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ABSTRACT: RNA-dependent RNA polymerase, non-structural protein 5B (NS5B), is an essential enzyme of HCV for 
viral transcription and genome replication. Its initial validation as a promising target for the treatment of chronic 
hepatitis and hepatocellular carcinoma has consequently prompted different research institutes and the pharmaceutical 
industry to find potential inhibitors for human therapies. Among those, anthranilic acid derivatives received increasing 
attention because of their promising drug-like properties. In order to design promising drug candidates, the structural 
determinants of NS5B inhibitors were determined by a robust fingerprint-based quantitative structure-activity 
relationship (QSAR) model which was depicted on atomic effect contribution maps to provide visual aids for medicinal 
chemists. In the present work, we used a combination of computational chemistry methods including ensemble 
docking, binding free energy calculations, and a fingerprint-based QSAR model. We built a robust in silico protocol to 
accelerate the structure-based design of HCV NS5B inhibitors. The QSAR model, kpls_linear_3, constructed by KPLS 
fitting with linear fingerprints produced the best predictive performance (a correlation coefficient for the training set 
R2 = 0.8900, and a correlation coefficient Q² = 0.9234 and RMSE = 0.3032 for the test compounds). The atomic effect 
contribution map that was generated based on this model showed a good agreement between the predictions and the 
experimental data. To the best of our knowledge, we illustrated for the first time the use of the atomic effect contribution 
map as a visual aid for assessing the structural determinants of NS5B inhibitors. The computational strategy represented 
herein can assist pharmaceutical chemists in the rapid identification of the important features to design novel inhibitors 
of other protein targets as well. 
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 1.  INTRODUCTION 

Hepatitis C Virus (HCV) is a blood-borne RNA virus and a member of the genus Hepacivirus in the 
Flaviviridae family. HCV causes both acute and chronic hepatitis leading to liver cirrhosis and hepatocellular 
carcinoma. It is a global health concern with the World Health Organisation (WHO) estimating that 58 million 
people are chronically infected and about 1.5 million new cases emerge per year [1]. HCV was first described 
in 1989 as a non-A non-B hepatitis [2] and shortly after in 1991, its varying genotypes and subtypes were 
determined [3]. There are eight known HCV genotype variants (1 to 8) with distinct geographic distributions 
and several subgenotypes [4, 5].  

Until 2011, pegylated interferon-alpha, ribavirin combination therapy, and liver transplantation were 
the standard treatments for an HCV infection. However, low sustained virological response (SVR) rates, about 
50% for genotype 1 and up to 80% for genotype 2 and 3, and many adverse effects including teratogenic and 
embryotoxic properties, depression, anemia, and low patient tolerance associated with interferon therapy, 
have limited its use [4, 6, 7]. In 2013, a new class of drugs called directly acting antiviral agents (DAAs) was 
introduced that resulted in improved patient tolerability with cure rates over 95% and a remarkable reduction 
in HCV-related mortality rates [4, 8].  

Consequently, the non-structural protein components of HCV became the focus of many drug discovery 
projects. Among those HCV NS5B is a key component for viral transcription and genome replication [9]. 
Currently, the combination of different DAAs based on viral genotypic variations has replaced the classical 
line treatment options for HCV care [10]. Crystal structures of NS5B revealed a “right-hand” shaped amino-
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terminal catalytic core with distinct subdomains referred to as 'fingers', 'palm', and 'thumb'. Moreover, the 
catalytic domain is followed by a linker sequence and a C-terminal membrane domain [11, 12]. Up to now, 
several scaffolds have been identified that target both the active site and the allosteric binding sites of NS5B 
polymerase [13]. Crystallographic fragment screening and structure-based optimization studies resulted in 
sub-micromolar inhibitors of gt1a and 1b replicons with improved cell permeability and good cell culture 
potency [6, 14-16]. Among those, anthranilic acid derivatives which target thumb site 2 demonstrated 
promising drug-like properties including sub-micromolar inhibitory activity against gt1a and 1b replicons, 
good cell permeability, and cell culture potency [14-16]. Despite a progressive improvement in potency, new 
structural elements that can increase the cell culture activity of these compounds with better ADMET 
(absorption, distribution, metabolism, excretion, and toxicity) properties and off-target profiles are still 
lacking.  

