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ABSTRACT

A representation of time-dependent rotation of a usual Frenet flow is called flow-frame; the angle
of rotation is exactly the current parameter. In this paper, we investigate three types of helices in
the Euclidean 3-space through flow-frame and give their geometric description with flow-frame
apparatus. Then, we introduce the spherical images of a curve by translating flow-frame vectors to
the center of the unit sphere in the Euclidean 3-space R3. Besides, we examine the relationships
between a generalized helix and its spherical images.
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1. Introduction

In the Euclidean 3-space R3, a curve of constant slope or general helix is defined by the property that the
tangent line makes a constant angle with a fixed direction called the axis of the general helix (see [15, 20]). A
classical result stated by M. A. Lancret in 1802 and first demonstrated by B de Saint Venant in 1845 ([21]): "A
necessary and sufficient condition that the curve be a general helix is that the ratio of curvature to torsion be
constant."
In a similar way, slant helices are defined by the property that their principal normal makes a constant angle
with a fixed direction. The term slant helix was first introduced by Izumiya and Takeuchi ([12]); however, slant
helices have been studied in different space forms, as well. (see [1, 14, 16, 17, 18]).
The Lancret theorem was revisited and solved by Barros ([3]) in 3-dimensional real space forms, where he used
Killing vector fields along a curve. Besides, Lancret theorem for general helices in 3-dimensional Lorentzian
space forms was presented in ([4]). Also see ([11]) for Lancret-type theorem for null generalized helices in
the Lorentz-Minkowski spaces Ln. Moreover, many researchers have introduced the concept of helices in Lie
groups by using the fixed invariant directions ([9, 19, 22]).
The flow-frame with the flow-curvature of a curve, which is a new frame involves the time-dependent rotation
of the usual Frenet flow ([5, 6, 7, 8]).
In this note, we deal with three types of generalized helices according to flow-frame in the 3-dimensional
Euclidean space. We introduce some necessary and sufficient conditions for these generalized helices. Also, we
present the spherical indicatrices of a curve by translating new frame’s vector fields to the center of unit sphere
(for details, see [2, 10, 13]). Furthermore, we show that the spherical image of a curve with flow-frame is a circle
if and only if the curve is a generalized helix of the first, second or third kind. Also, we give some differential
equations to determine the relationships between the generalized helices and their spherical images.
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2. Preliminaries

Let R3 be the three-dimensional Euclidean space equipped with the inner product ⟨a, b⟩ = a1b1 + a2b2 + a3b3,
where a = (a1, a2, a3) and b = (b1, b2, b3) ∈ R3. The norm of vector a is given by ||a|| =

√
⟨a, a⟩ and a vector

product is given by

a× b = det

e1 e2 e3
a1 a2 a3
b1 b2 b3

 ,

where {e1, e2, e3} is the canonical basis of R3.
Let γ : I ⊂ R → R3 be a regular curve in R3 defined on a real interval I = (α, β), that has at least four continuous
derivatives. The arc-length of a curve γ, measured from γ(t0), t0 ∈ I is

s(t) =

∫ t

t0

||γ̇(ρ)||dρ.

Throughout in this paper, we denote the arc-length by s.
The sphere of radius r > 0 and with center in the origin in the space R3 is defined by

S2 =
{
q = (q1, q2, q3) ∈ R3 : ⟨q, q⟩ = r2

}
.

Denote by {T,N,B} the standart Frenet frame along the curve γ where T (s) is the tangent, N(s) is the principal
normal and B(s) is the binormal vector and the pair (curvature, torsion) = (κ, τ). Then, the Frenet equations
are given by the following relations: T ′(s)

N ′(s)
B′(s)

 =

 0 κ(s) 0(t)
−κ(s) 0 τ(s)

0 −τ(s) 0

T (s)
N(s)
B(s)

 .

Here, curvature functions are defined by κ = κ(s) = ||T ′|| and τ(s) = −⟨N,B′⟩.

The flow-frame with the flow-curvature of bi-regular curve γ is a new frame involving the time-dependent
rotation of the usual Frenet flow, which is expressed as follows with the rotation R(t): T (t)

F2(t)
F3(t)

 :=

(
1 02(h)

02(v) R(t)

)T (t)
N(t)
B(t)

 , 02(h) :=
(
0 0

)
, 02(v) :=

(
0
0

)
.

Here

R(t) =

(
cos t − sin t
sin t cos t

)
∈ SO(2).

