# INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY

VOLUME 18 No. 2 PAGE 335-348 (2025)

DOI: https://doi.org/10.36890/iejg.1691504

RESEARCH ARTICLE



# Generalized Helices in the Euclidean 3-space Through Flow-frame

# Cansu Özyurt Anar\*, Yusuf Yaylı and Nejat Ekmekci

(Communicated by Emilija Nešović)

#### **ABSTRACT**

A representation of time-dependent rotation of a usual Frenet flow is called flow-frame; the angle of rotation is exactly the current parameter. In this paper, we investigate three types of helices in the Euclidean 3-space through flow-frame and give their geometric description with flow-frame apparatus. Then, we introduce the spherical images of a curve by translating flow-frame vectors to the center of the unit sphere in the Euclidean 3-space  $\mathbb{R}^3$ . Besides, we examine the relationships between a generalized helix and its spherical images.

Keywords: Flow-frame, general helix, spherical indicatrix, Lancret's theorem. AMS Subject Classification (2020): Primary: 53A04; Secondary: 51M04.

#### 1. Introduction

In the Euclidean 3-space  $\mathbb{R}^3$ , a curve of constant slope or general helix is defined by the property that the tangent line makes a constant angle with a fixed direction called the axis of the general helix (see [15, 20]). A classical result stated by M. A. Lancret in 1802 and first demonstrated by B de Saint Venant in 1845 ([21]): "A necessary and sufficient condition that the curve be a general helix is that the ratio of curvature to torsion be constant"

In a similar way, slant helices are defined by the property that their principal normal makes a constant angle with a fixed direction. The term slant helix was first introduced by Izumiya and Takeuchi ([12]); however, slant helices have been studied in different space forms, as well. (see [1, 14, 16, 17, 18]).

The Lancret theorem was revisited and solved by Barros ([3]) in 3-dimensional real space forms, where he used Killing vector fields along a curve. Besides, Lancret theorem for general helices in 3-dimensional Lorentzian space forms was presented in ([4]). Also see ([11]) for Lancret-type theorem for null generalized helices in the Lorentz-Minkowski spaces  $\mathbb{L}^n$ . Moreover, many researchers have introduced the concept of helices in Lie groups by using the fixed invariant directions ([9, 19, 22]).

The flow-frame with the flow-curvature of a curve, which is a new frame involves the time-dependent rotation of the usual Frenet flow ([5, 6, 7, 8]).

In this note, we deal with three types of generalized helices according to flow-frame in the 3-dimensional Euclidean space. We introduce some necessary and sufficient conditions for these generalized helices. Also, we present the spherical indicatrices of a curve by translating new frame's vector fields to the center of unit sphere (for details, see [2, 10, 13]). Furthermore, we show that the spherical image of a curve with flow-frame is a circle if and only if the curve is a generalized helix of the first, second or third kind. Also, we give some differential equations to determine the relationships between the generalized helices and their spherical images.

#### 2. Preliminaries

Let  $\mathbb{R}^3$  be the three-dimensional Euclidean space equipped with the inner product  $\langle a,b\rangle=a_1b_1+a_2b_2+a_3b_3$ , where  $a=(a_1,a_2,a_3)$  and  $b=(b_1,b_2,b_3)\in\mathbb{R}^3$ . The norm of vector a is given by  $||a||=\sqrt{\langle a,a\rangle}$  and a vector product is given by

$$a \times b = \det \begin{pmatrix} e_1 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{pmatrix},$$

where  $\{e_1, e_2, e_3\}$  is the canonical basis of  $\mathbb{R}^3$ .

Let  $\gamma: I \subset \mathbb{R} \to \mathbb{R}^3$  be a regular curve in  $\mathbb{R}^3$  defined on a real interval  $I = (\alpha, \beta)$ , that has at least four continuous derivatives. The arc-length of a curve  $\gamma$ , measured from  $\gamma(t_0)$ ,  $t_0 \in I$  is

$$s(t) = \int_{t_0}^t ||\dot{\gamma}(\rho)|| d\rho.$$

Throughout in this paper, we denote the arc-length by s.

The sphere of radius r > 0 and with center in the origin in the space  $\mathbb{R}^3$  is defined by

$$S^2 = \{q = (q_1, q_2, q_3) \in \mathbb{R}^3 : \langle q, q \rangle = r^2\}.$$

Denote by  $\{T, N, B\}$  the standart Frenet frame along the curve  $\gamma$  where T(s) is the tangent, N(s) is the principal normal and B(s) is the binormal vector and the pair  $(curvature, torsion) = (\kappa, \tau)$ . Then, the Frenet equations are given by the following relations:

$$\begin{pmatrix} T'(s) \\ N'(s) \\ B'(s) \end{pmatrix} = \begin{pmatrix} 0 & \kappa(s) & 0(t) \\ -\kappa(s) & 0 & \tau(s) \\ 0 & -\tau(s) & 0 \end{pmatrix} \begin{pmatrix} T(s) \\ N(s) \\ B(s) \end{pmatrix}.$$

Here, curvature functions are defined by  $\kappa = \kappa(s) = ||T'||$  and  $\tau(s) = -\langle N, B' \rangle$ .

The flow-frame with the flow-curvature of bi-regular curve  $\gamma$  is a new frame involving the time-dependent rotation of the usual Frenet flow, which is expressed as follows with the rotation R(t):

$$\begin{pmatrix} T(t) \\ F_2(t) \\ F_3(t) \end{pmatrix} := \begin{pmatrix} 1 & 0_2(h) \\ 0_2(v) & R(t) \end{pmatrix} \begin{pmatrix} T(t) \\ N(t) \\ B(t) \end{pmatrix}, 0_2(h) := \begin{pmatrix} 0 & 0 \end{pmatrix}, 0_2(v) := \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Here

$$R(t) = \begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} \in SO(2).$$

Then, the moving equation yields

$$\begin{pmatrix} T'(t) \\ F_2'(t) \\ F_3'(t) \end{pmatrix} = ||\gamma'(t)|| \begin{pmatrix} 0 & \kappa_2(t) & \kappa_3(t) \\ -\kappa_2(t) & 0 & \kappa_4(t) \\ -\kappa_3(t) & -\kappa_4(t) & 0 \end{pmatrix} \begin{pmatrix} T(t) \\ F_2(t) \\ F_3(t) \end{pmatrix}.$$
(2.1)

With a simple computation, we obtain

$$\kappa_2(t) = \kappa(t)\cos t$$
,  $\kappa_3(t) = \kappa(t)\sin t$ ,  $\kappa_4(t) = \tau(t) - \frac{1}{||\gamma'(t)||}$ .

# 3. Generalized helices according to flow-frame

**Definition 3.1.** Let  $\gamma$  be a bi-regular curve with the flow-frame  $\{T, F_2, F_3\}$ . The curve  $\gamma$  is called the generalized helix of the first, second, or third kind with axis  $\xi$  if there exists a unit vector field  $\xi$  such that  $\langle T, \xi \rangle = const$ ,  $\langle F_2, \xi \rangle = const$ , or  $\langle F_3, \xi \rangle = const$ , respectively.