The increasing need for the development of more potent and tolerable drugs for the treatment of HCV 
infection prompted us to explore the structure-activity relationship between the chemical properties of the 
anthranilic acid derivatives and HCV NS5B inhibition. In the present work, a combination of ensemble 
docking, binding free energy calculations, and QSAR analysis has been employed to establish a new in-silico 
protocol for predicting HCV NS5B inhibitory activity (Figure 1). Furthermore, using the newly generated 
QSAR model, we mapped the atomic effects of the molecular structures on a contribution map to identify the 
favorable and unfavorable groups or their substitution pattern. We anticipate that the presented 
computational strategy can be used to promote the structure-based design of novel non-nucleoside inhibitors 
of HCV NS5B and extend to model noncovalent inhibitors of other protein targets. 

 

 

Figure 1. Overall workflow applied for fingerprint-based QSAR model generation to identify favorable and 
unfavorable structural determinants of HCV NS5B inhibition 

 

2. RESULTS and DISCUSSION 

2.1 Validation of Molecular Docking Setup 

To assess the pose prediction power of different scoring functions available in the GLIDE program 
implemented within the Schrodinger Platform, a self-docking test was conducted [22-24]. A 2.0 Å RMSD 
between the heavy atoms of the experimental pose and docked pose has been widely accepted to define a 
good pose and successful docking [25, 26]. However, especially for redocking of larger ligands or for cross-
docking studies, a threshold of 2.5 Å RMSD was used [27]. For redocking, around 70% of top-ranked poses 
were found to be within 2.0 Å RMSD of the experimental pose [26].  
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In the present work using the first docking setup (setup 1), we obtained a docking accuracy of 74%, 78%, 
75%, and 75% for XP-dockingscore, SP-dockingscore, XP-emodel score, and SP-emodel score, respectively, 
that corresponded with self-docking RMSD values below 2.0 Å. When we used a threshold of 2.5 Å RMSD, 
docking accuracy was 79%, 84%, 79%, and 84% using XP-dockingscore, SP-dockingscore, XP-emodel score, 
and SP-emodel score, respectively (Table S1-4). Since similar results were obtained using both docking and 
emodel scores, we only used docking scores for the second setup (setup 2) for ranking the compounds. In the 
case of the second setup, the poses within 2.0 Å of the experimental poses were given top-ranked scores in 
74% and 77 % of cases for XP and SP docking scores, respectively. Similarly, the poses within 2.5 Å of the 
crystal pose were given the best scores in 79% and 84% of cases for XP and SP docking scores, respectively 
(Table S5-6). As comparable docking accuracy was obtained using two docking setups, a postdocking 
minimization including ten poses per ligand with SP-dockingscore was applied for further docking 
calculations. 

2.2 Ensemble Docking of the Dataset 

Multiple docking or so-called ensemble docking is a powerful technique that takes into account 
conformational changes in the active pocket upon ligand binding. In this respect, already resolved crystal 
structures of HCV NS5B with different thumb pocket 2 inhibitors were used in our docking experiments of 
known inhibitors. We checked whether a correlation could be achieved between docking scores and the 
biological data (Table 1). However, no correlation could be obtained between the docking scores (DS) and the 
pIC50 values giving a correlation coefficient R2 = 0.24 with root-means-quare error (RMSE) = 0.93. Besides a 
cross-validated correlation coefficient, q2LOO was also calculated using LOO (Leave One Out) cross-validation 
technique using the QuaSAR-model module implemented in Molecular Operating Environment (MOE) 
software. Ligand 8c retrieved a large Z-score and was predicted as an outlier in cross-validation studies. 
Nevertheless, the removal of the outlier 8c from the data resulted in only a slight improvement giving a 
correlation coefficient of R2 = 0.33, RMSE = 0.82, and q2LOO = 0.23 for the 27 compounds.  