Then, the moving equation yieldsT ′(t)
F ′
2(t)

F ′
3(t)

 = ||γ′(t)||

 0 κ2(t) κ3(t)
−κ2(t) 0 κ4(t)
−κ3(t) −κ4(t) 0

 T (t)
F2(t)
F3(t)

 . (2.1)

With a simple computation, we obtain

κ2(t) = κ(t) cos t, κ3(t) = κ(t) sin t, κ4(t) = τ(t)− 1

||γ′(t)||
.

3. Generalized helices according to flow-frame

Definition 3.1. Let γ be a bi-regular curve with the flow-frame {T, F2, F3}. The curve γ is called the generalized
helix of the first, second, or third kind with axis ξ if there exists a unit vector field ξ such that ⟨T, ξ⟩ =
const, ⟨F2, ξ⟩ = const, or ⟨F3, ξ⟩ = const, respectively.
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Theorem 3.1. A unit speed bi-regular curve γ with κ3(s) ̸= 0 is a generalized helix of the first kind if and only if

η1(s) =

(
(H1κ2 + κ3)

√
1 +H2

1

(H ′
1 − κ4(1 +H2

1 ))

)
(s)

is a constant function, where H1(s) =
κ2(s)
κ3(s)

.

Proof. If γ is a generalized helix of the first kind then there exists a unit vector field ξ such that ⟨T, ξ⟩ = cos θ,
where θ is a constant. Since ξ′ = 0, then using equation 2.1 we get

κ2⟨F2, ξ⟩+ κ3⟨F3, ξ⟩ = 0.

Hence,
⟨F3, ξ⟩ = −κ2

κ3
⟨F2, ξ⟩ = −H1⟨F2, ξ⟩, (3.1)

where H1 = κ2

κ3
. Therefore, ⟨F ′

3, ξ⟩ = −H ′
1⟨F2, ξ⟩ −H1⟨F ′

2, ξ⟩. From equation 2.1 ⟨−κ3T − κ4F2, ξ⟩ = −H ′
1⟨F2, ξ⟩ −

H1⟨−κ2T + κ4F3, ξ⟩. Using ⟨T, ξ⟩ = cos θ and equation 3.1 we get

⟨F2, ξ⟩(H ′
1 − κ4(1 +H2

1 )) = cos θ(H1κ2 + κ3).

It means that
⟨F2, ξ⟩ =

cos θ(H1κ2 + κ3)

H ′
1 − κ4(1 +H2

1 )
. (3.2)

In combination with 3.1, we get

ξ =

(
T +

(H1κ2 + κ3)

(H ′
1 − κ4(1 +H2

1 ))
F2 −

H1(H1κ2 + κ3)

(H ′
1 − κ4(1 +H2

1 )
F3

)
cos θ.

Since |ξ| = 1, (
1 +

(H1κ2 + κ3)
2

(H ′
1 − κ4(1 +H2

1 ))
2
+

H2
1 (H1κ2 + κ3)

2

(H ′
1 − κ4(1 +H2

1 )
2

)
=

1

cos2 θ
.

Thus, we obtain that
(H1κ2 + κ3)

√
1 +H2

1

(H ′
1 − κ4(1 +H2

1 ))
= tan θ. (3.3)

Moreover, 3.3 implies

ξ =

(
cos θT +

1√
1 +H2

1

sin θF2 −
H1√
1 +H2

1

sin θF3

)
. (3.4)

Conversely, take ξ given by 3.4 and suppose 3.3 fulfilled. Then

(a) = ⟨T, ξ⟩ = cos θ; (b) = ⟨F2, ξ⟩ =
1√

1 +H2
1

sin θ; (c) = ⟨F3, ξ⟩ = − H1√
1 +H2

1

sin θ.

The derivative of (a) yields ⟨T ′, ξ⟩+ ⟨T, ξ′⟩ = 0. Using 2.1, we obtain

κ2⟨F2, ξ⟩+ κ3⟨F3, ξ⟩+ ⟨T, ξ′⟩ = 0

or
κ3 (H1⟨F2, ξ⟩+ ⟨F3, ξ⟩) + ⟨T, ξ′⟩ = 0.