**Theorem 3.1.** A unit speed bi-regular curve  $\gamma$  with  $\kappa_3(s) \neq 0$  is a generalized helix of the first kind if and only if

$$\eta_1(s) = \left(\frac{(H_1\kappa_2 + \kappa_3)\sqrt{1 + H_1^2}}{(H_1' - \kappa_4(1 + H_1^2))}\right)(s)$$

is a constant function, where  $H_1(s) = \frac{\kappa_2(s)}{\kappa_3(s)}$ .

*Proof.* If  $\gamma$  is a generalized helix of the first kind then there exists a unit vector field  $\xi$  such that  $\langle T, \xi \rangle = \cos \theta$ , where  $\theta$  is a constant. Since  $\xi' = 0$ , then using equation 2.1 we get

$$\kappa_2 \langle F_2, \xi \rangle + \kappa_3 \langle F_3, \xi \rangle = 0$$

Hence,

$$\langle F_3, \xi \rangle = -\frac{\kappa_2}{\kappa_3} \langle F_2, \xi \rangle = -H_1 \langle F_2, \xi \rangle, \tag{3.1}$$

where  $H_1 = \frac{\kappa_2}{\kappa_3}$ . Therefore,  $\langle F_3', \xi \rangle = -H_1' \langle F_2, \xi \rangle - H_1 \langle F_2', \xi \rangle$ . From equation 2.1  $\langle -\kappa_3 T - \kappa_4 F_2, \xi \rangle = -H_1' \langle F_2, \xi \rangle - H_1 \langle -\kappa_2 T + \kappa_4 F_3, \xi \rangle$ . Using  $\langle T, \xi \rangle = \cos \theta$  and equation 3.1 we get

$$\langle F_2, \xi \rangle (H_1' - \kappa_4 (1 + H_1^2)) = \cos \theta (H_1 \kappa_2 + \kappa_3).$$

It means that

$$\langle F_2, \xi \rangle = \frac{\cos \theta (H_1 \kappa_2 + \kappa_3)}{H_1' - \kappa_4 (1 + H_1^2)}.$$
 (3.2)

In combination with 3.1, we get

$$\xi = \left(T + \frac{(H_1\kappa_2 + \kappa_3)}{(H_1' - \kappa_4(1 + H_1^2))}F_2 - \frac{H_1(H_1\kappa_2 + \kappa_3)}{(H_1' - \kappa_4(1 + H_1^2))}F_3\right)\cos\theta.$$

Since  $|\xi| = 1$ ,

$$\left(1 + \frac{(H_1\kappa_2 + \kappa_3)^2}{(H_1' - \kappa_4(1 + H_1^2))^2} + \frac{H_1^2(H_1\kappa_2 + \kappa_3)^2}{(H_1' - \kappa_4(1 + H_1^2)^2}\right) = \frac{1}{\cos^2\theta}.$$

Thus, we obtain that

$$\frac{(H_1\kappa_2 + \kappa_3)\sqrt{1 + H_1^2}}{(H_1' - \kappa_4(1 + H_1^2))} = \tan\theta.$$
(3.3)

Moreover, 3.3 implies

$$\xi = \left(\cos\theta T + \frac{1}{\sqrt{1 + H_1^2}}\sin\theta F_2 - \frac{H_1}{\sqrt{1 + H_1^2}}\sin\theta F_3\right). \tag{3.4}$$

Conversely, take  $\xi$  given by 3.4 and suppose 3.3 fulfilled. Then

$$(a) = \langle T, \xi \rangle = \cos \theta; (b) = \langle F_2, \xi \rangle = \frac{1}{\sqrt{1 + H_1^2}} \sin \theta; (c) = \langle F_3, \xi \rangle = -\frac{H_1}{\sqrt{1 + H_1^2}} \sin \theta.$$

The derivative of (a) yields  $\langle T', \xi \rangle + \langle T, \xi' \rangle = 0$ . Using 2.1, we obtain

$$\kappa_2 \langle F_2, \xi \rangle + \kappa_3 \langle F_3, \xi \rangle + \langle T, \xi' \rangle = 0$$

or

$$\kappa_3 (H_1 \langle F_2, \xi \rangle + \langle F_3, \xi \rangle) + \langle T, \xi' \rangle = 0.$$

From 3.1, it follows that  $\langle T, \xi' \rangle = 0$ .

The derivative of (b) yields

$$\langle F_2, \xi' \rangle = \frac{d}{ds} \langle F_2, \xi \rangle - \langle F_2', \xi \rangle$$

$$= \frac{d}{ds} \left( \frac{1}{\sqrt{1 + H_1^2}} \sin \theta \right) + \kappa_2 \langle T, \xi \rangle - \kappa_4 \langle F_3, \xi \rangle$$

$$= -\frac{H_1' H_1}{(1 + H_1^2)^{3/2}} \sin \theta + \kappa_2 \langle T, \xi \rangle - \kappa_4 \langle F_3, \xi \rangle.$$

We can express  $H'_1$  from 3.2, then using (a), (b) and (c), we get

$$\begin{split} \langle F_2, \xi' \rangle &= -\frac{H_1}{(1 + H_1^2)^{3/2}} \sin \theta \left( \frac{\cos \theta}{\sin \theta} \left( H_1 \kappa_2 + \kappa_3 \right) \sqrt{1 + H_1^2} + \kappa_4 \left( 1 + H_1^2 \right) \right) \\ &+ \kappa_2 \cos \theta + \frac{\kappa_4 H_1}{\sqrt{1 + H_1^2}} \sin \theta \\ &= \left( -\frac{H_1 \left( H_1 \kappa_2 + \kappa_3 \right)}{1 + H_1^2} \cos \theta - \frac{H_1 \kappa_4}{\sqrt{1 + H_1^2}} \sin \theta \right) + \kappa_2 \cos \theta + \frac{\kappa_4 H_1}{\sqrt{1 + H_1^2}} \sin \theta \\ &= 0. \end{split}$$

In a similar way, the derivative of (c) yields

$$\begin{split} \langle F_3, \xi' \rangle &= \frac{d}{ds} \langle F_3, \xi \rangle - \langle F_3', \xi \rangle \\ &= \frac{d}{ds} \left( -\frac{H_1}{\sqrt{1 + H_1^2}} \sin \theta \right) + \kappa_3 \langle T, \xi \rangle + \kappa_4 \langle F_2, \xi \rangle \\ &= -\frac{H_1'}{(1 + H_1^2)^{3/2}} \sin \theta + \kappa_3 \langle T, \xi \rangle + \kappa_4 \langle F_2, \xi \rangle. \end{split}$$

Again, we can express  $H'_1$  from 3.2, then using (a) and (b), we get

$$\begin{split} \langle F_3, \xi' \rangle &= -\frac{1}{(1 + H_1^2)^{3/2}} \sin \theta \left( \frac{\cos \theta}{\sin \theta} \left( H_1 \kappa_2 + \kappa_3 \right) \sqrt{1 + H_1^2} + \kappa_4 \left( 1 + H_1^2 \right) \right) \\ &+ \kappa_3 \cos \theta + \frac{\kappa_4}{\sqrt{1 + H_1^2}} \sin \theta \\ &= \left( -\frac{(H_1 \kappa_2 + \kappa_3)}{1 + H_1^2} \cos \theta - \frac{\kappa_4}{\sqrt{1 + H_1^2}} \sin \theta \right) + \kappa_3 \cos \theta + \frac{\kappa_4}{\sqrt{1 + H_1^2}} \sin \theta \\ &= 0 \end{split}$$

Since  $\langle T, \xi' \rangle = 0$ ,  $\langle F_2, \xi' \rangle = 0$ , and  $\langle F_3, \xi' \rangle = 0$ , we have  $\xi' = 0$ . This completes the proof.