 
Table 1. Summary of the statistics obtained for molecular docking and MM-GBSA rescoring 

Statistics DS DS-LE1 DS-LE2 DS-LE3 BFE BFE-LE1 BFE-LE2 BFE-LE3 

R2 0.24 0.65 0.48 0.00 0.62 0.49 0.49 0.48 

RMSE 0.93 0.63 0.77 1.07 0.66 0.77 0.77 0.77 

q2LOO 0.15 0.60 0.40 0.71 0.58 0.41 0.41 0.42 

Outliers 

(Z-score) 

8c: 2.62 

 

- - - 8c: 3.39 - - 8c: 3.20 

R2* 0.33 - - - 0.74 - - 0.62 

RMSE* 0.82 - - - 0.51 - - 0.62 

q2LOO* 0.23 - - - 0.70 - - 0.56 

DS: docking score, NHA: Number of Heavy Atoms, DS-LE1: DS/NHA: DS-LE2: DS/(NHA)2/3, DS-LE3: DS/(1 + ln(number of heavy 
atoms)), BFE: binding fee energy score (MM-GBSA score), BFE-LE1: BFE/NHA: BFE-LE2: BFE/(NHA)2/3, BFE-LE3: BFE/(1 + 
ln(number of heavy atoms)). *Statistical values obtained after the omission of molecules predicted as outliers based on their Z-score. 

 
 

It is also known that scoring functions are additive in nature and that they define intermolecular 
energies as the sum of interactions between the ligand and the protein. Thus, the retrieved docking scores tend 
to be higher for larger compounds and compounds with more functional groups.  Traditionally, ligand 
efficiency (LE) indices are calculated by scaling the binding affinity with measures such as molecular weight 
(MW), the number of heavy atoms (NHA), molecular or polar surface area (PSA), and partition coefficient 
(AlogP). We evaluated three ligand efficiency scores retrieved from Glide docking in the present work. Among 
them, DS-LE1 performed the best with an R2 = 0.62, RMSE = 0.66, and q2LOO = 0.58. These results illustrate the 
size dependency of docking score values as reported in many other studies. Thus, relying only on the docking 
score may not be a sufficient criterion for ligand ranking during ligand optimization stages of these HCV NS5B 
polymerase inhibitors. 
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2.3 MM-GBSA Calculations 

As previously shown, if accurate poses can be obtained through molecular docking, then a more 
rigorous scoring function can be used in a postprocessing step to reduce failures in binding affinity estimation 
[28]. We re-ranked the docking poses according to their MM-GBSA scores and checked whether there is an 
agreement between the relative binding free energies and the experimental data (Table 1). We also tested the 
performance of normalized binding free energy scores calculated similarly as for the ligand efficiency metrics 
in Glide docking. Interestingly, raw BFE scores performed better than any of the ligand efficiency metrics (R2 
= 0.62, RMSE = 0.66, and q2LOO = 0.58). Ligand 8c was again identified as an outlier in cross-validation studies 
and the removal of this ligand improved the correlation to R2 = 0.74, RMSE = 0.51, and q2LOO = 0.70. 

2.4 Generation of Fingerprint-based QSAR models 

QSAR models transform the relationships between molecular descriptors and biological activity into a 
mathematical equation. This simplified description has been applied as one of the most effective ways to 
predict the biological properties of compounds accurately and guide the rational design or purchase of new 
chemical entities.  

In this work, the AutoQSAR model implemented in Schrodinger software was used to build numeric 
models, using ensemble best subsets for MLR, PCR, PLS, and KPLS. Before model building, in total 495 2D 
descriptors, including feature counts, and molecular and topological properties were calculated. Statistical 
details for all top-ranked ten models are reported in Table 2. All models have a coefficient of determination 
(R2) for the training set above 0.86 and the test set (Q2) above 0.79. In general, (R2 > 0.60 and Q2 > 0.50) are 
required conditions for the predictability of a QSAR model [29, 30]. Moreover, all top-scored models were 
based on the KPLS model. In comparison to simpler and more traditional methods such as MLR and PLS, the 
KPLS method has already been shown to perform better in terms of correlation and prediction power and is a 
valuable QSAR tool in different drug discovery projects [31-33]. The top-ranked model, kpls_linear_3, was 
constructed by KPLS fitting with linear fingerprints using the 3rd split of the learning set into a training set 
and a test set (Table S7 and Figure S7). 