From 3.1, it follows that ⟨T, ξ′⟩ = 0.
The derivative of (b) yields

⟨F2, ξ
′⟩ = d

ds
⟨F2, ξ⟩ − ⟨F ′

2, ξ⟩

=
d

ds

(
1√

1 +H2
1

sin θ

)
+ κ2⟨T, ξ⟩ − κ4⟨F3, ξ⟩

= − H ′
1H1

(1 +H2
1 )

3/2
sin θ + κ2⟨T, ξ⟩ − κ4⟨F3, ξ⟩.
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We can express H ′
1 from 3.2, then using (a), (b) and (c), we get

⟨F2, ξ
′⟩ = − H1

(1 +H2
1 )

3/2
sin θ

(
cos θ

sin θ
(H1κ2 + κ3)

√
1 +H2

1 + κ4

(
1 +H2

1

))
+ κ2 cos θ +

κ4H1√
1 +H2

1

sin θ

=

(
−H1 (H1κ2 + κ3)

1 +H2
1

cos θ − H1κ4√
1 +H2

1

sin θ

)
+ κ2 cos θ +

κ4H1√
1 +H2

1

sin θ

= 0.

In a similar way, the derivative of (c) yields

⟨F3, ξ
′⟩ = d

ds
⟨F3, ξ⟩ − ⟨F ′

3, ξ⟩

=
d

ds

(
− H1√

1 +H2
1

sin θ

)
+ κ3⟨T, ξ⟩+ κ4⟨F2, ξ⟩

= − H ′
1

(1 +H2
1 )

3/2
sin θ + κ3⟨T, ξ⟩+ κ4⟨F2, ξ⟩.

Again, we can express H ′
1 from 3.2, then using (a) and (b), we get

⟨F3, ξ
′⟩ = − 1

(1 +H2
1 )

3/2
sin θ

(
cos θ

sin θ
(H1κ2 + κ3)

√
1 +H2

1 + κ4

(
1 +H2

1

))
+ κ3 cos θ +

κ4√
1 +H2

1

sin θ

=

(
− (H1κ2 + κ3)

1 +H2
1

cos θ − κ4√
1 +H2

1

sin θ

)
+ κ3 cos θ +

κ4√
1 +H2

1

sin θ

= 0.

Since ⟨T, ξ′⟩ = 0, ⟨F2, ξ
′⟩ = 0, and ⟨F3, ξ

′⟩ = 0, we have ξ′ = 0. This completes the proof.

Theorem 3.2. Let γ be a unit speed bi-regular curve with flow-frame, then γ is a generalized helix of the first kind if and
only if

det (T ′, T ′′, T ′′′) = 0.

Proof. Suppose that η1 is constant. Then, the following equalities are satisfied

T ′ = κ2F2 + κ3F3,

T ′′ =
(
−κ2

2 − κ2
3

)
T + (κ′

2 − κ3κ4)F2 + (κ′
3 + κ2κ4)F3,

T ′′′ = −3 (κ2κ
′
2 + κ3κ

′
3)T +

(
κ′′
2 − 2κ′

3κ4 − κ3κ
′
4 − κ2

(
κ2
2 + κ2

3 + κ2
4

))
F2

+
(
κ′′
3 + 2κ′

2κ4 + κ2κ
′
4 − κ3

(
κ2
2 + κ2

3 + κ2
4

))
F3.

So, we get

det (T ′, T ′′, T ′′′) = det



0 κ2 κ3(
−κ2

2 − κ2
3

)
(κ′

2 − κ3κ4) (κ′
3 + κ2κ4)

−3 (κ2κ
′
2 + κ3κ

′
3)

κ′′
2 − 2κ′

3κ4 − κ3κ
′
4

− κ2

(
κ2
2 + κ2

3 + κ2
4

) κ′′
3 + 2κ′

2κ4 + κ2κ
′
4

− κ3

(
κ2
2 + κ2

3 + κ2
4

)

 .

Therefore, we can calculate that

det (T ′, T ′′, T ′′′) = η′1
(
1/η21

) (
κ2
2 + κ2

3

)5/2
.
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Since γ is a curve with flow-frame and η1 is constant, we have

det (T ′, T ′′, T ′′′) = 0.

Conversely, assume that det (T ′, T ′′, T ′′′) = 0. Since η′1 is zero, it follows that η1 is constant.

Theorem 3.3. A unit speed bi-regular curve γ with κ4(s) ̸= 0 is a generalized helix of the second kind if and only if

η2(s) =

(
(H2κ2 + κ4)

√
1 +H2

2

(H ′
2 + κ3(1 +H2

2 ))

)
(s)

is a constant function, where H2(s) =
κ2(s)
κ4(s)

.

