200 permutation models for each dataset (Figure 2-G,H,I).
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Figure 2. Orthogonal partial least squares-discriminant analysis (OPLS-DA) analysis of the data generated from the
ESI-positive mode. An OPLS-DA model was constructed using samples from individuals with eGFR>60 (green
circles), 30<eGFR>60 (orange circles), and eGFR<30 (red circles) after kidney transplantation. (A,B,C) Displays the
result of OPLS-DA model using the data from the S1/S2, S1/S3 and S2/S3 groups in ESI-mode. (D,E,F) Displays
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the response permutation test plot (n = 200) for the OPLS-DA model in (D), the R2 and Q2 values of the permutated
model are represented on the left-hand side of the plot, corresponding to y-axis intercepts: R2 = (0.0, 0.346) and Q2
= (0.0, -0.352) (D), R2 = (0.0, 0.853) and Q2 = (0.0, —0.523) (E), R2 = (0.0, 0.432) and Q2 = (0.0, -0.379) (F). VIP plots
constructed from the supervised OPLS analysis of urine (G,H,I), Metabolite ions with variable influence on the
projection (VIP) value >1 were marked with a red square.

Using multivariate statistical analysis, we detected 4,5-Dihydroorotic acid, N2-Succinyl-L-glutamic acid
5-semialdehyde, Valyl-Arginine, Pantothenic acid, L-phenylalanyl-L-hydroxyproline, MG(0:0/24:0/0:0),
QYNAD and 12-Hydroxy-13-O-D-glucuronoside-octadec-9Z-enoate among the three groups as biomarker
candidates (Supplement Table S1)

As seen in Figure 3, an unsupervised Principal Component Analysis (PCA) was used to examine
statistically these significant eight metabolic changes in urine between groups. A clear separation in metabolic
states was observed between the groups.

A B
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Figure 3. PCA analyses of metabolic marker panels generated based on the eight metabolites, identified against the HMDB
database (using an untargeted profiling approach), (ESI+ mode). Each spot represents one sample, and a different color
indicates each group. (B) Displays three-dimensional PCA score plots based on the data from UHPLC-Q-TOFMS
separation.

To further characterize both the predictive value of these individual metabolites independently and the
combination of these detected potential candidates, we performed ROC analysis. The ROC curves of these
detected individual potential candidates including 4,5-Dihydroorotic acid, N2-Succinyl-L-glutamic acid 5-
semialdehyde, Valyl-Arginine, Pantothenic acid, L-phenylalanyl-L-hydroxyproline, MG(0:0/24:0/0:0),
QYNAD, 12-Hydroxy-13-O-D-glucuronoside-octadec-9Z-enoate among the two groups (eGFR <60 vs
eGFR>60) had an AUC: 0.827 (95% Confidence interval 0.751 to 0.887, pvalue : 0.0001); 0.725
(95% Confidence interval 0.640 to 0.799, pvalue : 0.0001), 0.691 (95% Confidence interval 0.605 to 0.769, pvalue
: 0.0001), 0.778 (95% Confidence interval 0.698 to 0.846, pvalue : 0.0001), 0.757 (95% Confidence interval
0.675 to 0.828, pvalue : 0.0001), 0.694 (95% Confidence interval 0.607 to 0.771, pvalue : 0.0001), 0.659
(95% Confidence interval 0.571 to 0.740, pvalue : 0.0013) and 0.764 (95% Confidence interval 0.682 to 0.834,
pvalue : 0.0001), respectively (Figure 4).

An AUC of 0.5 suggests no discrimination, 0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is considered
excellent, and more than 0.9 is considered outstanding [19]. Among the individual metabolites, we found with
highest significant the 4,5-Dihydroorotic acid. The results of ROC curve analyses indicated that in the urine
samples, 5 metabolites with high AUC above 0.70 were: 4,5-Dihydroorotic acid, N2-Succinyl-L-glutamic acid
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5-semialdehyde, Pantothenic acid, L-phenylalanyl-L-hydroxyproline, 12-Hydroxy-13-O-D-glucuronoside-

octadec-9Z-enoate (p value <0.01).
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Figure 4. Shows of ROC curves analysis. ROC curves of biomarker candidates for 4,5-Dihydroorotic acid, N2-Succinyl-L-
glutamic acid 5-semialdehyde, Valyl-Arginine, Pantothenic acid, L-phenylalanyl-L-hydroxyproline, MG(0:0/24:0/0:0),
QYNAD and 12-Hydroxy-13-O-D-glucuronoside-octadec-9Z-enoate panel-1 and panel-2.

