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ABSTRACT

A representation of time-dependent rotation of a usual Frenet flow is called flow-frame; the angle
of rotation is exactly the current parameter. In this paper, we investigate three types of helices in
the Euclidean 3-space through flow-frame and give their geometric description with flow-frame
apparatus. Then, we introduce the spherical images of a curve by translating flow-frame vectors to
the center of the unit sphere in the Euclidean 3-space R®. Besides, we examine the relationships
between a generalized helix and its spherical images.
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1. Introduction

In the Euclidean 3-space R3, a curve of constant slope or general helix is defined by the property that the
tangent line makes a constant angle with a fixed direction called the axis of the general helix (see [15, 20]). A
classical result stated by M. A. Lancret in 1802 and first demonstrated by B de Saint Venant in 1845 ([21]): "A
necessary and sufficient condition that the curve be a general helix is that the ratio of curvature to torsion be
constant."

In a similar way, slant helices are defined by the property that their principal normal makes a constant angle
with a fixed direction. The term slant helix was first introduced by Izumiya and Takeuchi ([12]); however, slant
helices have been studied in different space forms, as well. (see [1, 14, 16, 17, 18]).

The Lancret theorem was revisited and solved by Barros ([3]) in 3-dimensional real space forms, where he used
Killing vector fields along a curve. Besides, Lancret theorem for general helices in 3-dimensional Lorentzian
space forms was presented in ([4]). Also see ([11]) for Lancret-type theorem for null generalized helices in
the Lorentz-Minkowski spaces .. Moreover, many researchers have introduced the concept of helices in Lie
groups by using the fixed invariant directions ([9, 19, 22]).

The flow-frame with the flow-curvature of a curve, which is a new frame involves the time-dependent rotation
of the usual Frenet flow ([5, 6, 7, 8]).

In this note, we deal with three types of generalized helices according to flow-frame in the 3-dimensional
Euclidean space. We introduce some necessary and sufficient conditions for these generalized helices. Also, we
present the spherical indicatrices of a curve by translating new frame’s vector fields to the center of unit sphere
(for details, see [2, 10, 13]). Furthermore, we show that the spherical image of a curve with flow-frame is a circle
if and only if the curve is a generalized helix of the first, second or third kind. Also, we give some differential
equations to determine the relationships between the generalized helices and their spherical images.
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2. Preliminaries

Let R3 be the three-dimensional Euclidean space equipped with the inner product (a,b) = a1b1 + azbs + asbs,
where a = (a1,a2,a3) and b= (b1, b2, b3) € R3. The norm of vector a is given by ||a|| = \/(a,a) and a vector

product is given by
€1 €2 €3
axb=det|as a2 ag]|,
bi by b

where {e1, 2, e3} is the canonical basis of R3.
Lety: I C R — R?®be aregular curve in R? defined on a real interval I = (o, 3), that has at least four continuous
derivatives. The arc-length of a curve v, measured from (o), to € I is

(1) = / (o) dp.

Throughout in this paper, we denote the arc-length by s.
The sphere of radius r > 0 and with center in the origin in the space R? is defined by

52 = {q = ((Ilv(IZa(IS) c ]Rg : <q,q> — 7“2} )

Denote by {T', N, B} the standart Frenet frame along the curve  where T'(s) is the tangent, N(s) is the principal
normal and B(s) is the binormal vector and the pair (curvature, torsion) = (k, 7). Then, the Frenet equations
are given by the following relations:

T'( 0 k(s)  0(t) T(s)
N'(s) | = | —=x(s) 0 7(s) N(s) | .
B'(s) 0 —7(s) 0 B(s)

Here, curvature functions are defined by « = «(s) = ||T"|| and 7(s) = —(N, B’).