Proof. If γ is a generalized helix of the second kind then there exists a unit vector field ξ such that ⟨F2, ξ⟩ = cos θ,
where θ is a constant. Since ξ′ = 0, then using equation 2.1 we get

−κ2⟨T, ξ⟩+ κ4⟨F3, ξ⟩ = 0.

Hence,
⟨F3, ξ⟩ =

κ2

κ4
⟨T, ξ⟩ = H2⟨T, ξ⟩, (3.5)

where H2 = κ2

κ4
. Therefore, ⟨F ′

3, ξ⟩ = H ′
2⟨T, ξ⟩+H2⟨T ′, ξ⟩. From equation 2.1 ⟨−κ3T − κ4F2, ξ⟩ = H ′

2⟨T, ξ⟩+
H2⟨κ2F2 + κ3F3, ξ⟩. Using ⟨F2, ξ⟩ = cos θ and equation 3.5 we get

⟨T, ξ⟩(H ′
2 + κ3(1 +H2

2 )) = − cos θ(H2κ2 + κ4).

It means that
⟨T, ξ⟩ = cos θ(H2κ2 + κ4)

H ′
2 + κ3(1 +H2

2 )
. (3.6)

In combination with 3.5, we get

ξ =

(
− (H2κ2 + κ4)

(H ′
2 + κ3(1 +H2

2 ))
T + F2 −

H2(H2κ2 + κ4)

(H ′
2 + κ3(1 +H2

2 )
F3

)
cos θ.

Since |ξ| = 1, (
(H2κ2 + κ4)

2

(H ′
2 + κ3(1 +H2

2 ))
2
+ 1 +

H2
2 (H2κ2 + κ4)

2

(H ′
2 + κ3(1 +H2

2 )
2

)
=

1

cos2 θ
.

Thus, we obtain that
(H2κ2 + κ4)

√
1 +H2

2

(H ′
2 + κ3(1 +H2

2 ))
= tan θ. (3.7)

Moreover, 3.7 implies

ξ =

(
− 1√

1 +H2
2

sin θT + cos θF2 −
H2√
1 +H2

2

sin θF3

)
. (3.8)

Conversely, take the vector field ξ given by 3.8 and suppose 3.7 fulfilled. Then, by the same process as in the
proof of Theorem 3.1, we can check that ξ is a constant and ⟨F2, ξ⟩ = cos θ.

Theorem 3.4. Let γ be a unit speed bi-regular curve with flow-frame, then γ is a generalized helix of the second kind if
and only if

det (F ′
2, F

′′
2 , F

′′′
2 ) = 0.

Proof. Suppose that η2 is constant. We can calculate that

det (F ′
2, F

′′
2 , F

′′′
2 ) = η′2

(
1/η22

) (
κ2
2 + κ2

4

)5/2
.

Since γ is a curve with flow-frame and η2 is constant, we have

det (F ′
2, F

′′
2 , F

′′′
2 ) = 0.

Conversely, assume that det (F ′
2, F

′′
2 , F

′′′
2 ) = 0. Since η′2 is zero, then it is clear that η2 is constant.
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Theorem 3.5. A unit speed bi-regular curve γ with κ4(s) ̸= 0 is a generalized helix of the third kind if and only if

η3(s) =

(
(H3κ3 + κ4)

√
1 +H2

3

(H ′
3 − κ2(1 +H2

3 ))

)
(s)

is a constant function, where H3(s) =
κ3(s)
κ4(s)

.

Proof. If γ is a generalized helix of the third kind then there exists a unit vector field ξ such that ⟨F3, ξ⟩ = cos θ,
where θ is a constant. Since ξ′ = 0, then using equation 2.1 we get

−κ3⟨T, ξ⟩ − κ4⟨F2, ξ⟩ = 0.

Hence,
⟨F2, ξ⟩ = −κ3

κ4
⟨T, ξ⟩ = −H3⟨T, ξ⟩, (3.9)

where H3 = κ3

κ4
. Therefore, ⟨F ′

2, ξ⟩ = −H ′
3⟨T, ξ⟩ −H3⟨T ′, ξ⟩. From equation 2.1 ⟨−κ2T + κ4F3, ξ⟩ = −H ′

3⟨T, ξ⟩ −
H3⟨κ2F2 + κ3F3, ξ⟩. Using ⟨F3, ξ⟩ = cos θ and equation 3.9 we get

⟨T, ξ⟩(H ′
3 − κ2(1 +H2

3 )) = − cos θ(H3κ3 + κ4).