In a biological system there may be multiple marker candidates that work in tandem with their own
individual discriminating capability. In a biological system, there may be more than one candidate working
together with their individual discrimination abilities. If a panel of markers is used instead of a single marker,
overall discrimination can be improved. We investigated the discriminating capability of these eight detected
individual potential candidates, their 57 ratios (Supplement Table S2) and 245 different combinations of
metabolite panels, which were generated based on the eight metabolites (Supplement Table S3), to monitor
post-transplant patients.

245 different combinations of metabolite panels achieved AUCs that ranged from 0.695 to 0.862 while
the 57 ratios of eight potential markers achieved AUCs that ranged from 0.463 to 0.875. While 4,5-Dihydroorotic
acid/Pantothenic acid had the highest AUC of 0.875 (panel-1) (p < 0.05 in the 57 ratios of eight potential markers,
the panel-2 consisted of 7 potential markers (4,5-Dihydroorotic acid, N2-Succinyl-L-glutamic acid 5-
semialdehyde, Valyl-Arginine, Pantothenic acid, L-phenylalanyl-L-hydroxyproline, MG(0:0/24:0/0:0) and 12-
Hydroxy-13-O-D-glucuronoside-octadec-9Z-enoate) had the highest AUC of 0.862 (p < 0.05) in 245 different
combinations of metabolite panels (Supplement Table S3).

2.4 Correlation Analysis of Individual Significant Metabolites, Their Metabolite Ratios,
Combinations of Metabolite Panels Generated Based on The Eight Metabolites and Kidney
Function Indicators

Creatinine-based estimates of Scr concentration do have some disadvantages, including the cause of an
overestimation of kidney function, as they are influenced by biological confounders such as age, gender, and
particularly muscle mass. We analyzed Panel-1, panel-2, eight significant individual metabolites by
Spearman's rank bivariate correlation analysis for their association with glomerular filtration rate (eGFR)
(Supplement Table 54), estimated separately from creatinine by CKD-EPI (CKD Epidemiology Collaboration)
equations, age, gender, body surface and BMI. eGFR was significantly correlated with panel-1 (Spearman r=-
0.786, P<0.001), panel-2 (Spearman r=-0.746, P<0.001), 4,5-Dihydroorotic acid (Spearman r=-0.716, P<0.001),
N2-Succinyl-L-glutamic acid 5-semialdehyde (Spearman r=-0.530, P<0.001), Valyl-Arginine (Spearman r=-
400, P<0.001), Pantothenic acid (Spearman r=0.586, ’<0.001), L-phenylalanyl-L-hydroxyproline (Spearman
r=0.521, P<0.001), MG(0:0/24:0/0:0) (Spearman r=0.389, P<0.001, QYNAD (Spearman r=0.358, P<0.001) and
12-Hydroxy-13-O-D-glucuronoside-octadec-9Z-enoate  (Spearman r=0.590, P<0.001). No panels and
metabolites were associated with age, gender, BMI, and body surface.

3. DISCUSSION

KTx is the best renal replacement therapy for patients with ESKD. In addition to identifying signs of
kidney dysfunction, close post-transplant monitoring is important to localize organ damage or detect early
stages of acute rejection. It can allow preventive or corrective measures to be taken without the organ being
irreparably damaged. This study reports the biomarker panel to identify metabolic urinary biomarkers of
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reduced kidney function in kidney transplant individuals divided into groups based on post-transplant eGFR-
based kidney function stages with a metabolomics screening technique, further revealing metabolic
abnormalities that contribute to renal dysfunction after kidney transplant. The staging and diagnosis of CKD
and the monitoring of patients after kidney transplantation withstand creatinine as a biomarker to predict
GEFR. In this study, we collected urine samples from 131 unique kidney transplant recipients and analyzed by
Xevo G2 XS QTof. Followed by pre-processed and multivariate statistical analysis, putative annotation was
performed against the HMDB database. VIP, fold change and p-values from OPLS-DA revealed that 8
metabolites were significantly altered within three groups of kidney transplant recipients: 4,5-Dihydroorotic
acid, N2-Succinyl-L-glutamic acid 5-semialdehyde, Valyl-Arginine, Pantothenic acid, L-phenylalanyl-L-
hydroxyproline, MG(0:0/24:0/0:0), QYNAD and 12-Hydroxy-13-O-D-glucuronoside-octadec-9Z-enoate as
biomarker candidates (P < 0.05, QC<30, Max fold change (MFC) >1.2). Firstly, we created the post-transplant
biomarker panels that can distinguish stages of renal dysfunction by combining the significant markers and
taking their ratios and then performed ROC analysis of both these individual metabolites separately and of
the generated panels to predict worsening kidney graft function. Evaluation of biomarkers by ROC analysis
showed that there are 5 metabolites with AUC over 0.70, also the ratio of 4,5-Dihydroorotic acid to Pantothenic
acid (pantothenic acid) can be used to monitor kidney function. Numerous findings have been published in
recent years that the use of marker candidates can potentially improve diagnosis and aid in the monitoring of
kidney transplants [20-23] Urine may be a perfect fluid for discovering biomarkers related to disease because
collection is a non-invasive, inexpensive, large volume, non-complex, lower protein ingredient, and low cost
[24]. To the best of our knowledge, this study is the first in the literature to describe specific eGFR-based
noninvasive biomarkers for monitoring individuals with post-transplant graft dysfunction using mass
spectrometry-based untargeted metabolomics, representing the prediction of worsening kidney graft function.
This study might offer insight into pathophysiologic mechanisms.

