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Abstract: The stochastic model is the only sort of expressions which can capture the 

randomness of biological systems under different reactions. There are mainly three 

methods; direct (Gillespie), first reaction and next reaction algorithms; for 

implementing exact stochastic simulations in these systems. Although these algorithms 

are successful in explaining the natural behaviors of the systems’ activation, they 

cannot describe the absurd changes, i.e.,  impulses. Moreover, the source codes in R 

are not available and open for all users. In this study, we produce these R codes and 

insert two major scenarios inside. In the application, we use biological systems with 

different sizes  and compare their computational demands. 

  
 

1. Introduction 
 
In biochemical systems, the probabilistic manner of 

different biological reactions has a crucial role as it 

reflects the small system variability that occurs with 

a low frequency like the transcription of proteins. 

Therefore, the stochastic processes are the natural 

choices for the dynamic modelling of biochemical 

networks. The algorithms which generate these 

systems under stochasticity are based on the master 

equation [6,12,20]. These equations produce a 

network in two steps: (i) All possible reactions are 

listed by their probabilities of occurrences (ii) The 

system is expressed as a set of linear differential 

equations with a constant reaction hazard per 

molecule and per unit time. Although the master 

equations are solvable for the small number of 

states and for monomolecular reaction systems 

[10], they become intractable for large systems as 

the number of variables, i.e., the probabilities of 

states, increases quickly. To unravel this challenge, 

various Monte Carlo algorithms have been 

suggested. The general idea of these techniques is 

to find an approximation of the actual probability 

distribution by sampling repeatedly from the 

corresponding distribution. 

There are three main methods which can 

stochastically generate biochemical systems based 

on the master equations: (i) direct method, which is 

also known as the Gillespie algorithm, (ii) first 

reaction method and (iii) the next reaction method, 

also named as the Gibson and Bruck algorithm. The 

Gillespie algorithm is the most common and, 

usually, most efficient approach, for simulating 

small systems. But it becomes inefficient for 

simulating large networks since the time step for 

the next reaction is taken very small such that only 

a single reaction can occur [1]. The first reaction 

method is an alternative algorithm to overcome this 

computational cost. Different from the Gillespie 

technique, it detects a presumed time for the j-th 

reaction which could occur if no other reaction 

occurred first. The Gibson and Bruck algorithm is 

faster and more efficient than these two methods, in 

particular, for complex biochemical networks since 

it can update the system locally by means of a 

dependency graph [5,21]. Indeed, in order to 

unravel the problem of computational demand, two 

more algorithms are also suggested. These are the 

optimized direct method [2] and the sorting direct 

method [16]. These two algorithms mainly partition 

the system based on slow reactions and relatively 

fast reactions. If the following reaction in the 
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simulation is slow, then the algorithms produce it 

via deterministic approaches, otherwise, apply 

stochastic algorithms. Due to this computational 

scheme, they are also similar to the hybrid methods 

[20] and need a pre-processing run to classify the 

speed of the reactions [16]. Therefore, their 

applications are not as common as the main three 

methods. Based on the idea of partitioning the 

reactions/species into subgrops that can be 

modelled similarly, different hybrid methods have 

been proposed [4,8,11]. 

Hence, in this study, we deal with only direct, first 

reaction and next reaction methods and propose two 

major contributions. As the first novelty, we present 

the R source codes of these algorithms. Indeed, the 

Gillespie codes have been already presented to all 

users within an R programme package, called 

GillespieSSA [17]. Whereas, the codes of the next 

reaction algorithm are originally written in C and 

the codes of the first reaction method have not been 

shared yet publicly. Furthermore, we also prepare 

certain sub-functions to detect linearly dependent 

species in the systems, which we call as the 

structural dependency [18], and to compute the net 

effect matrix [20], which is the difference between 

the product and reactant matrices. Furthermore, in 

the codes, we prefer the R programme since it is 

one of the most well-known open-source and free-

downloadable softwares for the statistical 

calculations. On the other hand, although these 

algorithms are run under the constant volume and 

the constant temperature, they have not 

implemented yet if the system has impulses. 