It means that

⟨T, ξ⟩ = − cos θ(H3κ3 + κ4)

H ′
3 − κ2(1 +H2

3 )
. (3.10)

In combination with 3.9, we get

ξ =

(
− (H3κ3 + κ4)

(H ′
3 − κ2(1 +H2

3 ))
T +

H3(H3κ3 + κ4)

(H ′
3 − κ2(1 +H2

3 )
F2 + F3

)
cos θ.

Since |ξ| = 1, (
(H3κ3 + κ4)

2

(H ′
3 − κ2(1 +H2

3 ))
2
+

H2
3 (H3κ3 + κ4)

2

(H ′
3 − κ2(1 +H2

3 )
2
+ 1

)
=

1

cos2 θ
.

Thus, we obtain that
(H3κ3 + κ4)

√
1 +H2

3

(H ′
3 − κ2(1 +H2

3 ))
= tan θ. (3.11)

Moreover, 3.11 implies

ξ =

(
− 1√

1 +H2
3

sin θT +
H3√
1 +H2

3

sin θF2 + cos θF3

)
. (3.12)

Conversely, take the vector field ξ given by 3.12 and suppose 3.11 fulfilled. Then, by the same process as in the
proof of Theorem 3.1, we can check that ξ is a constant and ⟨F3, ξ⟩ = cos θ.

Theorem 3.6. Let γ be a unit speed bi-regular curve with flow-frame, then γ is a generalized helix of the third kind if and
only if

det (F ′
3, F

′′
3 , F

′′′
3 ) = 0.

Proof. Suppose that η3 is constant. We can calculate that

det (F ′
3, F

′′
3 , F

′′′
3 ) = η′3

(
1/η23

) (
κ2
3 + κ2

4

)5/2
.

Since γ is a curve with flow-frame and η3 is constant, we have

det (F ′
3, F

′′
3 , F

′′′
3 ) = 0.

Conversely, assume that det (F ′
3, F

′′
3 , F

′′′
3 ) = 0. Since η′3 is zero, it follows that η3 is constant.
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4. New spherical images of a bi-regular curve

Let γ be a unit speed bi-regular curve in the Euclidean 3-space with {T, F2, F3}. Translating new frame’s
vector fields to the center of a unit sphere, generate new spherical images. If we translate the unit tangent
vector along a curve γ, we obtain γT = T on the unit sphere. The curve γT is called the spherical indicatrix of
T , in other words, tangent indicatrix of the curve γ. Similarly, one can consider the F2 indicatrix γF2

= F2 and
the F3 indicatrix γF3 = F3.
In this section, we introduce a representation of spherical indicatrices of a bi-regular curve with flow-frame
in the Euclidean 3-space R3 and then investigate the relationships between the helices and their spherical
indicatrices.
D denotes the covariant differentiation of R3.

4.1. Tangent indicatrix of a bi-regular curve

Give a unit speed bi-regular space curve γ with flow-frame and its tangent indicatrix γT (sT ) = T (s) with the
natural representation sT . If the Serret-Frenet frame of γT is {T,N,B}, then we have the following formula:T′(sT )

N′(sT )
B′(sT )

 =

 0 κT 0
−κT 0 τT
0 −τT 0

T(sT )
N(sT )
B(sT )

 (4.1)

where 

T =
H1F2 + F3√

1 +H2
1

,

N =
f1√
1 + f2

1

(
H1F3 − F2√

1 +H2
1

− T

f1

)
,

B =
1√

1 + f2
1

(
H1F3 − F2√

1 +H2
1

+ f1T

)
,

(4.2)

and
sT =

∫ √
κ2
2 + κ2

3ds+ c, κT =
√

1 + f2
1 , τT = −σ1

√
1 + f2

1 , (4.3)

where
f1 =

1

η1
, (4.4)

and
σ1 =

f ′
1√

κ2
2 + κ2

3 (1 + f2
1 )

3/2
. (4.5)

Here, κT and τT are the curvature and the torsion of the curve γT , respectively. Therefore, we have
τT
κT

= −σ1. (4.6)

Theorem 4.1. Give a bi-regular unit speed curve γ with flow-frame {T, F2, F3} and the curvatures κ2, κ3, κ4. γ is a
generalized helix of the first kind if and only if γT is a circle.