Metabolic biomarkers may provide useful information to contribute to monitoring kidney function.
Pantothenic acid (PA), also known as pantothenate or vitamin B5, is, in addition to its antioxidant
properties[25], mostly involved in lipid, protein and sugar metabolism in the form of CoenzymeA. It is also
an important member of pantothenate and CoA biosynthesis [26]. For lipid metabolism, acyl group activation
is determined as the primary function of pantothenic acid., CoA is required to modulate transport properties
or functions for the oxidation of pyruvate, fatty acids, and oxogutarate, acetylation of other molecules
metabolism of sterols. p-oxidation, is the principal process of fatty acid catabolism in peroxisomes, is CoA
dependent and down-regulated by pantothenate deficiency. Fatty acid oxidation-mediated lipid accumulation
is thought to contribute to kidney disease, including chronic kidney disease, acute kidney injury, and diabetic
nephropathy [27]. Gao and et al. demonstrated that the decreased pantothenic acid and the increased succinic
acid are associated with Nephrolithiasis which is a common urinary tract disease found in the study of rats.
Our results show pantothenic acid decreases, indicating that energy metabolism and antioxidant capacity are
reduced.

Succinic acid, a key intermediate in the tricarboxylic acid cycle, is associated with some kidney disease.
Several researchers have shown that in vivo in, 4-hydroxybutyric acid (also known as gamma-hydroxybutyric
acid or GHB) is converted to succinic acid via succinic acid and the TCA cycle in rat liver and kidney as well
as rat and mouse brain [28-30]. Chambliss et al. were studied on succinate semialdehyde dehydrogenase
(SSADH) deficiency, known as a disorder of Gaba metabolism, in brain and SSADH expression in human liver
and kidney. In this study, they demonstrated that SSADH exists in liver and kidney as well as brain. SSADH
deficiency causes an elevation in GHB [31]. N2-succinyl-l-glutamic acid 5-semialdehyde are intermediates
involved in arginine and proline metabolism as well as a substrate for SSADH [32]. L-Arginine is catabolized
into various products initiated by arginase, nitric oxide synthase. One of these pathways is nitric oxide
synthetic pathway. An impaired NO synthetic pathway may play a key role in many physiologic processes
that influence kidney function associated with the progression of kidney diseases [33]. Our study showed that
N2-succinyl-L-glutamic acid 5-semialdehyde, one part of Arginine and proline metabolism, showed
progressive growth with decreased kidney function.

4,5-Dihydroorotic acid is an orotic acid derivative that acts as an intermediate in pyrimidine
biosynthesis and is also a substrate for the enzyme known as dihydroorotate dehydrogenase [34]. It is known
in the literature that impaired purine nucleotide metabolism is a risk factor in chronic kidney disease. Impaired
purine metabolism and renal excretion contribute to prevalence of hyperuricemia is associated with a risk
factor for CKD [35]. In our study, among the ROC curves of the individual potential candidates identified
between the three groups, the candidate with the largest AUC was 4,5-Dihydro-Orotic acid. When the
correlations of individual potential candidates with eGFR were investigated, 4,5-Dihydro-Orotic acid had the
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highest correlation with eGFR among the identified individual potential candidates (Spearman r=-0.716,
P<0.001). Increase in 4,5-Dihydroorotic acid, which is part of Pyrimidine metabolism, indicates that this
metabolite may have a major role in impaired renal dysfunction.

Lipids are the fundamental components of biological membranes. Experiments over the years have
shown that abnormality in lipids and lipid-derived metabolites is not only involved in oxidative stress and
inflammatory processes, but also contributes to the progression of kidney disease [36]. 12-Hydroxy-13-O-D-
glucuronoside-octadec-9Z-enoate is one of the organic compounds known as saccharolipids. In our study, 12-
Hydroxy-13-O-D-glucuronoside-octadec-9Z-enoate was the second metabolite with the highest correlation
with eGFR, and with the second largest AUC after 4,5-Dihydroorotic acid. MG(0:0/24:0/0:0) is a glycerolipid,
which is one of the eight categories of lipids. This chemical structure is a glyceride consisting of one fatty acid
chain covalently bonded to a glycerol molecule through an ester linkage [37]. This study showed that
MG(0:0/24:0/0:0) progressively decreased with decreased kidney function. 12-Hydroxy-13-O-D-
glucuronoside-octadec-9Z-enoate and MG(0:0/24:0/0:0) with the other significant metabolites may help to
understand the pathways that contribute to the kidney transplant pathophysiology.