»
~—

The flow-frame with the flow-curvature of bi-regular curve v is a new frame involving the time-dependent
rotation of the usual Frenet flow, which is expressed as follows with the rotation R(¢):

T N S 0
() = ot 58 (5 =0 w0

R(t) = <COSt _Sint> € 50(2).

sint cost

Here

Then, the moving equation yields

(1) 0 kelt) ms(d)\ [T
E@) | =1V OI | —ro(t) 0 walt) | | Fa(t) ] - (2.1)
F3(t) —r3(t) —ka(t) O Fy(t)

With a simple computation, we obtain

~
~—

ko(t) = k(t) cost, rs(t) = k(t)sint, ka(t) =7(t)

3. Generalized helices according to flow-frame

Definition 3.1. Let v be a bi-regular curve with the flow-frame {7, F», F3}. The curve v is called the generalized
helix of the first, second, or third kind with axis ¢ if there exists a unit vector field ¢ such that (T,¢) =
const, (Fy,€) = const, or (F3, &) = const, respectively.
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Theorem 3.1. A unit speed bi-regular curve v with k3(s) # 0 is a generalized helix of the first kind if and only if

K2 K, 12
ni(6) = ((H1 +r3)/1+ H >(8)

(Hi = ra(1 + HY))

is a constant function, where Hq(s) = 228

Proof. If ~ is a generalized helix of the first kind then there exists a unit vector field ¢ such that (7', §) = cos 0,
where 6 is a constant. Since £’ = 0, then using equation 2.1 we get

ko (Fy, &) + r3(F3,€) = 0.

Hence, .
@&@:féﬁbaz—mﬂhﬁ, 3.1)

where Hy = 2. Therefore, (F3, &) = —H/{(F», &) — Hi(F3, §). From equation 2.1 (—r3T' — k4 F>,§) = —H{(F3,§) —
Hy(—kaT + k4 F3,€). Using (T, &) = cos § and equation 3.1 we get

(Fp,€)(H, — ka(1 4+ H?)) = cos O(Hy Ky + K3).

It means that
cos O(Hika + K3)

F = ) 2
In combination with 3.1, we get
(Hyko + K3) Hy(H1k2 + K3)
5( (H] —ra(L+ HD) ° (H —ma(l+ H) °) ™
Since |¢| =1,
14 (H1/€2+I€3)2 H%(H1K2+I€3)2 _ 1
(H] —ka(1+ H?))?  (H, — ka(1 + H?)? cos? 0’
Thus, we obtain that
. / 2
(Haky + ria) /1 + Hy = tand. (3.3)
(Hi — ra(1+ HP))
Moreover, 3.3 implies
1 H,
= | cosOT + ———=sinfFy, — ————sinfF3 | . 3.4
¢ ( i T e 3) G4

Conversely, take ¢ given by 3.4 and suppose 3.3 fulfilled. Then
(a) = (T’ &) = cosb; (b) = (F3,§) = —=—==sinb; (¢) = (F},£) = ———==sin.

The derivative of (a) yields (I”,&) + (T, ¢’) = 0. Using 2.1, we obtain
K/2<F27§> + H3<F37€> + <T7 €/> =0

or
K3 (H1<F2a§> + <F37§>) + <Ta §/> =0.

From 3.1, it follows that (T, ¢’) = 0.

The derivative of (b) yields

(Fo,€) = (P, €) — (L, €)

d

1
ds <\/1 + H?
H{H,

=~ gy O+ AT ) — malls, ).
1

sin 0) + ko (T, &) — ka(F3,8)
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We can express H from 3.2, then using (a), (b) and (c), we get