**Theorem 3.2.** Let  $\gamma$  be a unit speed bi-regular curve with flow-frame, then  $\gamma$  is a generalized helix of the first kind if and only if

$$\det(T', T'', T''') = 0.$$

*Proof.* Suppose that  $\eta_1$  is constant. Then, the following equalities are satisfied

$$T' = \kappa_2 F_2 + \kappa_3 F_3,$$

$$T'' = \left(-\kappa_2^2 - \kappa_3^2\right) T + \left(\kappa_2' - \kappa_3 \kappa_4\right) F_2 + \left(\kappa_3' + \kappa_2 \kappa_4\right) F_3,$$

$$T''' = -3 \left(\kappa_2 \kappa_2' + \kappa_3 \kappa_3'\right) T + \left(\kappa_2'' - 2\kappa_3' \kappa_4 - \kappa_3 \kappa_4' - \kappa_2 \left(\kappa_2^2 + \kappa_3^2 + \kappa_4^2\right)\right) F_2 + \left(\kappa_3'' + 2\kappa_2' \kappa_4 + \kappa_2 \kappa_4' - \kappa_3 \left(\kappa_2^2 + \kappa_3^2 + \kappa_4^2\right)\right) F_3.$$

So, we get

$$\det(T', T'', T''') = \det\begin{pmatrix} 0 & \kappa_2 & \kappa_3 \\ (-\kappa_2^2 - \kappa_3^2) & (\kappa_2' - \kappa_3 \kappa_4) & (\kappa_3' + \kappa_2 \kappa_4) \\ -3(\kappa_2 \kappa_2' + \kappa_3 \kappa_3') & \kappa_2'' - 2\kappa_3' \kappa_4 - \kappa_3 \kappa_4' & \kappa_3'' + 2\kappa_2' \kappa_4 + \kappa_2 \kappa_4' \\ -\kappa_2(\kappa_2^2 + \kappa_3^2 + \kappa_3^2) & -\kappa_2(\kappa_2^2 + \kappa_3^2 + \kappa_4^2) & -\kappa_3(\kappa_2^2 + \kappa_3^2 + \kappa_4^2) \end{pmatrix}.$$

Therefore, we can calculate that

$$\det (T', T'', T''') = \eta_1' \left( 1/\eta_1^2 \right) \left( \kappa_2^2 + \kappa_3^2 \right)^{5/2}.$$

Since  $\gamma$  is a curve with flow-frame and  $\eta_1$  is constant, we have

$$\det (T', T'', T''') = 0.$$

Conversely, assume that  $\det(T', T'', T''') = 0$ . Since  $\eta'_1$  is zero, it follows that  $\eta_1$  is constant.

**Theorem 3.3.** A unit speed bi-regular curve  $\gamma$  with  $\kappa_4(s) \neq 0$  is a generalized helix of the second kind if and only if

$$\eta_2(s) = \left(\frac{(H_2\kappa_2 + \kappa_4)\sqrt{1 + H_2^2}}{(H_2' + \kappa_3(1 + H_2^2))}\right)(s)$$

is a constant function, where  $H_2(s) = \frac{\kappa_2(s)}{\kappa_4(s)}$ .

*Proof.* If  $\gamma$  is a generalized helix of the second kind then there exists a unit vector field  $\xi$  such that  $\langle F_2, \xi \rangle = \cos \theta$ , where  $\theta$  is a constant. Since  $\xi' = 0$ , then using equation 2.1 we get

$$-\kappa_2 \langle T, \xi \rangle + \kappa_4 \langle F_3, \xi \rangle = 0.$$

Hence,

$$\langle F_3, \xi \rangle = \frac{\kappa_2}{\kappa_4} \langle T, \xi \rangle = H_2 \langle T, \xi \rangle,$$
 (3.5)

where  $H_2 = \frac{\kappa_2}{\kappa_4}$ . Therefore,  $\langle F_3', \xi \rangle = H_2' \langle T, \xi \rangle + H_2 \langle T', \xi \rangle$ . From equation 2.1  $\langle -\kappa_3 T - \kappa_4 F_2, \xi \rangle = H_2' \langle T, \xi \rangle + H_2 \langle \kappa_2 F_2 + \kappa_3 F_3, \xi \rangle$ . Using  $\langle F_2, \xi \rangle = \cos \theta$  and equation 3.5 we get

$$\langle T, \xi \rangle (H_2' + \kappa_3 (1 + H_2^2)) = -\cos \theta (H_2 \kappa_2 + \kappa_4).$$

It means that

$$\langle T, \xi \rangle = \frac{\cos \theta (H_2 \kappa_2 + \kappa_4)}{H_2' + \kappa_3 (1 + H_2^2)}.$$
(3.6)

In combination with 3.5, we get

$$\xi = \left( -\frac{(H_2\kappa_2 + \kappa_4)}{(H'_2 + \kappa_3(1 + H_2^2))} T + F_2 - \frac{H_2(H_2\kappa_2 + \kappa_4)}{(H'_2 + \kappa_3(1 + H_2^2))} F_3 \right) \cos \theta.$$

Since  $|\xi| = 1$ ,

$$\left(\frac{(H_2\kappa_2+\kappa_4)^2}{(H_2'+\kappa_3(1+H_2^2))^2}+1+\frac{H_2^2(H_2\kappa_2+\kappa_4)^2}{(H_2'+\kappa_3(1+H_2^2)^2}\right)=\frac{1}{\cos^2\theta}.$$

Thus, we obtain that

$$\frac{(H_2\kappa_2 + \kappa_4)\sqrt{1 + H_2^2}}{(H_2' + \kappa_3(1 + H_2^2))} = \tan\theta.$$
(3.7)

Moreover, 3.7 implies

$$\xi = \left( -\frac{1}{\sqrt{1 + H_2^2}} \sin \theta T + \cos \theta F_2 - \frac{H_2}{\sqrt{1 + H_2^2}} \sin \theta F_3 \right). \tag{3.8}$$

Conversely, take the vector field  $\xi$  given by 3.8 and suppose 3.7 fulfilled. Then, by the same process as in the proof of Theorem 3.1, we can check that  $\xi$  is a constant and  $\langle F_2, \xi \rangle = \cos \theta$ .

**Theorem 3.4.** Let  $\gamma$  be a unit speed bi-regular curve with flow-frame, then  $\gamma$  is a generalized helix of the second kind if and only if

$$\det(F_2', F_2'', F_2''') = 0.$$

*Proof.* Suppose that  $\eta_2$  is constant. We can calculate that

$$\det(F_2', F_2'', F_2''') = \eta_2' \left(1/\eta_2^2\right) \left(\kappa_2^2 + \kappa_4^2\right)^{5/2}.$$

Since  $\gamma$  is a curve with flow-frame and  $\eta_2$  is constant, we have

$$\det(F_2', F_2'', F_2''') = 0.$$

Conversely, assume that  $\det(F_2', F_2'', F_2''') = 0$ . Since  $\eta_2'$  is zero, then it is clear that  $\eta_2$  is constant.