Hereby, as the second novelty in this study, we 

extent these three algorithms by including impulses 

under fixed times and fixed states. In general, the 

impulse, which implies the absurd variations in the 

dynamics of the species, is seen many systems from 

population to epidemic models [3, 13] and the 

Gillespie multiparticle method (GMP) [19] consider 

similar unexpected changes as the diffusion events 

in spatial models by using the diffusion chemical 

master equation [9]. Whereas the performance of 

their methods is highly dependent on the size of the 

lattice that is used to decide on the neighborhood in 

the diffusion. Moreover, in complex biochemical 

systems, the optimal size of lattices is not unique 

and this affects the computational speed of the 

algorithm and the variance of the simulated values 

[19]. Hereby, in this study, we insert this effect into 

the algorithms suitable for the general chemical 

master equations. Then, we apply all algorithms 

with/without impulses in different dimensional 

systems and compare them with respect to their 

computational costs. We use the average search 

depth, the average weighted degree and the central 

processing unit (CPU) for this purpose. 

Accordingly, in the following section, we shortly 

present the ideas of exact stochastic simulation 

algorithms and  describe how we include impulses 

in chemical master equations. In Section 3, we 

perform our algorithms in small, moderate and 

large biochemical systems and compare their 

findings regarding their computational demands. 

Finally, we conclude our results and discuss the 

future works in Section 4. We  also prepare  the R 

codes of all algorithms with/without impulses as the 

Supplementary Materials. This document is 

available upon request. 

 

2. Exact Stochastic Simulation Algorithms 

and Impulses 

 
There are mainly three exact stochastic simulation 

algorithms (SSA) to generate realisations of 

biochemical systems. These algorithms are exact 

since they are based on the chemical master 

equation (CME) which is represented as below. 
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In this equation, r   is the number of reactions. The 

n -dimensional vector ),,,( 21 nYYYY   

represents the state of the system at time t , j  

denotes the net effect of the j -th reaction. 

Accordingly, )(Yh j  describes the hazard, also 

called the rate law of the reaction, which is the 

product of the number of distinct molecular reactant 

combinations available in the state Y  for reaction 

j  with stochastic rate constant jc  so that the terms 

dttYPYh jjj ),()(    indicates the probability 

that the reaction jR  occurs over time interval  

[𝑡, 𝑡 + 𝑑𝑡)  moving the state from jvY   to Y . 

Hereby similar to all exact algorithms, the direct 

method separates the master equation by two 

questions: (i) When will the next reaction occur and 

(ii) What kind of reaction will it be? The algorithm 

answers them by defining a reaction probability 

density function on the space of continuous time 

random variable   )0(    and the discrete 

reaction indicator variable j ),,1( rj   as 

below. 
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where jjj cYaYh )()(   and   
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0 )()()( . Furthermore, 

)(Ya j  and jc  are the number of the distinct 

molecular combinations of the given state Y and 

the reaction rate constant of the j -th reaction, 

respectively. Even though this algorithm is the most 

common and usually the most efficient simulator 

based on the CME, its application is limited by 

spatially homogeneous, thermodynamically 

equilibrated systems where the nonreactive 

molecules collide more frequently than reactive 

once [6]. Therefore, it is difficult to perform these 

algorithms for simulating the localization or the 

spatial heterogeneity [1, 20]. Additionally, though 

the algorithm works well for simulating small 

systems, it is inefficient for developing realistic 

complex models since the time step for the next 

reaction, which is generated from the exponential 

distribution with a rate )(0 Yh , is taken very small 

such that only a single reaction can occur in a given 

time interval [1, 20]. 

The first reaction method [7] is different from the 

direct method in the sense that the latter produces 

the reaction indicator j and the continuous time   

directly, however, the former generates a presumed 

time j  for the reaction j which would occur if no 

other reaction occurred first. Moreover, although 

both methods use the same probability distribution 

in order to choose j and  , the first reaction method 

executes r reactions per iteration. Thereby, the 

method generates the r number of time variables j  

),,1( rj   both for updating the hazard function 

jjj cYaYh )()(   and for finding the smallest j  

in each iteration. 

The Gibson-Bruck algorithm [5], also called the 

next reaction method, is an exact algorithm which 

is faster and more efficient than the direct 

algorithm, especially, for complex systems. The 

algorithm develops an efficient computation by 

storing both the time step j  ),,1( rj   and the 

hazard function )(Yh j , rather than )(Yh j  alone, 

for each reaction and by recalculating )(Yh j  

according to a dependency graph  for the system. 

