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INEQUALITIES INVOLVING k-CHEN INVARIANTS FOR
SUBMANIFOLDS OF RIEMANNIAN PRODUCT MANIFOLDS

MEHMET GULBAHAR, MUKUT MANI TRIPATHI, AND EROL KILI¢

ABSTRACT. An optimal inequality involving the scalar curvatures, the mean
curvature and the k-Chen invariant is established for Riemannian submani-
folds. Particular cases of this inequality is reported. Furthermore, this in-
equality is investigated on submanifolds, namely slant, F-invariant and F-anti
invariant submanifolds of an almost constant curvature manifold.

1. INTRODUCTION

Riemannian invariants have an essential role in Riemannian geometry since they
affect the intrinsic features of Riemannian manifolds. In this manner, these in-
variants are considered as DNA of a Riemannian manifold (cf. [6]). The most
fundamental notions in Riemannian invariants are curvature invariants. Curvature
invariants play key roles in physics as in geometry. According to Newton’s laws, the
magnitude of a force, required to move an object at constant speed, is a constant
multiple of the curvature of the trajectory. According to Einstein, the motion of
a body in a gravitational field is determined by the curvatures of space time. All
sorts of shapes, from soap bubbles to red blood cells, seem to be determined by
various curvatures (cf. [15]).

The main extrinsic curvature invariant is the squared mean curvature and the
main intrinsic curvature invariants include the classical curvature invariants namely
the Ricci curvature and the scalar curvature. In [4], B.-Y. Chen introduced a new
curvature invariant, now known as (first) Chen invariant. In [§], he introduced and
investigated two strings of new types of curvature invariants. These new curvature
invariants seem to play significant roles in several areas of mathematics including
submanifold theory and Riemannian, spectral and symplectic geometries. For more
details, we refer to [7] and [10].
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Beside these facts, the theory of almost product manifolds and their subman-
ifolds have been developed in a similar manner with theories of almost complex
manifolds and almost contact manifolds. In [16], S. Tachibana firstly introduced
locally product manifolds and then submanifolds of locally product manifolds have
been intensely studied by various geometers. Invariant and anti-invariant sub-
manifold of a locally product manifold were studied by T. Adati in [I], semi-slant
submanifolds of a locally product manifold were investigated by A. Bejancu in [3],
slant submanifolds of Riemannian product manifolds were presented by B. Sahin
in [I4] and M. Atgeken in [2], almost semi-invariant submanifolds of a locally prod-
uct manifold were studied by the second author in [I7], and skew semi-invariant
submanifolds (which are a special class of almost-semi-invariant submanifolds) of a
locally product manifold were studied by X. Liu and F.-M. Shao in [I3]. Recently,
proper slant surfaces of locally product Riemannian manifolds were investigated by
the first and third authors and S. Saragoglu Celik [I1]. Finally, Chen-Ricci inequal-
ities for slant submanifolds of a Riemannian product manifold were established by
the authors in [12].

Based on the above presented facts, we are going to give some relations involving
the Chen invariants, the intrinsic and extrinsic curvature invariants of a Riemannian
submanifold. Also, we are going to investigate these relations on submanifolds of a
Riemannian product manifold and an almost constant curvature manifold.

2. RIEMANNIAN SUBMANIFOLDS

In this section, we are going to focus on some basic facts about Riemannian
submanifolds by following the notations and formulas used in [7] and [I0].

Let (ZT] , ) be an m-dimensional Riemannian manifold equipped with a Riemann-
ian metric g and (M, g) be submanifold of (ZT] ,g) such that g is just the restriction
of g. For all vector fields X and Y in the tangent bundle TM and N in the normal
bundle 7+ M, the Gauss and Weingarten formulas are given by

VXYZVXY+U(X,Y) (2.1)
and
VxN =—AyX 4+ VxN, (2.2)

where %, V and V7' are respefcjively the Riemannian, induced Riemannian and
induced normal connections in M, M and the normal bundle T+M of M, and ¢ is
the second fundamental form related to the shape operator Ay by

(0 (X,Y),N) = (AyX,Y). (2.3)

Here, (,) denotes the inner product notation for both the metric g and the induced
metric g.
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Let R and R are the curvature tensors of M and M respectively. For all
XY, Z,W € TM, the following relation between these tensors holds:

R(X,Y,Z, W) = R(X,Y,Z, W)+ (o(X,W),0(Y,Z))
— (o(X, 2),0(Y, W) (2.4)
We note that the equation is known as the Gauss equation.
Now, let {e1,...,e,} be an orthonormal basis of the tangent space T,M, p € M.
The mean curvature vector, denoted by H(p), is defined by

n

H(p) = %ZU (e, €i). (2.5)

The submanifold M is called totally geodesic in Mifo= 0, and minimal if H = 0.
Ifo(X,Y)=g(X,Y)H for all X,Y € TM, then M is called totally umbilical.