Proof. Suppose that γ is a generalized helix of the first kind. From 4.3 the curvature and the torsion of γT

κT =
√

1 + f2
1 , τT = −σ1

√
1 + f2

1

respectively. Since η1 is a constant function, from 4.4 f1 is also a constant function which leads to σ1 = 0.
Therefore, κT is a non-zero constant and τT = 0. Hence, γT is a circle.
Conversely, assume that γT is a circle. Then it is obvious.

Corollary 4.1. Give a bi-regular unit speed curve γ with flow-frame {T, F2, F3} and the curvatures κ2, κ3, κ4. γ is a
generalized helix of the first kind if and only if the T and the N vector field of γT satisfy the following equations:

(i)D2
TT+ κ2

TT = 0,

(ii)D2
TN+ κ2

TN = 0.
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Theorem 4.2. Give a bi-regular unit speed curve γ with flow-frame {T, F2, F3}. We denote the curvature and the torsion
of γT by κT and τT , respectively. γT is a generalized helix of the second kind if and only if

δT (s) =

(
κ2
T

(κ2
T + τ2T )

3/2

(
τT
κT

)′
)
(s)

is a constant function.

Theorem 4.3. Give a bi-regular unit speed curve γ with flow-frame {T, F2, F3}. We denote the curvature and the torsion
of γT by κT and τT , respectively. γT is a generalized helix of the second kind if and only if the curve β : I ⊂ R → R2,
β(s) = (β1(s), β2(s)) is a circle, where β1(s) =

∫
κT (s)ds and β2(s) =

∫
τT (s)ds.

Proof. We can calculate that the curvature of the curve β

κβ =
β′
1β

′′
2 − β′′

1β
′
2

((β′
1)

2 + (β′
2)

2)3/2
=

κ2
T

(κ2
T + τ2T )

3/2

(
τT
κT

)′

= δT (s).

Thus, κβ = δT = constant. This completes the proof.

4.2. F2 indicatrix of a bi-regular curve

Give a unit speed bi-regular space curve γ with flow-frame and its F2 indicatrix γF2(sF2) = F2(s) with the
natural representation sF2

. If the Serret-Frenet frame of γF2
is {T ,N ,B}, then we have the following formula:T ′(sF2)

N ′(sF2)
B′(sF2

)

 =

 0 κF2 0
−κF2 0 τF2

0 −τF2
0

T (sF2)
N (sF2)
B(sF2

)

 (4.7)

where 

T =
−H2T + F3√

1 +H2
2

,

N =
f2√
1 + f2

2

(
H2F3 + T√

1 +H2
2

− F2

f2

)
,

B =
1√

1 + f2
2

(
H2F3 + T√

1 +H2
2

+ f2F2

)
,

(4.8)

and
sF2

=

∫ √
κ2
2 + κ2

4ds+ c, κF2
=
√

1 + f2
2 , τF2

= −σ2

√
1 + f2

2 , (4.9)

where
f2 =

1

η2
, (4.10)

and
σ2 =

f ′
2√

κ2
2 + κ2

4 (1 + f2
2 )

3/2
. (4.11)

Here, κF2
and τF2

are the curvature and the torsion of the curve γF2
, respectively. Therefore, we have

τF2

κF2

= −σ2. (4.12)

Theorem 4.4. Give a bi-regular unit speed curve γ with flow-frame {T, F2, F3} and the curvatures κ2, κ3, κ4. γ is a
generalized helix of the second kind if and only if γF2

is a circle.

Proof. Suppose that γ is a generalized helix of the second kind. From 4.9 the curvature and the torsion of γF2

κF2
=
√

1 + f2
2 , τF2

= −σ2

√
1 + f2

2

respectively. Since η2 is a constant function, from 4.10 f2 is also a constant function which leads to σ2 = 0.
Therefore, κF2

is a non-zero constant and τF2
= 0. Hence, γF2

is a circle.
Conversely, assume that γF2

is a circle. Then it is obvious.
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Corollary 4.2. Give a bi-regular unit speed curve γ with flow-frame {T, F2, F3} and the curvatures κ2, κ3, κ4. γ is a
generalized helix of the second kind if and only if the T and the N vector field of γF2 satisfy the following equations:

(i)D2
T T + κ2

F2
T = 0,

(ii)D2
T N + κ2

F2
N = 0.