The graph shows the set of species that is affected 

by the value of )(Yh j  if  the  j-th reaction is fired. 

This can be done from the algorithm by connecting 

the node j to the set of all children of the node j 

whose hazards should be updated according to  j. 

This representation speeds up the simulation since 

it enables us to update the system locally. On the 

other hand, the connections between these local 

subsets are maintained by another graph, called the 

indexed priority queue. That graph contains two 

sorts of information. The first one is a tree structure 

of an ordered pairs of the form ( jj , ) where j 

stands for the reaction and j is the presumed time 

when the reaction j occurs and the second one is an 

index structure whose element j is a pointer of the 

location in the tree which contains ( jj , ). In the 

tree structure of the queue, each parent has a lower 

j  than either of its children [20]. 

In this study, initially, we extend CME given in 

Equation (1) by inserting impulses at the fixed time 

and the fixed state. The following expression shows 

the impulsive CME under this condition 
 

),(| )( tYAY Yt m
   ,   (3) 

where )(Ym  denotes the m-dimensional              

),2,1( m  vector of predefined time points at 

which the impulse fires by a function ),( tYA . 

Hence, if the trajectory of the impulse function 

intersects the entry of the time point )(Yt m  for 

the next time step j , then the impulse will occur 

and the trajectory of the system will jump to a new 

state via ))((: mYAYY  . Later, the system 

continues its movement by the selected exact 

algorithm until the trajectory of the system 

intersects another entry in the m-dimensional vector 

)(Ym . On the other hand, if the impulse is seen at 

the fixed state, rather than fixed time, then Equation 

(3) will be revised by describing a new m-

dimensional vector of predefined state values for 

the selected species in the system at which the 

impulse fires by a function ),( tYA . In the 

following section, we perform these three exact 

algorithms with their impulsive versions in 

different dimensional networks and compare their 

computational efficiencies. 

On the other side, the original R codes of all 

algorithms with/without impulses are presented as 

Supplementary Materials. 

In this document, we also prepare an example set to 

describe how an ordinary simulation and a 

simulation with impulses can be implemented by 

these functions. 

 

3. Applications 
 

In this section, we compare the computational costs 

of the direct, first reaction and the next reaction 
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methods in terms of the average search depth, 

average weighted degree and CPU as defined below 

[2]. Here, we apply them to the Lotka-Volterra, 

PKC and the JAK/STAT systems as the toy, 

moderately large and large dimensional systems, 

respectively. The idea is to consider each system 

with or without impulses and to compare the 

performance of the algorithms in both models to 

see the effect for computing impulses. Below, we 

describe our comparison criteria in details. 

1. Average search depth (S): This measure 

denotes the average number of operations to 

find the index of the firing reaction by using 

 
 


r

j

r

j

jj kjkS
1 1

/ where r denotes the 

number of reactions in the system as stated 

beforehand and jk  is the number firing times 

of the j-th reaction. 

2. Average weighted degree (D): This measure is 

the average degree for the dependency graph 

of the system which tells the reactions whose 

hazards are affected when a given reaction is 

fired. It is computed by 

 
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
r

j

r

j

jjj kkdD
1 1

/ presenting the 

average number of operations to find the 

index of the firing reaction. Here, jd  

stands for the total number of reactions 

affected by the firing of the j-th reaction. 

3. Central processing unit time (CPU): This 

measure indicates the programme run-time 

and represents a quantitative value of the 

busyness of the system. 

 

3.1 Lotka-Volterra Model 
 

The Lotka-Volterra model [20], also called the 

prey-predator system, is a well-known system that 

describes the population dynamics of two 

competing species, namely, 1Y  and 2Y  representing 

preys and predators, respectively. In the analyses, 

the initial population of species is taken as 

)10,4(),()0( 21  YYY  and the system is analyzed 

in  5,0t . After calculating CPU, S and D, we 

add impulses to the system and compute the same 

quantities. Here, we fix the number of  preys to 4 

when the number of preys is greater than 4 which 

will give CME in the following form. 
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The reactions, reaction constants, net effect and 

hazard of each reaction for this system can be seen 

in Table 1 as the example of the contruction of the 

systems’ simulation. 