H . cosd
(F2,¢') = a +H12)3/2 sin 6 (sin9 (Hikg + k) \/1+ HE + k4 (1 —I—Hf))
1

H
+ Ko cos O + L sin 0
V1+ H?
H{(H H H
= —w cosf — 17“5111(9 + ko cosf + Lsin@
1+ H3 1+ H? 1+ H?
=0.
In a similar way, the derivative of (c) yields
! d !
(F3,¢") :d*<F3,§> — (F3,8)
s
d H, .
= <_1—|—Hf sm9> + k3(T, &) + Ka(F>,§)
!
_ 1 .
= —W sin€ + k3(T, &) + Ka(F2,§).
Again, we can express H{ from 3.2, then using (a) and (b), we get
Foty=—— (% /14 H2 + kg (14 H?)
<3;€>——(1+H12)3/2sm sin€( 1R2 + K3 + H{ + ke (1 + H]
+ K3 cosf + M sin 6
V1+ HE
(Hiko + K3) Ka . Ka .
=|—-——"—5"c0s0 — ————=sinf | + K3cosf + ———=sind
( 1+ H? Vit H ’ J1+ 2
=0.
Since (T,¢') =0, (F»,¢') =0, and (F5,¢') = 0, we have & = 0. This completes the proof. O

Theorem 3.2. Let «y be a unit speed bi-reqular curve with flow-frame, then -y is a generalized helix of the first kind if and
only if
det (T, 7", T") = 0.

Proof. Suppose that 7, is constant. Then, the following equalities are satisfied
T/ = ’4/2F2 + I§J3P137
T" = (—r5 — r3) T + (kb — kigka) Fo + (k4 + raks) F,
T = _3 (525/2 + lig/ig) T+ (n;’ — 2&%/&4 — K,S/{il — Ko (K% 4 n% + ,@21)) Fy
+ (“g + 2K5k4 + KoKy — K3 (ﬁ% + K3+ mi)) 3.
So, we get

0 %) K3

—k2 — K2 KL — K3k Kh + Kok
det (T/,T”,TW) — det ( 2 3) ( 2 3 4) ( 3 2 4)

" / !/ " / !/
Ko — 2K3K4 — K3k, K3 + 2K5K4 + KoKy

—3 (koKkh + K3k~
(R2ma T R303) e (24 m2 4 12)  — o (2 4 K2+ i)

Therefore, we can calculate that

det (T/, 7", 7") =}, (1/n2) (52 + 3)*.
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Since « is a curve with flow-frame and 7 is constant, we have
det (T, T",T") = 0.
Conversely, assume that det (77,7",T"") = 0. Since 7] is zero, it follows that 7, is constant. O

Theorem 3.3. A unit speed bi-reqular curve v with k4(s) # 0 is a generalized helix of the second kind if and only if

1a(s) = ((Hzm—i—m)\/l—i—H%) (5

(HY + r3(1 4 H3))

is a constant function, where Hy(s) = zigg

Proof. If y is a generalized helix of the second kind then there exists a unit vector field ¢ such that (F5,§) = cos 0,
where 6 is a constant. Since £’ = 0, then using equation 2.1 we get

—I€2<T, £> —|— K4<F3,§> = O
Hence, .
(F3,€) = ;jm €) = Hy(T, ), (3.5)

where Hy = 72. Therefore, (F3,&) = Hy(T.§) + Ho(T",§). From equation 2.1 (—r3T — kal3,&) = Hy(T,§) +
Hy(koFs + k3F3,&). Using (F, &) = cosf and equation 3.5 we get

(T,&)(Hy + k3(1 + H3)) = — cos O(Haks + k).

It means that
cos 0(Haka + K4)

(T,¢) = Hi + (1 £ 12)" (3.6)

In combination with 3.5, we get

(Hako + Kq) Hy(Haks + Ka)
S T+ F, — F3 ) cos@.
: ( (Hy+r3(1+H3)" % (Hy+rs(l+H3) °

Since [¢] =1,
(Haka + k4)? 14 H3(Haky + Ka)? _ 1
(H) + r3(1+ H2))? (H) + k3(14+ H2)? cos?2’
Thus, we obtain that
H 1+ H?
Hara tra) VI Hy g, (37)

(Hy + k3(1+ H2))
Moreover, 3.7 implies

1
&= <— sin 0T + cos OFy — (3.8)
1+

Hy L OF
—F—=S11l1 .