Theorem 4.5. Give a bi-regular unit speed curve γ with flow-frame {T, F2, F3}. We denote the curvature and the torsion
of γF2 by κF2 and τF2 , respectively. γF2 is a generalized helix of the second kind if and only if

δF2
(s) =

(
κ2
F2

(κ2
F2

+ τ2F2
)3/2

(
τF2

κF2

)′
)
(s)

is a constant function.

Theorem 4.6. Give a bi-regular unit speed curve γ with flow-frame {T, F2, F3}. We denote the curvature and the torsion
of γF2

by κF2
and τF2

, respectively. γF2
is a generalized helix of the second kind if and only if the curve β : I ⊂ R → R2,

β(s) = (β1(s), β2(s)) is a circle, where β1(s) =
∫
κF2(s)ds and β2(s) =

∫
τF2(s)ds.

Proof. We can calculate that the curvature of the curve β

κβ =
β′
1β

′′
2 − β′′

1β
′
2

((β′
1)

2 + (β′
2)

2)3/2
=

κ2
F2

(κ2
F2

+ τ2F2
)3/2

(
τF2

κF2

)′

= δF2
(s).

Thus, κβ = δF2
= constant. This completes the proof.

4.3. F3 indicatrix of a bi-regular curve

Give a unit speed bi-regular space curve γ with flow frame and its F3 indicatrix γF3
(sF3

) = F3(s) with the
natural representation sF3

. If the Serret-Frenet frame of γF3
is {T,N,B}, then we have the following formula:T′(sF3

)
N′(sF3

)
B′(sF3

)

 =

 0 κF3
0

−κF3
0 τF3

0 −τF3 0

T(sF3
)

N(sF3
)

B(sF3)

 (4.13)

where 

T =
−H3T − F2√

1 +H2
3

,

N =
f3√
1 + f2

3

(
T −H3F2√

1 +H2
3

− F3

f3

)
,

B =
1√

1 + f2
3

(
T −H3F2√

1 +H2
3

+ f3F3

)
,

(4.14)

and
sF3

=

∫ √
κ2
3 + κ2

4ds+ c, κF3
=
√

1 + f2
3 , τF3

= −σ3

√
1 + f2

3 , (4.15)

where
f3 =

1

η3
, (4.16)

and
σ3 =

f ′
3√

κ2
3 + κ2

4 (1 + f2
3 )

3/2
. (4.17)

Here, κF3
and τF3

are the curvature and torsion of the curve γF3
, respectively. Therefore, we have

τF3

κF3

= −σ3. (4.18)

Theorem 4.7. Give a bi-regular unit speed curve γ with flow-frame {T, F2, F3} and the curvatures κ2, κ3, κ4. γ is a
generalized helix of the third kind if and only if γF3

is a circle.
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Proof. Suppose that γ is a generalized helix of the third kind. From 4.15 the curvature and the torsion of γF3

κF3 =
√

1 + f2
3 , τF3 = −σ3

√
1 + f2

3

respectively. Since η3 is a constant function, from 4.16 f3 is also a constant function which leads to σ3 = 0.
Therefore, κF3

is a non-zero constant and τF3
= 0. Hence, γF3

is a circle.
Conversely, assume that γF3

is a circle. Then it is obvious.

Corollary 4.3. Give a bi-regular unit speed curve γ with flow-frame {T, F2, F3} and the curvatures κ2, κ3, κ4. γ is a
generalized helix of the third kind if and only if the T and the B vector field of γF3 satisfy the following equations:

(i)D2
TT+ κ2

F3
T = 0,

(ii)D2
TB+ κ2

F3
B = 0.

Theorem 4.8. Give a bi-regular unit speed curve γ with flow-frame {T, F2, F3}. We denote the curvature and the torsion
of γF3

by κF3
and τF3

, respectively. γF3
is a generalized helix of the second kind if and only if

δF3(s) =

(
κ2
F3

(κ2
F3

+ τ2F3
)3/2

(
τF3

κF3

)′
)
(s)

is a constant function.

Theorem 4.9. Give a bi-regular unit speed curve γ with flow-frame {T, F2, F3}. We denote the curvature and the torsion
of γF3

by κF3
and τF3

, respectively. γF3
is a generalized helix of the second kind if and only if the curve β : I ⊂ R → R2,

β(s) = (β1(s), β2(s)) is a circle, where β1(s) =
∫
κF3

(s)ds and β2(s) =
∫
τF3

(s)ds.