**Theorem 3.5.** A unit speed bi-regular curve  $\gamma$  with  $\kappa_4(s) \neq 0$  is a generalized helix of the third kind if and only if

$$\eta_3(s) = \left(\frac{(H_3\kappa_3 + \kappa_4)\sqrt{1 + H_3^2}}{(H_3' - \kappa_2(1 + H_3^2))}\right)(s)$$

is a constant function, where  $H_3(s) = \frac{\kappa_3(s)}{\kappa_4(s)}$ .

*Proof.* If  $\gamma$  is a generalized helix of the third kind then there exists a unit vector field  $\xi$  such that  $\langle F_3, \xi \rangle = \cos \theta$ , where  $\theta$  is a constant. Since  $\xi' = 0$ , then using equation 2.1 we get

$$-\kappa_3 \langle T, \xi \rangle - \kappa_4 \langle F_2, \xi \rangle = 0.$$

Hence,

$$\langle F_2, \xi \rangle = -\frac{\kappa_3}{\kappa_4} \langle T, \xi \rangle = -H_3 \langle T, \xi \rangle,$$
 (3.9)

where  $H_3 = \frac{\kappa_3}{\kappa_4}$ . Therefore,  $\langle F_2', \xi \rangle = -H_3' \langle T, \xi \rangle - H_3 \langle T', \xi \rangle$ . From equation 2.1  $\langle -\kappa_2 T + \kappa_4 F_3, \xi \rangle = -H_3' \langle T, \xi \rangle - H_3 \langle \kappa_2 F_2 + \kappa_3 F_3, \xi \rangle$ . Using  $\langle F_3, \xi \rangle = \cos \theta$  and equation 3.9 we get

$$\langle T, \xi \rangle (H_3' - \kappa_2 (1 + H_3^2)) = -\cos \theta (H_3 \kappa_3 + \kappa_4).$$

It means that

$$\langle T, \xi \rangle = -\frac{\cos \theta (H_3 \kappa_3 + \kappa_4)}{H_3' - \kappa_2 (1 + H_3^2)}.$$
(3.10)

In combination with 3.9, we get

$$\xi = \left(-\frac{(H_3\kappa_3 + \kappa_4)}{(H_3' - \kappa_2(1 + H_3^2))}T + \frac{H_3(H_3\kappa_3 + \kappa_4)}{(H_3' - \kappa_2(1 + H_3^2)}F_2 + F_3\right)\cos\theta.$$

Since  $|\xi| = 1$ ,

$$\left(\frac{(H_3\kappa_3+\kappa_4)^2}{(H_3'-\kappa_2(1+H_3^2))^2} + \frac{H_3^2(H_3\kappa_3+\kappa_4)^2}{(H_3'-\kappa_2(1+H_3^2)^2} + 1\right) = \frac{1}{\cos^2\theta}.$$

Thus, we obtain that

$$\frac{(H_3\kappa_3 + \kappa_4)\sqrt{1 + H_3^2}}{(H_3' - \kappa_2(1 + H_3^2))} = \tan\theta.$$
(3.11)

Moreover, 3.11 implies

$$\xi = \left( -\frac{1}{\sqrt{1 + H_3^2}} \sin \theta T + \frac{H_3}{\sqrt{1 + H_3^2}} \sin \theta F_2 + \cos \theta F_3 \right). \tag{3.12}$$

Conversely, take the vector field  $\xi$  given by 3.12 and suppose 3.11 fulfilled. Then, by the same process as in the proof of Theorem 3.1, we can check that  $\xi$  is a constant and  $\langle F_3, \xi \rangle = \cos \theta$ .

**Theorem 3.6.** Let  $\gamma$  be a unit speed bi-regular curve with flow-frame, then  $\gamma$  is a generalized helix of the third kind if and only if

$$\det(F_3', F_3'', F_3''') = 0.$$

*Proof.* Suppose that  $\eta_3$  is constant. We can calculate that

$$\det(F_3', F_3'', F_3''') = \eta_3' \left(1/\eta_3^2\right) \left(\kappa_3^2 + \kappa_4^2\right)^{5/2}.$$

Since  $\gamma$  is a curve with flow-frame and  $\eta_3$  is constant, we have

$$\det(F_3', F_3'', F_3''') = 0.$$

Conversely, assume that  $\det(F_3', F_3'', F_3''') = 0$ . Since  $\eta_3'$  is zero, it follows that  $\eta_3$  is constant.

## 4. New spherical images of a bi-regular curve

Let  $\gamma$  be a unit speed bi-regular curve in the Euclidean 3-space with  $\{T, F_2, F_3\}$ . Translating new frame's vector fields to the center of a unit sphere, generate new spherical images. If we translate the unit tangent vector along a curve  $\gamma$ , we obtain  $\gamma_T = T$  on the unit sphere. The curve  $\gamma_T$  is called the spherical indicatrix of T, in other words, tangent indicatrix of the curve  $\gamma$ . Similarly, one can consider the  $F_2$  indicatrix  $\gamma_{F_2} = F_2$  and the  $F_3$  indicatrix  $\gamma_{F_3} = F_3$ .

In this section, we introduce a representation of spherical indicatrices of a bi-regular curve with flow-frame in the Euclidean 3-space  $\mathbb{R}^3$  and then investigate the relationships between the helices and their spherical indicatrices.

D denotes the covariant differentiation of  $\mathbb{R}^3$ .

#### 4.1. Tangent indicatrix of a bi-regular curve

Give a unit speed bi-regular space curve  $\gamma$  with flow-frame and its tangent indicatrix  $\gamma_T(s_T) = T(s)$  with the natural representation  $s_T$ . If the Serret-Frenet frame of  $\gamma_T$  is  $\{T, N, B\}$ , then we have the following formula:

$$\begin{pmatrix} \mathbf{T}'(s_T) \\ \mathbf{N}'(s_T) \\ \mathbf{B}'(s_T) \end{pmatrix} = \begin{pmatrix} 0 & \kappa_T & 0 \\ -\kappa_T & 0 & \tau_T \\ 0 & -\tau_T & 0 \end{pmatrix} \begin{pmatrix} \mathbf{T}(s_T) \\ \mathbf{N}(s_T) \\ \mathbf{B}(s_T) \end{pmatrix}$$
(4.1)

where

$$\begin{cases}
\mathbf{T} = \frac{H_1 F_2 + F_3}{\sqrt{1 + H_1^2}}, \\
\mathbf{N} = \frac{f_1}{\sqrt{1 + f_1^2}} \left( \frac{H_1 F_3 - F_2}{\sqrt{1 + H_1^2}} - \frac{T}{f_1} \right), \\
\mathbf{B} = \frac{1}{\sqrt{1 + f_1^2}} \left( \frac{H_1 F_3 - F_2}{\sqrt{1 + H_1^2}} + f_1 T \right),
\end{cases} (4.2)$$

and

$$s_T = \int \sqrt{\kappa_2^2 + \kappa_3^2} ds + c, \quad \kappa_T = \sqrt{1 + f_1^2}, \quad \tau_T = -\sigma_1 \sqrt{1 + f_1^2},$$
 (4.3)

where

$$f_1 = \frac{1}{\eta_1},\tag{4.4}$$

and

$$\sigma_1 = \frac{f_1'}{\sqrt{\kappa_2^2 + \kappa_3^2 (1 + f_1^2)^{3/2}}}. (4.5)$$

Here,  $\kappa_T$  and  $\tau_T$  are the curvature and the torsion of the curve  $\gamma_T$ , respectively. Therefore, we have

$$\frac{\tau_T}{\kappa_T} = -\sigma_1. \tag{4.6}$$

**Theorem 4.1.** Give a bi-regular unit speed curve  $\gamma$  with flow-frame  $\{T, F_2, F_3\}$  and the curvatures  $\kappa_2, \kappa_3, \kappa_4$ .  $\gamma$  is a generalized helix of the first kind if and only if  $\gamma_T$  is a circle.