Collagen, widely distributed among all kidney tissues, is an important structural component of the
kidney. In addition, it plays a vital role in normal physiology. Numerous studies have demonstrated an
association between urinary collagen peptides and various CKD etiologies [38,39]. In these studies, collal
peptides were identified as negatively correlated with obesity-related nephropathy and fibrosis as well as
positively correlated with both mild-to-moderate and advanced CKD [39]. L-phenylalanyl-L-hydroxyproline
is a dipeptide in urine, which is produced by a proteolytic breakdown of collagen. In our study, L-
phenylalanyl-L-hydroxyproline decreased with decreased kidney function.

Peptides have a role in the inflammatory response, tumor biology, and endocrine processes, presenting
them as appealing biomarker candidates. Peptide profiles are most used in clinical diagnosis to successfully
distinguish prostate, bladder, and breast cancer patients from healthy persons [40,41]. Among the detected
significant metabolites; Valylarginine is a dipeptide composed of valine and arginine and QYNAD is an
endogenous pentapeptide with the sequence GIn-Tyr-Asn-Ala-Asp, isolated from the cerebrospinal fluid
(CSF) of patients with multiple sclerosis (MS) and Guillain-Barre syndrome (GBS). This was detected at
elevated levels in the cerebrospinal fluid of patients with Immune mediated inflammatory neurological
disorders like with multiple sclerosis and Guillain-Barré syndrome [42]. To the best of our knowledge, there
is no study that has found an association QYNAD with kidney dysfunction. Our study showed that QYNAD
and Valylarginine had a weak correlation with eGFR.

Metabolomics is a sensitive and powerful diagnostic tool to detect metabolite profiles that is useful for
understanding biochemical functions and changes in related diseases. Early diagnosis plays a key role in
successful treatment of the disease. Detection of disease biomarkers has become not only part of this key role,
but also an important one for monitoring the status of biological organisms [43].

4. CONCLUSION

Our results showed that biomarker panels that include these significant biomarker metabolites could
be used to monitor renal function after graft surgery. The minimum number of metabolites that can be used
to monitor kidney function includes the ratio of 4,5-Dihydroorotic acid to Pantothenic acid (panel-1).
Specifically, these metabolite ratios were found to be more sensitive to changes in kidney function than panel-
2 which consisted of 7 potential markers (4,5-Dihydroorotic acid, N2-Succinyl-L-glutamic acid 5-semialdehyde,
Valyl-Arginine, Pantothenic acid, L-phenylalanyl-L-hydroxyproline, MG(0:0/24:0/0:0) and 12-Hydroxy-13-
O-D-glucuronoside-octadec-9Z-enoate) . These metabolic marker panels, which can play an important role in
the follow-up of patients after transplantation and can be promising targets for treatment, can be used as useful
urinary biomarkers due to their high predictive performance, high specificity and sensitivity. Future studies
in the largest prospective cohort of kidney transplant recipients are needed to identify individuals at high risk for
kidney post-transplant graft dysfunction of kidney transplants and to test the potential contribution of
fingerprinting of kidney transplant recipients to early identification of kidney damage.

5. MATERIALS AND METHODS
5.1 Study Design and Population

The study recruited outpatients with post transplantation according to the following inclusion criteria:
adult (age 218 years) kidney transplant with a living or cadaver kidney transplant.; willingness to comply in
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all aspects of the study procedures and to provide serum and urine 24 hours samples. Patients with the
following conditions were excluded: a history of infection, pregnancy, cancer, acute cardiovascular event or
blood diseases. The estimated glomerular filtration rate (eGFR) level was calculated from serum creatinine
using the CKD-EPI 2021 formula for post transplantation patients. An overview of the study design is shown
in Figure 5, urine and blood samples were collected from outpatients in a specific timeframe at the Kidney
Transplant Center at Bursa Acibadem Hospital. The discovery phase was approached by UPLC-MS-MS,
followed by data processing and statistical analysis. This study was approved by Acibadem Mehmet Ali
Aydinlar University (Turkey). Informed written consent was obtained from all participants (Approval ID:
2020-08/14). More details are explained in the supplementary file.
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Figure 5. The workflow in the present study. Following sample preparation procedures, each sample was run according
to the run order mentioned above; the last step was to discover biomarker candidates by data processing and statistical
analysis. QC: Quality control.
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5.2 Data Acquistion

Liquid chromatography-mass spectrometry-based metabolomics using a Xevo G2 XS QTof) was applied
for metabolite identification (see the Supplementary File for details).
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