H3 V1+ Hj ’
Conversely, take the vector field ¢ given by 3.8 and suppose 3.7 fulfilled. Then, by the same process as in the
proof of Theorem 3.1, we can check that ¢ is a constant and (F5, §) = cos#. O

Theorem 3.4. Let «y be a unit speed bi-regular curve with flow-frame, then ~ is a generalized helix of the second kind if
and only if
det (F}, Fy  F}") = 0.

Proof. Suppose that 7, is constant. We can calculate that
det (3, FY/, Fy") =y (1/n2) (w3 + #3)"".
Since v is a curve with flow-frame and 7 is constant, we have
det (F}, FY, FJ') = 0.

Conversely, assume that det (Fy, Fy', Fy'') = 0. Since 74 is zero, then it is clear that 7, is constant. O

339 dergipark.org.tr/en/pub/iejg


https://dergipark.org.tr/en/pub/iejg

Generalized Helices in the Euclidean 3-space Through Flow-frame

Theorem 3.5. A unit speed bi-regular curve y with r4(s) # 0 is a generalized helix of the third kind if and only if

vo(s) = <(H353 +r)VI+ H§> (5

(Hj — k(1 + H3))

is a constant function, where Hs(s) =

Proof. 1f v is a generalized helix of the third kind then there exists a unit vector field ¢ such that (F3,{) = cos¥,
where 6 is a constant. Since ¢’ = 0, then using equation 2.1 we get

—k3(T, &) — ka(F>, &) = 0.

Hence,
<B£%>€3ﬂ®==%ﬂﬁ% (3.9)

where H3 = 2. Therefore, (I3,§) = —H5(T. &) — H3(T",§). From equation 2.1 (—koT + kaF3,§) = —H3 (T, ) —
H3(koFy + k3F3,&). Using (F3,§) = cosf and equation 3.9 we get

(T, &)(H, — ka(1+ H3)) = — cos O(Hzkz + ka).

It means that
cosO(Hzks + Kq)

(T,¢) = “HL =1+ D) (3.10)
In combination with 3.9, we get
(Hsksz + Kq) H3(Hs3k3z + Ka)
= —_ T F F .
= (e T T et s A B st
Since [£| =1,
(H3H3+I<E4)2 H§(H3I<63+I$4)2 +1) = 1
(H, — ko(1+ H2))?  (H4 — ko(1+ H2)? ~ cos26’
Thus, we obtain that
2
(Hsrs + ra) I+ Hy g 3.11)
(Hj — ra(1 + HF))
Moreover, 3.11 implies
E= ot sin 0T + _ s sin O Fy + cos O F: (3.12)
V1t H? 1+ H? ’ e '

Conversely, take the vector field ¢ given by 3.12 and suppose 3.11 fulfilled. Then, by the same process as in the
proof of Theorem 3.1, we can check that ¢ is a constant and (F3, §) = cos§. O

Theorem 3.6. Let v be a unit speed bi-reqular curve with flow-frame, then -y is a generalized helix of the third kind if and
only if
det (F3, Fy', Fi") = 0.
Proof. Suppose that 73 is constant. We can calculate that
det (F, By ') = (1) (w5 + 5) ™"
Since « is a curve with flow-frame and 7 is constant, we have

det (F., FY/, FI") = 0.

O

Conversely, assume that det (F3, Fy', F3") = 0. Since nj} is zero, it follows that 73 is constant.
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4. New spherical images of a bi-regular curve

Let v be a unit speed bi-regular curve in the Euclidean 3-space with {7, F», F;}. Translating new frame’s
vector fields to the center of a unit sphere, generate new spherical images. If we translate the unit tangent
vector along a curve v, we obtain yr = T on the unit sphere. The curve 7 is called the spherical indicatrix of
T, in other words, tangent indicatrix of the curve ~. Similarly, one can consider the F;, indicatrix yg, = F> and
the F5 indicatrix vp, = F3.

In this section, we introduce a representation of spherical indicatrices of a bi-regular curve with flow-frame
in the Euclidean 3-space R?® and then investigate the relationships between the helices and their spherical
indicatrices.

D denotes the covariant differentiation of R3.