Proof. We can calculate that the curvature of the curve β

κβ =
β′
1β

′′
2 − β′′

1β
′
2

((β′
1)

2 + (β′
2)

2)3/2
=

κ2
F3

(κ2
F3

+ τ2F3
)3/2

(
τF3

κF3

)′

= δF3
(s).

Thus κβ = δF3
= constant. This completes the proof.

5. Examples

In this section, we give some examples how to find a regular curve’s flow-frame and illustrate the new
spherical images.

Example 5.1. First, let us consider a unit speed circular helix of R3 by

α = α(s) =

(
cos

s

2
,

√
2

2
sin

s

2
−

√
6

4
s+ 2,

√
2

2
sin

s

2
+

√
6

4
s+ 3

)
. (5.1)

One can calculate its Frenet-Serret apparatus as the following

T =

(
−1

2
sin

s

2
,

√
2

4
cos

s

2
−

√
6

4
,

√
2

4
cos

s

2
+

√
6

4

)
,

N =

(
−cos

s

2
,−

√
2

2
sin

s

2
,−

√
2

2
sin

s

2

)
,

B =

(√
3

2
sin

s

2
,−

√
2

4
−

√
6

4
cos

s

2
,

√
2

4
−

√
6

4
cos

s

2

)
,

κ =
1

4
,

τ =

√
3

4
.

(5.2)

We plot the classical spherical images of α in Figure 1 to compare our new spherical images.
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Figure 1. Spherical images of α = α(s) with respect to Frenet-Serret frame.

Now we focus on the flow-frame. We can write the transformation matrix.

 T (s)
F2(s)
F3(s)

 :=

1 0 0
0 cos s −sin s
0 sin s cos s

T (s)
N(s)
B(s)

 . (5.3)

One can obtain flow-frame of α as follows:

T =

(
−1

2
sin

s

2
,

√
2

4
cos

s

2
−

√
6

4
,

√
2

4
cos

s

2
+

√
6

4

)
,

F2 =

 −cos s cos s
2 −

√
3
2 sin s

2sin s,

−
√
2
2 sin s

2cos s+
√
2
4 sin s+

√
6
4 sin s cos s

2 ,

−
√
2
2 sin s

2cos s−
√
2
4 sin s+

√
6
4 sin s cos s

2

 ,

F3 =

 −sin s cos s
2 +

√
3
2 sin s

2cos s,

−
√
2
2 sin s

2sin s−
√
2
4 cos s−

√
6
4 cos s

2cos s,

−
√
2
2 sin s

2sin s+
√
2
4 cos s−

√
6
4 cos s

2cos s

 ,

κ2 =
1

4
cos s,

κ3 =
1

4
sin s,

κ4 =

√
3− 4

4
.

(5.4)

So, we can illustrate new spherical images, see Figure 2.

Example 5.2. Consider some other unit speed circular helix of R3 by

β = β(s) =

(
5cos

s

13
, 5sin

s

13
,
12s

13

)
. (5.5)

One can calculate its Frenet-Serret apparatus as the following
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Figure 2. Tangent, F2 and F3 spherical images of α = α(s).

Figure 3. Spherical images of β = β(s) with respect to Frenet-Serret frame.



T =

(
− 5

13
sin

s

13
,
5

13
cos

s

13
,
12

13

)
,

N =
(
−cos

s

13
,−sin

s

13
, 0
)
,

B =

(
12

13
sin

s

13
,−12

13
cos

s

13
,
5

13

)
,

κ =
5

169
,

τ =
12

169
.

(5.6)

First, we plot the classical spherical images of β in Figure 3 to compare our new spherical images.
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Figure 4. Tangent, F2 and F3 spherical images of β = β(s).

By using the transformation matrix, we can obtain flow-frame of β as follows:

T =

(
− 5

13
sin

s

13
,
5

13
cos

s

13
,
12

13

)
,

F2 =

(
−cos s cos

s

13
− 12

13
sin

s

13
sin s,−sin

s

13
cos s+

12

13
sin s cos

s

13
,− 5

13
sin s

)
,

F3 =

(
−sin s cos

s

13
+

12

13
sin

s

13
cos s,−sin s sin

s

13
− 12

13
cos s cos

s

13
,
5

13
cos s

)
,

κ2 =
5

169
cos s,

κ3 =
5

169
sin s,

κ4 = −157

169
.

(5.7)

So, we can illustrate new spherical images, see Figure 4.
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