Table 2. The predictive power of the top-scored ten QSAR models 

Model Code Score SD R2 RMSE Q2 

kpls_linear_3 0.8925 0.3794 0.8900 0.3032 0.9234 

kpls_molprint2D_35 0.8787 0.4164 0.8748 0.2779 0.9229 

kpls_radial_35 0.8689 0.4327 0.8648 0.3207 0.8973 

kpls_dendritic_41 0.8684 0.4437 0.8662 0.3654 0.7887 

kpls_linear_47 0.8643 0.3877 0.8864 0.3820 0.8762 

kpls_molprint2D_18 0.8635 0.4088 0.8675  0.3959 0.8750 

kpls_radial_8 0.8631 0.4336 0.8621 0.3884 0.8576 

kpls_linear_42 0.8629 0.4286 0.8595 0.3567 0.8947 

kpls_radial_2 0.8616 0.4430 0.8576 0.3495 0.8670 

kpls_linear_32 0.8610 0.3791 0.8957 0.3781 0.8603 

 
 

We also explored the predictive performance of the top-scored QSAR model, kpls_linear_3, on an 
external validation set of anthranilic acid derivatives that have not been used during the model-building 
process (Table S4). The correlation coefficient, R2, was 0.58 between the observed experimental and predicted 
activity pIC50 values of external validation set compounds for the kpls_linear_3 model. Since only one model 
was used, the Pred SD property which shows the standard deviation in the predicted pIC50 values over the 
models used for the prediction was 0.000 for all the compounds. Whereas ‘Domain Score’ is based on 
fingerprint similarity and shows if the structure is in the applicability domain of the model used.  

A domain score of 1 indicates one standard deviation from the training set average and a domain score 
of 0 translates to the training set average. The cutoff value for the domain score varies based on the diversity 
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of the molecules used in the QSAR model. When a compound gets a domain score outside the average training 
set domain score of ± 2.0 then that compound is flagged, and the domain alert score is set to 1 if a single 
predictive model is used. Therefore, compound 7b with a domain alert score of -2.0070 was identified as an 
outlier. As compound 7b comes from the same congeneric series as the training set, it is not an outlier. 
Therefore, we further repeated the binding affinity predictions using a consensus model where all the top-ten 
models were used to predict the HCV NS5B inhibitory activity of each external validation set of compounds 
and then the average of the predicted properties was used as the final predicted value (Table S5). Using a 
consensus model improved the correlation between the observed and predicted pIC50 significantly giving an 
R2 = 0.86. Additionally, compound 7b retrieved a domain alert score of 0.2 which means that the structure is 
outside the domain of applicability only in two out of ten models. These results support the view that 
consensus QSAR model predictions consider different fingerprint types and therefore, are advantageous for 
structural characterization in comparison to single QSAR models. This allows using such consensus QSAR 
models for activity prediction studies of diverse ligands in drug optimization stages. 

2.5 Visual Representation of the QSAR Model 

The atomic effects of the molecules for the HCV NS5B inhibitory activity were investigated by 
generating an atomic contributions map (Figure 2) based on the top-scored KPLS model (linear, 3rd split). 
Such maps can be used as visual aids to assess favorable and unfavorable structural characteristics during lead 
optimization efforts. Based on a crystallographic fragment screen Antonysamy et. al. [14] have designed 
several 5-bromo anthranilic acid derivatives. However, the model suggests that bromine does not have any 
influence on the activity. Hence, the contribution of different halogens to the activity can be further explored. 

On the other hand, 3,5-dimethylpiperidine amide binding to 5-bromoaryl moiety contributed 
positively to the activity. However, any other analogs with ortho substitution to the aniline on this moiety 
including morpholine, thiomorpholine, tetrahydroisoquinoline, pyrrolidine, and chlorophenyl amide 
depreciated the activity or had a very small influence on the activity. This effect could be also captured with 
the QSAR model. In addition, the relevant biological effect of including such moieties on the structure was 
also correctly predicted and depicted on the atomic contribution map. 