 

Table 1. Reactions, reaction constants, net effect ( j ) 

and hazard )(Yh j of each reaction 3,2,1j   for the 

Lotka-Volterra system. 

 

 

3.2 Protein Kinase C Signalling Pathway 
 

As a second model, we consider the protein kinase 

C (PKC) signaling pathway which plays an 

important role for regulating several neural 

functions such as the long-term potentiation and the 

depression [15]. The system is described by 14 

species and 10 reversible reactions and presents the 

production of the active PKC. The biological 

details of reactions and initial values of the species 

can be found in [15]. 

After obtaining the computational cost of the 

original model without impulses, we consider the 

PKC system with impulses by adding 1e-16nM 

molecules to PKCbasal* in the system when the 

number of molecules of this species becomes 0. 

Finally, the simulations with/without impulses run 

for time interval  5,0t  and the results of both 

models are presented in Table 2. 

 

 

Reactions Reaction 

Constants 

Net 

Effects 

Hazards 

111 2: YYR   0.11 k  )0,1(1 
 

111 )( YkYh   

2212 2: YYYR 
 

1.01 k  )1,1(2 
 

2112 )( YYkYh 
 

23 :YR 0 1.01 k  )1,0(3 

 
233 )( YkYh   
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3.3 JAK/STAT Signalling Pathway 
 

The janus kinase signal transduction pathway 

(JAK/STAT), which transmits the extracellular 

stimuli to the gene in the target cells without second 

messengers, is the largest system used in our 

application. In the biological sense, it is the major 

signalling transaction system which is activated by 

the type I interferon (IFN) and regulates cytokine-

dependent gene expressions and growth factors of 

mammals. The activation flow of this pathway 

begins with an external ligand binding to the 

receptor which in turn activates JAK. Then, 

activated JAK phosphorylates activators of STAT 

and finally, active STAT enters the nucleus and 

binds to a specific region in DNA which in turn 

translates this particular part to result in a certain 

type of proteins. Hereby, in the biological 

description of this system, 41 reactions with 38 

species are used. 

In the analyses, initial concentrations of each 

species are set to 100 molecules and the  reactions 

as well as the associated rates are taken from  the 

study of Mailwald  et. al (2010) [14]. 

To construct the JAK/STAT system with impulses, 

we add 10 molecules to JAK in every 100-step and 

simulate the reactions for  5,0t . It must be 

noted that in previous models, we add abrupt 

amounts to the species when a specific 

concentration is reached by a given species. But in 

this model, instead of concentrations, we consider 

specific times to change the concentration of JAK. 

The associated findings are listed in Table 2. 

Thereby, from the comparison of all results in 

Table 2, we observe that although the next reaction 

method is supposed to be the most efficient 

algorithm in terms of computational demand for the 

selected pathways, there is no sharp change among 

all these methods and different from the 

expectation, the direct method is generally more 

efficient in computational time. This findings show 

that, indeed, the performance of the algorithms is 

highly dependent on the system of interest. 

Accordingly, the next reaction method cannot 

guarantee gain in computational demand under all 

conditions, even though it has been developed for 

this purpose. Moreover, in this study, all the 

algorithms are originally written in R and from the 

tabulated outputs, we see that the direct method is 

still fast, in particular, when we include impulses 

and it is still computationally the most friendly and 

simplest algorithm. In order to understand the 

reason behind this conclusion, we compare D, S 

versus CPU simultaneously. We detect that the 

species in each system are highly dependent on 

each other in such a way that from the entries of D, 

LV shows both 2 species, PKC indicates 5 species 

over totally 11 species  and JAK-STAT reports 7 

species over  totally 38 species that are affected by 

firing each reaction on average. Under such 

conditions, running the dependency graph in the 

next reaction method can cause an additional 

computational demand in the algorithm since 

majority of the species already change their states 

by firing of each reaction and hereby, there is no 

necessity to control the interaction of species at the 

end of every reaction. Additionally, when we 

compare S terms, it is seen that all the three 

algorithms almost use the same number of steps to 

decide on the next reaction. Hence, under such 

equality, CPU of the direct method is typically less 

than other two methods. We detect the same 

findings from the outputs under impulses. As a 

result, we conclude that the users can choose the 

most appropriate algorithm for their applications 

according to the reaction lists of their quasi true 

networks. If the reactions are composed on a few 

common species, then, the direct method can be 

preferable against others to gain in CPU. On the 

other hand, if the quasi reaction list has many 

species and each reaction consists of only common 

number of species, the next reaction method can be 

more suitable among alternatives due to the 

advantage of its dependency graph. 