4.1. Tangent indicatrix of a bi-regular curve

Give a unit speed bi-regular space curve v with flow-frame and its tangent indicatrix yr(sr) = T'(s) with the
natural representation sr. If the Serret-Frenet frame of 77 is {T, N, B}, then we have the following formula:

T (s7) 0 kr 0 T(sr)
NI(ST) = —RT 0 T N(ST) (41)
B/(ST) 0 —TT 0 B(ST)
where
o B+ P
V1+HE'
No N1 HF-F T 10
iR\ Vism &) “2)
1 H{F3 — F;
B — 113 2, AT,
N ANV
and
sT:/ K3+ K3ds+c, kr=\/14f2, 71r=—0o1\/1+ [} (4.3)
where )
fi=—, (4.4)
m
and ,
o = i (4.5)

3/2°
Vg R+ )Y
Here, k1 and 77 are the curvature and the torsion of the curve 7, respectively. Therefore, we have
T _ . (4.6)
RT

Theorem 4.1. Give a bi-regular unit speed curve - with flow-frame {T, F», F3} and the curvatures ks, k3, k4. 7y iS a
generalized helix of the first kind if and only if vp is a circle.

Proof. Suppose that v is a generalized helix of the first kind. From 4.3 the curvature and the torsion of yp

KT:1/1+f12, TT=—0'1\/1+f12

respectively. Since 7, is a constant function, from 4.4 f; is also a constant function which leads to o; = 0.
Therefore, x7 is a non-zero constant and 7 = 0. Hence, 7 is a circle.
Conversely, assume that -y is a circle. Then it is obvious. O

Corollary 4.1. Give a bi-reqular unit speed curve -y with flow-frame {T, F», F5} and the curvatures kq, K3, k4. 7y iS a
generalized helix of the first kind if and only if the T and the N vector field of yr satisfy the following equations:

(i) DT + k7T = 0,
(1) D3N + k7N = 0.
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Theorem 4.2. Give a bi-regular unit speed curve y with flow-frame {T, F», F3}. We denote the curvature and the torsion
of yr by kp and T, respectively. ~r is a generalized helix of the second kind if and only if

orle) = <<+>/ (Z)) )

Theorem 4.3. Give a bi-reqular unit speed curve ~ with flow-frame {T', F5, F3}. We denote the curvature and the torsion
of yr by kr and Tr, respectively. yr is a generalized helix of the second kind if and only if the curve 3 : I C R — R?,

B(s) = (Bi(s), B2(s)) is a circle, where B1(s) = [ kr(s)ds and Ba(s) = [ 7r(s)ds.

Proof. We can calculate that the curvature of the curve

is a constant function.

183 — BB K7 <TT )'
= = — | =dr(s).
] ((6{)2—1_(6&)2)3/2 (/{%—‘1-7',121)3/2 K T(S)
Thus, kg = dr = constant. This completes the proof. O

4.2. F, indicatrix of a bi-regular curve

Give a unit speed bi-regular space curve v with flow-frame and its F; indicatrix vg, (sg,) = F»(s) with the
natural representation sg,. If the Serret-Frenet frame of v, is {7, NV, B}, then we have the following formula:

T’(SF2) 0 RF, 0 T(SF2)
N/(SF2) = —HF2 0 7'F2 N(SFz) (47)
B/(SFz) 0 —7'F2 0 B(SFz)
where
o —HT 4+ Fy
V1+HE
NI HyFs+T I
Vit B \Vi+H f2)] (48)
1 HoF3 +T
5= (2 4 R,
V1+ 3\ V1+H3
and
Sk, = /\/ﬁ%—l—ﬁids—i—q kE, =/ 1+ f3, TR, = —02y/1+ f3, 4.9)
where )
fa=—, (4.10)
12
and ,
09 = /2 573 (4.11)
VS + k(L4 f3)
Here, kp, and 7, are the curvature and the torsion of the curve vg,, respectively. Therefore, we have
L R 4.12)

Theorem 4.4. Give a bi-regular unit speed curve ~y with flow-frame {T, F, F3} and the curvatures ko, ks, k4. 7y IS a
generalized helix of the second kind if and only if v, is a circle.