*Proof.* Suppose that  $\gamma$  is a generalized helix of the first kind. From 4.3 the curvature and the torsion of  $\gamma_T$ 

$$\kappa_T = \sqrt{1 + f_1^2}, \quad \tau_T = -\sigma_1 \sqrt{1 + f_1^2}$$

respectively. Since  $\eta_1$  is a constant function, from 4.4  $f_1$  is also a constant function which leads to  $\sigma_1 = 0$ . Therefore,  $\kappa_T$  is a non-zero constant and  $\tau_T = 0$ . Hence,  $\gamma_T$  is a circle. Conversely, assume that  $\gamma_T$  is a circle. Then it is obvious.

**Corollary 4.1.** Give a bi-regular unit speed curve  $\gamma$  with flow-frame  $\{T, F_2, F_3\}$  and the curvatures  $\kappa_2, \kappa_3, \kappa_4$ .  $\gamma$  is a generalized helix of the first kind if and only if the **T** and the **N** vector field of  $\gamma_T$  satisfy the following equations:

$$(i)D_{\mathbf{T}}^{2}\mathbf{T} + \kappa_{T}^{2}\mathbf{T} = 0,$$

$$(ii)D_{\mathbf{T}}^{2}\mathbf{N} + \kappa_{T}^{2}\mathbf{N} = 0.$$

**Theorem 4.2.** Give a bi-regular unit speed curve  $\gamma$  with flow-frame  $\{T, F_2, F_3\}$ . We denote the curvature and the torsion of  $\gamma_T$  by  $\kappa_T$  and  $\tau_T$ , respectively.  $\gamma_T$  is a generalized helix of the second kind if and only if

$$\delta_T(s) = \left(\frac{\kappa_T^2}{(\kappa_T^2 + \tau_T^2)^{3/2}} \left(\frac{\tau_T}{\kappa_T}\right)'\right)(s)$$

is a constant function.

**Theorem 4.3.** Give a bi-regular unit speed curve  $\gamma$  with flow-frame  $\{T, F_2, F_3\}$ . We denote the curvature and the torsion of  $\gamma_T$  by  $\kappa_T$  and  $\tau_T$ , respectively.  $\gamma_T$  is a generalized helix of the second kind if and only if the curve  $\beta: I \subset \mathbb{R} \to \mathbb{R}^2$ ,  $\beta(s) = (\beta_1(s), \beta_2(s))$  is a circle, where  $\beta_1(s) = \int \kappa_T(s) ds$  and  $\beta_2(s) = \int \tau_T(s) ds$ .

*Proof.* We can calculate that the curvature of the curve  $\beta$ 

$$\kappa_{\beta} = \frac{\beta_1' \beta_2'' - \beta_1'' \beta_2'}{((\beta_1')^2 + (\beta_2')^2)^{3/2}} = \frac{\kappa_T^2}{(\kappa_T^2 + \tau_T^2)^{3/2}} \left(\frac{\tau_T}{\kappa_T}\right)' = \delta_T(s).$$

Thus,  $\kappa_{\beta} = \delta_T = constant$ . This completes the proof.

# 4.2. $F_2$ indicatrix of a bi-regular curve

Give a unit speed bi-regular space curve  $\gamma$  with flow-frame and its  $F_2$  indicatrix  $\gamma_{F_2}(s_{F_2}) = F_2(s)$  with the natural representation  $s_{F_2}$ . If the Serret-Frenet frame of  $\gamma_{F_2}$  is  $\{\mathcal{T}, \mathcal{N}, \mathcal{B}\}$ , then we have the following formula:

$$\begin{pmatrix}
\mathcal{T}'(s_{F_2}) \\
\mathcal{N}'(s_{F_2}) \\
\mathcal{B}'(s_{F_2})
\end{pmatrix} = \begin{pmatrix}
0 & \kappa_{F_2} & 0 \\
-\kappa_{F_2} & 0 & \tau_{F_2} \\
0 & -\tau_{F_2} & 0
\end{pmatrix} \begin{pmatrix}
\mathcal{T}(s_{F_2}) \\
\mathcal{N}(s_{F_2}) \\
\mathcal{B}(s_{F_2})
\end{pmatrix}$$
(4.7)

where

$$\begin{cases}
\mathcal{T} = \frac{-H_2T + F_3}{\sqrt{1 + H_2^2}}, \\
\mathcal{N} = \frac{f_2}{\sqrt{1 + f_2^2}} \left( \frac{H_2F_3 + T}{\sqrt{1 + H_2^2}} - \frac{F_2}{f_2} \right), \\
\mathcal{B} = \frac{1}{\sqrt{1 + f_2^2}} \left( \frac{H_2F_3 + T}{\sqrt{1 + H_2^2}} + f_2F_2 \right),
\end{cases} (4.8)$$

and

$$s_{F_2} = \int \sqrt{\kappa_2^2 + \kappa_4^2} ds + c, \quad \kappa_{F_2} = \sqrt{1 + f_2^2}, \quad \tau_{F_2} = -\sigma_2 \sqrt{1 + f_2^2},$$
 (4.9)

where

$$f_2 = \frac{1}{\eta_2},\tag{4.10}$$

and

$$\sigma_2 = \frac{f_2'}{\sqrt{\kappa_2^2 + \kappa_4^2 (1 + f_2^2)^{3/2}}}. (4.11)$$

Here,  $\kappa_{F_2}$  and  $\tau_{F_2}$  are the curvature and the torsion of the curve  $\gamma_{F_2}$ , respectively. Therefore, we have

$$\frac{\tau_{F_2}}{\kappa_{F_2}} = -\sigma_2. \tag{4.12}$$

**Theorem 4.4.** Give a bi-regular unit speed curve  $\gamma$  with flow-frame  $\{T, F_2, F_3\}$  and the curvatures  $\kappa_2, \kappa_3, \kappa_4$ .  $\gamma$  is a generalized helix of the second kind if and only if  $\gamma_{F_2}$  is a circle.

*Proof.* Suppose that  $\gamma$  is a generalized helix of the second kind. From 4.9 the curvature and the torsion of  $\gamma_{F_2}$ 

$$\kappa_{F_2} = \sqrt{1 + f_2^2}, \quad \tau_{F_2} = -\sigma_2 \sqrt{1 + f_2^2}$$

respectively. Since  $\eta_2$  is a constant function, from 4.10  $f_2$  is also a constant function which leads to  $\sigma_2 = 0$ . Therefore,  $\kappa_{F_2}$  is a non-zero constant and  $\tau_{F_2} = 0$ . Hence,  $\gamma_{F_2}$  is a circle. Conversely, assume that  $\gamma_{F_2}$  is a circle. Then it is obvious.