From the comparison of all results, we observe that 

all methods have the same accuracy and 

computational demand when they are coded in the 

same programme language R. Hence, we conclude 

that the major advantage of the next reaction 

algorithm may not be due to the dependency graph 

in the calculation, rather, the programme language 

of the original algorithm, which is the C compiled 

language. On the contrary, R is an interpreted 

language whose source codes are not directly run 

by the target machine although the development of 

codes are easier. Furthermore, when we evaluate 

their performances under impulses, it is found that 

the firing of impulses in all exact methods does not 

cause any significant computational demand. 

Moreover, as detected for the non-impulsive 

simulations, there is no significant difference in the 

final S, D and CPU measures meaning that the 

average number of operations to detect the next 

reaction and its associated siblings are almost the 

same for all algorithms. 

 

4 Conclusion 
 

In this study, we have written the R codes of the 

direct, first and the next reaction stochastic 

simulation algorithms, designed for the biological 

networks.  
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We have prepared them as a user-friendly 

functional form so that these open-source codes can 

be utilized for all researchers in the field of systems 

biology and bioinformatics. Additionally, we have 

extended these algorithms by adding impulsive 

functions which can change the trajectory of the 

system based on the chemical master equations at 

the fixed time and states. The key and very simple 

idea behind these algorithms is that we run very 

well-known direct, first reaction and next reaction 

methods until the impulse condition is reached 

which will be checked by using an if clause. When 

the impulse condition is reached, we update the 

system state depending on the impulse under 

consideration. We apply this process recurtsively 

until the end of the time interval of interest. By this 

way, we can also implement these algorithms to 

successfully capture the absurd changes in the 

systems which are observed in many epidemic and 

population models. Then, we have performed these 

exact methods in different dimensional pathways 

and compared their computational demands with 

various measures in order to show the performance 

of all R codes and the algorithm. The outcomes 

have indicated similarity in computational costs of 

all algorithms with/without impulses. From the 

results, we have detected that if the system is small 

and its biological description is not structurally 

highly dependent, then, the direct method can be 

favourable due to its simplicity in calculations. But 

if the reactions in the system do not have common 

species very much, i. e., D, is small on average, the 

next reaction method can be computationally more 

efficient.  

 
Table 2. CPU (central processing unit) time, S (average 

search depth), D (average weighthed degree) values for 

the Lotka-Volterra, PKC and JAK/STAT systems without 

impulses (WI) and with impulses (I) at fixed time (states) 

for the given stochastic simulation algorithms. 

 
System Method Condition CPU S D 
Lotka Direct WI 40.816 2.083 2.416 

Volterra Direct I-Fixed State 40.805 1.791 2.375 

 First React. WI 42.337 2.031 2.406 

 First React. I-Fixed State 42.325 1.933 2.400 

 Next React. WI 42.831 2.031 2.406 

 Next React. I-Fixed State 42.843 2.052 2.421 

PKC Direct WI 47.935 2.000 5.000 

 Direct I-Fixed State 47.964 1.500 5.000 

 First React. WI 48.609 2.000 5.000 

 First React. I-Fixed State 48.625 1.556 5.000 

 Next React. WI 49.771 2.000 5.000 

 Next React. I-Fixed State 49.792 2.000 5.000 

JAK/ Direct WI 15.046 21.537 7.420 

STAT Direct I-Fixed Time 9.330 21.263 7.311 

 First React. WI 22.453 21.951 7.055 

 First React. I-Fixed Time 29.333 21.014 7.067 

 Next React. WI 35.807 21.600 7.109 

 Next React. I-Fixed Time 39.542 21.451 7.061 

 

But in general, we consider that our open-source 

codes and extended version of the algorithms can 

be helpful for the researchers who need to generate 

complex biological systems in all dimensions 

easily. As the extension of this study, we suggest to 

insert the idea of the impulses in approximate 

simulation algorithms and adopt our codes for these 

methods. Furthermore, we consider to insert the 

bifurcation graph in exact simulation algorithm in 

order to generate all possible stochastic scenarios of 

the systems in a single run. 
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