Proof. Suppose that v is a generalized helix of the second kind. From 4.9 the curvature and the torsion of vz,

I{F2:~(1+f22’ TF2:_O—2~/].+JC22

respectively. Since 7 is a constant function, from 4.10 f; is also a constant function which leads to o3 = 0.
Therefore, kr, is a non-zero constant and 7z, = 0. Hence, v, is a circle.
Conversely, assume that g, is a circle. Then it is obvious. O
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Corollary 4.2. Give a bi-regular unit speed curve  with flow-frame {T, F, F3} and the curvatures ko, k3, k4. 7 is a
generalized helix of the second kind if and only if the T and the N vector field of vr, satisfy the following equations:

(i)DFT + k3, T =0,
(1)) DFN + k3, N = 0.

Theorem 4.5. Give a bi-reqular unit speed curve -y with flow-frame {T, F5, F5}. We denote the curvature and the torsion
of vr, by Kkp, and Tg,, respectively. v, is a generalized helix of the second kind if and only if

Or.(s) = ( O ()) @

Theorem 4.6. Give a bi-regular unit speed curve y with flow-frame {T, F», F3}. We denote the curvature and the torsion
of vk, by KF, and T, , respectively. v, is a generalized helix of the second kind if and only if the curve 3: I C R — R?,
B(s) = (B1(s), B2(s)) is a circle, where B (s) = [ kg, (s)ds and Bo(s) = [ 7r,(s)ds.

Proof. We can calculate that the curvature of the curve

is a constant function.

T e U M (WﬁLﬁF@.
PTG+ B (kE, + 73,72 \kp, ’
Thus, kg = dp, = constant. This completes the proof. O

4.3. Fyindicatrix of a bi-regular curve

Give a unit speed bi-regular space curve v with flow frame and its F3 indicatrix vz, (sr,) = F3(s) with the
natural representation sg,. If the Serret-Frenet frame of vy, is {T, N, B}, then we have the following formula:

T'(sp,) 0  &p O T(sr,)
N,(Sps) = —KFps 0 TFy N(SF3) (413)
B/(st) 0 —TF; 0 ]B(SFLS)
where TR
_ —HsT — Fy
1+ HZ
f3 T - H3F> F3
N = -1,
VI+H2\\J1+H? [ (414)
1 T — HsF.
B= 3 3 22 =+ f3F3 )
V1+ 2\ 1+ H;
and
SF, :/\/ng—&—mﬁds—!—c, ke, =\/1+ f2, TR, = —03y/1+ f2, (4.15)
where )
f3=—, (4.16)
n3
and )
o3 = I3 4.17)

VL (1 )Y

Here, kg, and 7p, are the curvature and torsion of the curve vp,, respectively. Therefore, we have

™ — g (4.18)
RFy

Theorem 4.7. Give a bi-regular unit speed curve  with flow-frame {T', Fa, F3} and the curvatures kg, k3, k4. 7y 1S 4
generalized helix of the third kind if and only if v, is a circle.
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Proof. Suppose that v is a generalized helix of the third kind. From 4.15 the curvature and the torsion of vz,

ke, =\[ 14+ f3, TR, = —o3\/1+ f3

respectively. Since 73 is a constant function, from 4.16 f3 is also a constant function which leads to o3 = 0.
Therefore, xf, is a non-zero constant and 77, = 0. Hence, 5, is a circle.
Conversely, assume that g, is a circle. Then it is obvious. O

Corollary 4.3. Give a bi-regular unit speed curve v with flow-frame {T', F>, F3} and the curvatures r, k3, k4. 7y 1S a
generalized helix of the third kind if and only if the T and the B vector field of g, satisfy the following equations:

(i)DFT + k3, T = 0,
(i1)DiB + k5, B = 0.