**Corollary 4.2.** Give a bi-regular unit speed curve  $\gamma$  with flow-frame  $\{T, F_2, F_3\}$  and the curvatures  $\kappa_2, \kappa_3, \kappa_4$ .  $\gamma$  is a generalized helix of the second kind if and only if the  $\mathcal{T}$  and the  $\mathcal{N}$  vector field of  $\gamma_{F_2}$  satisfy the following equations:

$$(i)D_{\mathcal{T}}^{2}\mathcal{T} + \kappa_{F_{2}}^{2}\mathcal{T} = 0,$$
  
$$(ii)D_{\mathcal{T}}^{2}\mathcal{N} + \kappa_{F_{2}}^{2}\mathcal{N} = 0.$$

**Theorem 4.5.** Give a bi-regular unit speed curve  $\gamma$  with flow-frame  $\{T, F_2, F_3\}$ . We denote the curvature and the torsion of  $\gamma_{F_2}$  by  $\kappa_{F_2}$  and  $\tau_{F_2}$ , respectively.  $\gamma_{F_2}$  is a generalized helix of the second kind if and only if

$$\delta_{F_2}(s) = \left(\frac{\kappa_{F_2}^2}{(\kappa_{F_2}^2 + \tau_{F_2}^2)^{3/2}} \left(\frac{\tau_{F_2}}{\kappa_{F_2}}\right)'\right)(s)$$

is a constant function.

**Theorem 4.6.** Give a bi-regular unit speed curve  $\gamma$  with flow-frame  $\{T, F_2, F_3\}$ . We denote the curvature and the torsion of  $\gamma_{F_2}$  by  $\kappa_{F_2}$  and  $\tau_{F_2}$ , respectively.  $\gamma_{F_2}$  is a generalized helix of the second kind if and only if the curve  $\beta: I \subset \mathbb{R} \to \mathbb{R}^2$ ,  $\beta(s) = (\beta_1(s), \beta_2(s))$  is a circle, where  $\beta_1(s) = \int \kappa_{F_2}(s) ds$  and  $\beta_2(s) = \int \tau_{F_2}(s) ds$ .

*Proof.* We can calculate that the curvature of the curve  $\beta$ 

$$\kappa_{\beta} = \frac{\beta_1' \beta_2'' - \beta_1'' \beta_2'}{((\beta_1')^2 + (\beta_2')^2)^{3/2}} = \frac{\kappa_{F_2}^2}{(\kappa_{F_2}^2 + \tau_{F_2}^2)^{3/2}} \left(\frac{\tau_{F_2}}{\kappa_{F_2}}\right)' = \delta_{F_2}(s).$$

Thus,  $\kappa_{\beta} = \delta_{F_2} = constant$ . This completes the proof.

#### 4.3. $F_3$ indicatrix of a bi-regular curve

Give a unit speed bi-regular space curve  $\gamma$  with flow frame and its  $F_3$  indicatrix  $\gamma_{F_3}(s_{F_3}) = F_3(s)$  with the natural representation  $s_{F_3}$ . If the Serret-Frenet frame of  $\gamma_{F_3}$  is  $\{\mathbb{T}, \mathbb{N}, \mathbb{B}\}$ , then we have the following formula:

$$\begin{pmatrix}
\mathbb{T}'(s_{F_3}) \\
\mathbb{N}'(s_{F_3}) \\
\mathbb{B}'(s_{F_3})
\end{pmatrix} = \begin{pmatrix}
0 & \kappa_{F_3} & 0 \\
-\kappa_{F_3} & 0 & \tau_{F_3} \\
0 & -\tau_{F_3} & 0
\end{pmatrix} \begin{pmatrix}
\mathbb{T}(s_{F_3}) \\
\mathbb{N}(s_{F_3}) \\
\mathbb{B}(s_{F_3})
\end{pmatrix}$$
(4.13)

where

$$\begin{cases}
\mathbb{T} = \frac{-H_3T - F_2}{\sqrt{1 + H_3^2}}, \\
\mathbb{N} = \frac{f_3}{\sqrt{1 + f_3^2}} \left( \frac{T - H_3F_2}{\sqrt{1 + H_3^2}} - \frac{F_3}{f_3} \right), \\
\mathbb{B} = \frac{1}{\sqrt{1 + f_3^2}} \left( \frac{T - H_3F_2}{\sqrt{1 + H_3^2}} + f_3F_3 \right),
\end{cases} (4.14)$$

and

$$s_{F_3} = \int \sqrt{\kappa_3^2 + \kappa_4^2} ds + c, \quad \kappa_{F_3} = \sqrt{1 + f_3^2}, \quad \tau_{F_3} = -\sigma_3 \sqrt{1 + f_3^2},$$
 (4.15)

where

$$f_3 = \frac{1}{\eta_3},\tag{4.16}$$

and

$$\sigma_3 = \frac{f_3'}{\sqrt{\kappa_3^2 + \kappa_4^2 (1 + f_3^2)^{3/2}}}. (4.17)$$

Here,  $\kappa_{F_3}$  and  $\tau_{F_3}$  are the curvature and torsion of the curve  $\gamma_{F_3}$ , respectively. Therefore, we have

$$\frac{\tau_{F_3}}{\kappa_{F_3}} = -\sigma_3. \tag{4.18}$$

**Theorem 4.7.** Give a bi-regular unit speed curve  $\gamma$  with flow-frame  $\{T, F_2, F_3\}$  and the curvatures  $\kappa_2, \kappa_3, \kappa_4$ .  $\gamma$  is a generalized helix of the third kind if and only if  $\gamma_{F_3}$  is a circle.

*Proof.* Suppose that  $\gamma$  is a generalized helix of the third kind. From 4.15 the curvature and the torsion of  $\gamma_{F_3}$ 

$$\kappa_{F_3} = \sqrt{1 + f_3^2}, \quad \tau_{F_3} = -\sigma_3 \sqrt{1 + f_3^2}$$

respectively. Since  $\eta_3$  is a constant function, from 4.16  $f_3$  is also a constant function which leads to  $\sigma_3 = 0$ . Therefore,  $\kappa_{F_3}$  is a non-zero constant and  $\tau_{F_3} = 0$ . Hence,  $\gamma_{F_3}$  is a circle. Conversely, assume that  $\gamma_{F_3}$  is a circle. Then it is obvious.

**Corollary 4.3.** Give a bi-regular unit speed curve  $\gamma$  with flow-frame  $\{T, F_2, F_3\}$  and the curvatures  $\kappa_2, \kappa_3, \kappa_4$ .  $\gamma$  is a generalized helix of the third kind if and only if the  $\mathbb T$  and the  $\mathbb B$  vector field of  $\gamma_{F_3}$  satisfy the following equations:

$$(i)D_{\mathbb{T}}^2 \mathbb{T} + \kappa_{F_3}^2 \mathbb{T} = 0,$$
  
$$(ii)D_{\mathbb{T}}^2 \mathbb{B} + \kappa_{F_2}^2 \mathbb{B} = 0.$$

**Theorem 4.8.** Give a bi-regular unit speed curve  $\gamma$  with flow-frame  $\{T, F_2, F_3\}$ . We denote the curvature and the torsion of  $\gamma_{F_3}$  by  $\kappa_{F_3}$  and  $\tau_{F_3}$ , respectively.  $\gamma_{F_3}$  is a generalized helix of the second kind if and only if

$$\delta_{F_3}(s) = \left(\frac{\kappa_{F_3}^2}{(\kappa_{F_3}^2 + \tau_{F_3}^2)^{3/2}} \left(\frac{\tau_{F_3}}{\kappa_{F_3}}\right)'\right)(s)$$

is a constant function.