Interestingly, removing one (7c) or two methyl groups (7g), which did not have an exact IC50 value 
and was not considered during QSAR model generation) of 3,5-dimethylpiperidine reduced the activity 
significantly. The model also suggested that removing one methyl group is unfavorable and turns also the 
associated atoms from red to blue on the contribution map. This happens upon the removal of atoms from the 
fixed regions and this loss of “good bits” changes the net effect also for the fragments that comprise the fixed 
backbone atoms.  

Moreover, the incorporation of succinic acid (8c) or glutaric acid (8k) to the aniline of 5-bromo 
anthranilic acid derivatives or replacing the aniline with an acetamide (8f) or a sulfonamide (8m) was not 
favorable and these effects could be also captured well by our contribution map. The contribution map also 
could predict that the extension of aniline with a 1,4-dicarbonyl linker (either extended or incorporated in a 
ring system) favor the presence of a substituted amide group in it.  

Also, these terminal aromatic or heteroaromatic rings were predicted to have a positive contribution 
to the activity in most cases. This was also justified as the thumb site 2 of the HCV NS5B protein has residues 
such as Ser476, His475, and Tyr477 which can interact productively with such structural arrangements. 
Besides, interactions with these residues take place in a solvent-exposed region, and therefore, different 
substituents could be accommodated.  

In the case of succinate derivatives 11d and 11e which have a proline ring between the carbonyl 
moieties on the linker were predicted to have unfavorable or no effects based on the position of the atom. This 
finding was also in agreement with the experimental findings that analogs with restricted rotation between 
the carbonyl moieties decrease the inhibitory activity against NS5B. Based on the biochemical assay results, 
compound 11d (IC50 = 0.35) was more potent than compound 11e (IC50 = 1.03).  



Karaman Mayack et al. 
A short title here which is not more than 80 characters (Running head) 

Journal of Research in Pharmacy 
 Research Article 

 

 
 http://dx.doi.org/10.29228/jrp.429 

J Res Pharm 2023; 27(4): 1421-1430 
1426 

 
Figure 2. Visual representation of atomic effects for the top-scored KPLS model (kpls_linear_3) built from linear 
fingerprints. Observed pIC50 values are reported as PIC50. Atoms that have positive contributions to the predicted 
activity are colored red, whereas atoms that have neutral or negative contributions are colored white and blue, 
respectively. Color intensity shows the strength of the effect. 
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Figure 2. Continued. 

 
Nonetheless, the predicted atomic effects on our contribution map were showing a more unfavorable 

substitution pattern for compound 11d in comparison to 11e. To our surprise, the replicon activity assay as 
well showed that 11e was a more active (EC50 = 3.7 µM) proline analog than 11d (EC50 = 12.9 µM). These 
findings also support the prediction reliability of our newly generated QSAR model as well as the useful 
insights that medicinal chemists can retrieve in characterizing the important features to design novel inhibitors 
by depicting the atomic effects on a contribution map. 

3. CONCLUSION 

In the present work, we aimed to develop a cost- and time-effective in silico strategy that can guide the 
optimization of congeneric series of NS5B inhibitors before synthesis and experimental testing. We observed 
a significant correlation between the calculated relative binding free energies and the experimental pIC50 
values for the congeneric series of HCV NS5B inhibitors studied. These results suggest that a combination of 
an ensemble docking and rescoring of the poses with a more sophisticated binding free energy model such as 
MM-GBSA can be used to account for the protein flexibility and the prediction of binding affinities of 
congeneric NS5B inhibitors. Next, we investigated several fingerprint-based QSAR models for binding affinity 
prediction. The QSAR model, kpls_linear_3, constructed by KPLS fitting with linear fingerprints produced the 
best predictive performance and was used to build an atomic effect contributions map. This map could assess 
the favorable and unfavorable structural characteristics of NS5B inhibitors. In conclusion, obtained results 
demonstrated that this in silico protocol can be used in the refinement of HCV NS5B inhibitors and represent 
a useful tool to guide the rational design of new chemical entities for the treatment of chronic hepatitis and 
hepatocellular carcinoma. Moreover, the KNIME workflows herein disclosed represent highly valuable tools 
to perform rapid redocking analysis of a large number of crystal structures and ensemble docking of large 
datasets that can be easily modified for various virtual screening purposes of different therapeutic targets.  