Theorem 4.8. Give a bi-regular unit speed curve  with flow-frame {T, F>, F3}. We denote the curvature and the torsion
of Yr, by kg, and Tp,, respectively. yp, is a generalized helix of the second kind if and only if

by (5) = (meFFw (;)) (5)

Theorem 4.9. Give a bi-reqular unit speed curve ~ with flow-frame {T', F5, F3}. We denote the curvature and the torsion
of vr, by kF, and T, respectively. v, is a generalized helix of the second kind if and only if the curve 3 : I C R — R?,
B(s) = (B1(s), B2(s)) is a circle, where B1(s) = [ kp,(s)ds and Ba(s) = [ T, (s)ds.

Proof. We can calculate that the curvature of the curve

is a constant function.

iy —BIB, KR, L7 P
(B2 (B2 (R, R ke )
Thus k3 = dp, = constant. This completes the proof. O

5. Examples

In this section, we give some examples how to find a regular curve’s flow-frame and illustrate the new
spherical images.

Example 5.1. First, let us consider a unit speed circular helix of R3 by
2
a=a(s) = <coss, —sin- — —s+2, 5 sing + ?s + 3> . (5.1)
One can calculate its Frenet-Serret apparatus as the following

<—1 s V2 s V6 V2 os \/6)
T= —6085—— —co ,

4074 %3y

B_\/ﬁ.sx/?\/és\/i\/és (5.2)
=\|—F7snz,——— — —(—coSz,— — —cCoS~ |,
2 2 4 4 2" 4 4 2
oL
47
_ V3
T 4

We plot the classical spherical images of « in Figure 1 to compare our new spherical images.
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Figure 1. Spherical images of o = «(s) with respect to Frenet-Serret frame.

Now we focus on the flow-frame. We can write the transformation matrix.

T(s) 1 0 0 T(s)
Fy(s)| :==(0 coss —sins N(s) | . (5.3)
Fs(s) 0 sins coss B(s)

5 Sy, 0%y cosy

—C08 5085 —

T:<—1.sx/§ §_§7§ s \/5>7

V3
2
= —Qsingcoss + %sins + @sinscasﬁ ,

2
sin%cos s — ?sm s+ @sinscos%

s

sm2sm S,

S

2

F3 = | —%"sinjsins — %coss - @cas%cos s, | (5-4)
— zzsingsins + %coss — @cos%coss

—sin s coss + @sm cos s,

ol

1
Ko = —CO0S S,

1.
K3 = —Sin s,

V3—4
YR

R4 =
So, we can illustrate new spherical images, see Figure 2.
Example 5.2. Consider some other unit speed circular helix of R? by

s 12s

B =p(s) = (5005183, 53mﬁ, 13) . (5.5)

One can calculate its Frenet-Serret apparatus as the following
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Figure 2. Tangent, F> and F3 spherical images of o« = a(s).

Figure 3. Spherical images of 5 = 3(s) with respect to Frenet-Serret frame.

T_ _5 . s b s 12
U3 )
s s

N:(_ o ] o0 )7

00813 szn130

12 S 12 s 5
= ZZgin" —Zros> 5.6
B (1 smlg, 1300813,13>, (5.6)
oo

169’
12
169

First, we plot the classical spherical images of /3 in Figure 3 to compare our new spherical images.
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Figure 4. Tangent, F> and F3 spherical images of 8 = 3(s).

By using the transformation matrix, we can obtain flow-frame of 3 as follows:

r_(_5 5 .8 12
- 13””13 13°°13°13 )

[ s 12 s +B s 3 .
5 = 005300513 1352n1352ns szn13coss 133m500313 133ms ,

S 12 s 5
F3 = —sinscos— + —sm—coss —S8iN S SiN— — —C0S § COS—, —COS S | ,
13 13 13

1313713 13 (5.7)
_5 s,
112—169003
_ 5 .
H3—169sm
o, = 157
4T 169

So, we can illustrate new spherical images, see Figure 4.
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