**Theorem 4.9.** Give a bi-regular unit speed curve  $\gamma$  with flow-frame  $\{T, F_2, F_3\}$ . We denote the curvature and the torsion of  $\gamma_{F_3}$  by  $\kappa_{F_3}$  and  $\tau_{F_3}$ , respectively.  $\gamma_{F_3}$  is a generalized helix of the second kind if and only if the curve  $\beta: I \subset \mathbb{R} \to \mathbb{R}^2$ ,  $\beta(s) = (\beta_1(s), \beta_2(s))$  is a circle, where  $\beta_1(s) = \int \kappa_{F_3}(s) ds$  and  $\beta_2(s) = \int \tau_{F_3}(s) ds$ .

*Proof.* We can calculate that the curvature of the curve  $\beta$ 

$$\kappa_{\beta} = \frac{\beta_1'\beta_2'' - \beta_1''\beta_2'}{((\beta_1')^2 + (\beta_2')^2)^{3/2}} = \frac{\kappa_{F_3}^2}{(\kappa_{F_3}^2 + \tau_{F_3}^2)^{3/2}} \left(\frac{\tau_{F_3}}{\kappa_{F_3}}\right)' = \delta_{F_3}(s).$$

Thus  $\kappa_{\beta} = \delta_{F_3} = constant$ . This completes the proof.

#### 5. Examples

In this section, we give some examples how to find a regular curve's flow-frame and illustrate the new spherical images.

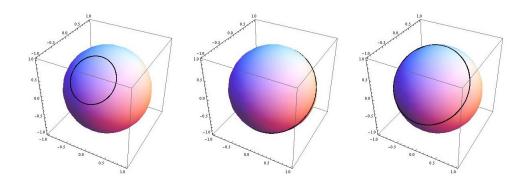
**Example 5.1.** First, let us consider a unit speed circular helix of  $\mathbb{R}^3$  by

$$\alpha = \alpha(s) = \left(\cos\frac{s}{2}, \frac{\sqrt{2}}{2}\sin\frac{s}{2} - \frac{\sqrt{6}}{4}s + 2, \frac{\sqrt{2}}{2}\sin\frac{s}{2} + \frac{\sqrt{6}}{4}s + 3\right). \tag{5.1}$$

One can calculate its Frenet-Serret apparatus as the following

$$\begin{cases}
T = \left(\frac{-1}{2} \sin \frac{s}{2}, \frac{\sqrt{2}}{4} \cos \frac{s}{2} - \frac{\sqrt{6}}{4}, \frac{\sqrt{2}}{4} \cos \frac{s}{2} + \frac{\sqrt{6}}{4}\right), \\
N = \left(-\cos \frac{s}{2}, -\frac{\sqrt{2}}{2} \sin \frac{s}{2}, -\frac{\sqrt{2}}{2} \sin \frac{s}{2}\right), \\
B = \left(\frac{\sqrt{3}}{2} \sin \frac{s}{2}, -\frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{4} \cos \frac{s}{2}, \frac{\sqrt{2}}{4} - \frac{\sqrt{6}}{4} \cos \frac{s}{2}\right), \\
\kappa = \frac{1}{4}, \\
\tau = \frac{\sqrt{3}}{4}.
\end{cases} (5.2)$$

We plot the classical spherical images of  $\alpha$  in Figure 1 to compare our new spherical images.



**Figure 1.** Spherical images of  $\alpha = \alpha(s)$  with respect to Frenet-Serret frame.

Now we focus on the flow-frame. We can write the transformation matrix.

$$\begin{pmatrix}
T(s) \\
F_2(s) \\
F_3(s)
\end{pmatrix} := \begin{pmatrix}
1 & 0 & 0 \\
0 & \cos s & -\sin s \\
0 & \sin s & \cos s
\end{pmatrix} \begin{pmatrix}
T(s) \\
N(s) \\
B(s)
\end{pmatrix}.$$
(5.3)

One can obtain flow-frame of  $\alpha$  as follows:

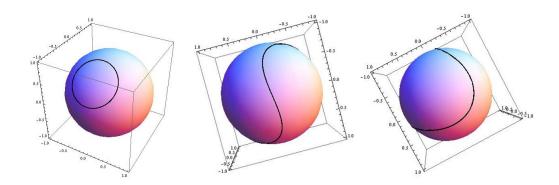
$$\begin{cases}
T = \left(\frac{-1}{2}\sin\frac{s}{2}, \frac{\sqrt{2}}{4}\cos\frac{s}{2} - \frac{\sqrt{6}}{4}, \frac{\sqrt{2}}{4}\cos\frac{s}{2} + \frac{\sqrt{6}}{4}\right), \\
F_2 = \left(\frac{-\cos s\cos\frac{s}{2} - \frac{\sqrt{2}}{2}\sin\frac{s}{2}\sin s}{2\cos s + \frac{\sqrt{2}}{4}\sin s + \frac{\sqrt{6}}{4}\sin s\cos\frac{s}{2}}, -\frac{\sqrt{2}}{2}\sin\frac{s}{2}\cos s - \frac{\sqrt{2}}{4}\sin s + \frac{\sqrt{6}}{4}\sin s\cos\frac{s}{2}\right), \\
-\frac{\sqrt{2}}{2}\sin\frac{s}{2}\cos s - \frac{\sqrt{2}}{4}\sin s + \frac{\sqrt{6}}{4}\sin s\cos\frac{s}{2}\right), \\
F_3 = \left(\frac{-\sin s\cos\frac{s}{2} + \frac{\sqrt{3}}{2}\sin\frac{s}{2}\cos s}{-\frac{\sqrt{2}}{2}\sin\frac{s}{2}\sin s - \frac{\sqrt{2}}{4}\cos s - \frac{\sqrt{6}}{4}\cos\frac{s}{2}\cos s}, -\frac{\sqrt{2}}{2}\sin\frac{s}{2}\sin s + \frac{\sqrt{2}}{4}\cos s - \frac{\sqrt{6}}{4}\cos\frac{s}{2}\cos s\right), \\
\kappa_2 = \frac{1}{4}\cos s, \\
\kappa_3 = \frac{1}{4}\sin s, \\
\kappa_4 = \frac{\sqrt{3} - 4}{4}.
\end{cases} (5.4)$$

So, we can illustrate new spherical images, see Figure 2.

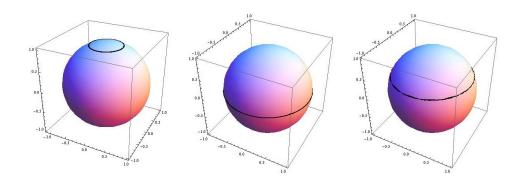
**Example 5.2.** Consider some other unit speed circular helix of  $\mathbb{R}^3$  by

$$\beta = \beta(s) = \left(5\cos\frac{s}{13}, 5\sin\frac{s}{13}, \frac{12s}{13}\right). \tag{5.5}$$

One can calculate its Frenet-Serret apparatus as the following



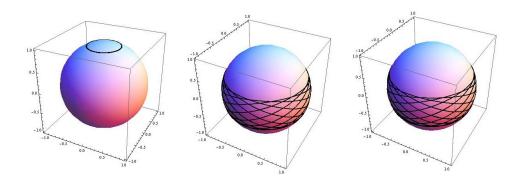
**Figure 2.** Tangent,  $F_2$  and  $F_3$  spherical images of  $\alpha = \alpha(s)$ .