 

4. MATERIALS AND METHODS 

 
4.1. Dataset Preparation 

A validated dataset of anthranilic acid derivatives with HCV NS5B polymerase inhibitory activities 
on genotype 1b (gt1b) was collected from the literature [14]. Only the ligands with the exact IC50 values were 
considered. The structure of the molecules was drawn using the 2D Sketcher module implemented in the 
Maestro interface of the Schrodinger platform. In total twenty-eight compounds were prepared using LigPrep 
(Schrödinger Release 2019: LigPrep, Schrödinger, LLC, New York, NY, 2019) within the Schrodinger program. 
Molecular structures of all compounds, in vitro biological activities, as well as calculated pIC50 values of the 
dataset, are listed in Figure S1 in the supplementary material. 
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4.2. Preparation of protein-inhibitor complexes 

We first collected crystal structures of HCV NS5B complexed with ligands bound to thumb Site 2. In 
total 47 protein complexes were deposited in the Protein Data Bank (PDB) [17] by April 2020. These protein-
ligand complexes were retrieved from PDB and curated for further in silico studies. An automated workflow 
(Figure S2) was generated for this purpose using the KNIME [18] and Schrödinger platforms. 

4.3. Molecular Docking 

All docking calculations were performed using the Glide docking tool [19] implemented in 
Schrödinger. We generated a workflow (Figure S3-5) in KNIME to redock the co-crystallized ligands to the 
respective protein structure. This workflow was used for automated grid generation, redocking of native 
ligands, and RMSD calculation. 

4.4. Ensemble Docking of Dataset 

We generated a workflow (Figure S6) in KNIME to dock ligands into the thumb site 2 pocket of 
multiple HCV NS5B protein structures. We saved two different output files for further analysis: (1) the top-
scored pose per grid file was saved for each ligand to be used further in binding free energy calculations, and 
(2) the top-scored pose out of all grid solutions was saved for each ligand as the best docking solution. To 
avoid data heterogeneity in QSAR studies, only the top-scored enantiomer from each pair was considered. 

4.5. Rescoring with MM-GBSA Calculations 

The top-ranked docking solution for each ligand retrieved for each grid file with the corresponding 
protein structure was used for binding free energy calculations. Prime MM-GBSA module and VSGB 2.0 
implicit solvent model implemented in the Schrödinger platform were used for binding free energy 
calculations using default options. 

4.6. Fingerprint-based Quantitative Structure-Activity Relationship (QSAR) Model Generation 

In the present work, we used the AutoQSAR task panel implemented in Schrödinger to generate the 
2D-QSAR models. For the studied dataset, physicochemical descriptors, topological descriptors, and QikProp 
properties were calculated automatically for model building. Moreover, we included the MM-GBSA score as 
a descriptor prior to the model generation step. Descriptors were removed before the model-building stage if 
more than 90% of the ligands in the dataset had the same value for that particular property.  

In AutoQSAR, the generation of numeric QSAR models was done using four different techniques: 
multiple linear regression (MLR) [20], partial least-squares regression (PLS) [21], kernel-based partial least-
squares regression (KPLS), and principal components regression (PCR). In addition, four hashed type 2D 
fingerprints including linear, radial, dendritic, and molprint2D were generated for KPLS models and ten 
thousand most informative bits for each fingerprint type were set to be retained by default. The maximum 
allowed correlation between any pair of descriptors was set to 0.80 by default. The data set was randomly 
divided into a learning set (75%, 21 compounds) and an external validation set (25%, 7 compounds). During 
model building, the learning set was randomly split into a training set (75%, 17 compounds) and a test set 
(25%, 6 compounds). Division of compounds into training and test set is an important step of any QSAR model 
generation. To capture all the features of the dataset, this process was repeated 50 times to generate 50 models 
per supervised learning techniques (MLR, PCR, PLS, and KPLS) used in model generation. Only the top ten 
models were saved for further evaluation. In addition, we used the contribution map analysis option in the 
AutoQSAR module to explore the atomic effects of different substituents on compounds with an anthranilic 
acid core in the inhibitory activity against HCV NS5B. 
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