**Figure 3.** Spherical images of  $\beta = \beta(s)$  with respect to Frenet-Serret frame.

$$\begin{cases} T = \left(-\frac{5}{13}sin\frac{s}{13}, \frac{5}{13}cos\frac{s}{13}, \frac{12}{13}\right), \\ N = \left(-cos\frac{s}{13}, -sin\frac{s}{13}, 0\right), \\ B = \left(\frac{12}{13}sin\frac{s}{13}, -\frac{12}{13}cos\frac{s}{13}, \frac{5}{13}\right), \\ \kappa = \frac{5}{169}, \\ \tau = \frac{12}{169}. \end{cases}$$
(5.6)

First, we plot the classical spherical images of  $\beta$  in Figure 3 to compare our new spherical images.



**Figure 4.** Tangent,  $F_2$  and  $F_3$  spherical images of  $\beta = \beta(s)$ .

By using the transformation matrix, we can obtain flow-frame of  $\beta$  as follows:

$$\begin{cases}
T = \left(-\frac{5}{13}\sin\frac{s}{13}, \frac{5}{13}\cos\frac{s}{13}, \frac{12}{13}\right), \\
F_2 = \left(-\cos s \cos\frac{s}{13} - \frac{12}{13}\sin\frac{s}{13}\sin s, -\sin\frac{s}{13}\cos s + \frac{12}{13}\sin s \cos\frac{s}{13}, -\frac{5}{13}\sin s\right), \\
F_3 = \left(-\sin s \cos\frac{s}{13} + \frac{12}{13}\sin\frac{s}{13}\cos s, -\sin s \sin\frac{s}{13} - \frac{12}{13}\cos s \cos\frac{s}{13}, \frac{5}{13}\cos s\right), \\
\kappa_2 = \frac{5}{169}\cos s, \\
\kappa_3 = \frac{5}{169}\sin s, \\
\kappa_4 = -\frac{157}{169}.
\end{cases} (5.7)$$

So, we can illustrate new spherical images, see Figure 4.

# Acknowledgements

We would like to thank to the editor and the anonymous reviewers for their helpful comments and suggestions.

#### **Funding**

This work is supported by TÜBİTAK (The Scientific and Technological Research Council of Turkey) within the scope of 2211 - National PhD Scholarship Programs.

## Availability of data and materials

Not applicable.

#### **Competing interests**

The authors declare that they have no competing interests.

#### Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

#### References

- [1] Ali, A.T., López, R.: Slant helices in Minkowski space  $E_1^3$ . J. Korean Math. Soc. 48(1), 159–167 (2011).
- [2] Ali, A.T.: New special curves and their spherical indicatrices. Glob. J. Adv. Res. Class. Mod. Geom. 1(2), 28–38 (2012).
- [3] Barros, M.: General helices and a theorem of Lancret. Proc. Am. Math. Soc. 125(5), 1503-1509 (1997).
- [4] Barros, M., Ferrández, A., Lucas, P., Meroaño, M.A.: General helices in the 3-dimensional Lorentzian space forms. Rocky Mt. J. Math. 31(2), 373–388 (2001).
- [5] Crasmareanu, M.: The flow-curvature of spacelike parametrized curves in the Lorentz plane. Proc. Int. Geom. Cent. 15(2), 101–109 (2022).
- [6] Crasmareanu, M.: The flow-curvature of plane parametrized curves. Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 72(2), 1–11 (2023).
- [7] Crasmareanu, M.: The flow-geodesic curvature and the flow-evolute of hyperbolic plane curves. Int. Electron. J. Geom. 16(2), 225–231 (2023).
- [8] Crasmareanu, M.: The flow-curvature of curves in a geometric surface. Commun. Korean Math. Soc. 38(4), 1261–1269 (2023).
- [9] Çiftçi, Ü.: A generalization of Lancert's theorem. J. Geom. Phys. 59(12), 1597–1603 (2009).
- [10] Ekmekci, N., Okuyucu, O.Z., Yaylı, Y.: Characterization of speherical helices in Euclidean 3-space. Analele Stiint. ale Univ. Ovidius Constanta 22(2), 99–108 (2014).
- [11] Ferrández, A., Giménez, A., Lucas, P.: Null generalized helices in Lorentz-Minkowski spaces. J. Phys. A Math. Gen. 36(39), 8243–8251 (2002).
- [12] Izumiya, S., Takeuchi, N.: New special curves and developable surfaces. Turk. J. Math. 28(2), 153–163 (2004).
- [13] Kula, L., Yaylı, Y.: On slant helix and its spherical indicatrix. Appl. Math. Comput. 169(1), 600-607 (2005).
- [14] Kula, L., Ekmekci, N., Yaylı, Y., İlarslan K.: Characterizations of slant helices in Euclidean 3-space. Turk. J. Math. 34, 261-273 (2010).
- [15] Lancret, M.: Mémoire sur les courbes á double courbure. Mémoires présentés á l'Institut1. 416-454 (1806).
- [16] Lucas, P., Ortega-Yagües, J.A.: Slant helices in the Euclidean 3-space revisited. Bull. Belg. Math. Soc. Simon Stevin 23(1), 133–150 (2016).
- [17] Lucas, P., Ortega-Yagües, J.A.: Slant helices in the three-dimensional sphere. J. Korean Math. Soc. 54(4), 1331–1343 (2017).
- [18] Lucas, P., Ortega-Yagües, J.A.: Slant helices: a new approximation. Turk. J. Math. 43(1), 473-485 (2019).
- [19] Okuyucu, O.Z., Gök, İ., Yaylı, Y., Ekmekci, N.: Slant helices in three dimensional Lie groups. Appl. Math. Comput. 221, 672-683 (2013).
- [20] Scofield, P.D.: Curves of constant precession. Am. Math. Mon. 102(6), 531–537 (1995).
- [21] Struik, D.J.:Lectures on classical differential geometry. Dover Publications, Inc., New York (1988).
- [22] Yampolsky, A., Opariy, A.: Generalized helices in three-dimensional Lie groups. Turk. J. Math. 43, 1447-1455 (2019).

#### **Affiliations**

Cansu Özyurt Anar

ADDRESS: Ankara University, Department of Mathematics, 06560, Ankara-Turkey.

E-MAIL: cansozyurt@gmail.com

ORCID ID:0000-0001-6720-2975

YUSUF YAYLI

ADDRESS: Ankara University, Department of Mathematics, 06560, Ankara-Turkey.

E-MAIL: yayli@science.ankara.edu.tr

ORCID ID:0000-0003-4398-3855

NEJAT EKMEKCI

ADDRESS: Ankara University, Department of Mathematics, 06560, Ankara-Turkey.

E-MAIL: ekmekci@science.ankara.edu.tr

ORCID ID:0000-0003-1246-2395