Suppose that e, belongs to an orthonormal basis {e,+1,..., e} of the normal
space TpJ-M . Then we can write

n

oy = (o (eies),er) and ol® = Y (o (eies) o (eney)).  (2.6)

ij=1

In view of (2.4) and (2.6)), we get

Kiy=Kij+ > (oho7,—(07)%), (2.7)

r=n+1

where K;; and I?ij denote the sectional curvature of the plane section spanned by
e; and e; at p in the submanifold M and in the ambient manifold M respectively.

Thus, we can say that K;; and I?ij are the “intrinsic” and “extrinsic” sectional
curvatures of the Span{e;,e;} at p. From (2.7), it follows that

27(p) = 27 (T, M) +n® | H||* — ||o|*, (2.8)

where 7 (T,M) denotes the scalar curvature of the n-plane section T,M in the
ambient manifold M defined by
T(T,M) = Z Kij.
1<i<j<n

Thus, we can say that 7(p) and 7 (T,M) are the “intrinsic” and “extrinsic” scalar
curvature of the submanifold at p respectively.
The relative null space of a Riemannian submanifold M at p is defined by [5]

N, ={X eT,M|o(X,Y)=0forall Y € T,M},

which is also known as the kernel of the second fundamental form [§].
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3. CHEN INVARIANTS

Let (M, g) be an n-dimensional Riemannian (sub)manifold and II; be a k-plane
section of T, M. Suppose that {e1,..., e} to be an orthonormal basis of II;. For
each 2 <14 < k, k-Ricci curvature of Il at e;, denoted Ricyy, (X), is defined by [5]

k
RiCHk (65) = Z Kij. (31)
J#i
We note that

a. if k = n, then II,, = T, M and an n-Ricci curvature RiCTPM(ei) is the usual
Ricci curvature of e;, denoted Ric(e;). Thus for any orthonormal basis
{e1,...,en} for T,M and for a fixed i € {1,...,n}, we have

n
Ricr,a(e;) = Ric (e;) = ZKU'
J#i
b. if k = 2, then Il is a plane section of T}, M and the 2-Ricci curvature becomes
the sectional curvature.
The scalar curvature 7 (Il) of the k-plane section Il is given by

T (k) = Z Ki; (3.2)

1<i<j<k

In view of (3.2)), we get
LA 1 F
7 () = 5 Y K= 3 ; Ricry, (e;). (3.3)

i=1 j#i
The scalar curvature 7(p) of M at p is identical with the scalar curvature of the
tangent space T, M of M at p, that is,

T(p)=7(T,M).

If II; is a 2-plane section, 7(IIj) is nothing but the sectional curvature K (IIx) of
. Geometrically, 7(I1x) is the scalar curvature of the image exp,,(Ilx) of I1j at p
under the exponential map at p.

Now, we shall recall the following definition of B.-Y. Chen in [9]:

Definition 1. Let (M, g) be an n-dimensional Riemannian (sub)manifold. For
2 <k<n-—1, the k-Chen invariant Jlfw 1s defined to be

05s(p) = 7(p) — (infr (1)) (p), (3-4)
where
(infr (IIx)) (p) = inf{T(IIx) | I is a k-plane section C T,,M}.

We note that
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a. if k =2, 5@[ reduces to the well known Chen invariant [4] of M given by
on(p) = 7(p) — (inf K)(p).
b. if k=n-1, 55“\4 reduces to the maximum Ricci curvature of M given by
Ric(p) = max {Ric(X) | X € T M} = 7(p) — (infr(IL,_1))(p)-
Now, we are going to give the following algebraic lemma:

Lemma 1. If2 <k <2 and ay,...,a,,a are real numbers such that

n 2 n
(Z ai) =(n—-k+1) (Z a? + a) ) (3.5)
then

2 Z a;a; > a,

1<i<j<k
with equality holding if and only if
a1+a2+...+ak:a’k+l:...:an.

Proof. By the Cauchy-Schwartz inequality, we have

n 2
(Zaz) S(n_k+1)((a1+a2+'"+ak)2+a%+1+"'+a%)~ (3.6)
1

i=

From (3.5) and (3.6)), we get

Sata<(atast o +a)tai, o+l
i=1

The above equation is equivalent to
2 Z a;a; > a.
1<i<j<k

The equality holds if and only if a1 +ag + -+ ax = agy1 = -+ = an. O

Theorem 1. Let M be an n-dimensional (n > 3) submanifold in an m-dimensional

Riemannian manifold M. Then, for each point p € M and each k-plane section
I, C T,M (n >k >2), we have

n?(n—
5?4@) < 2(71(—/<1—f)1)

The equality in (3.7) holds at p € M if and only if there exist an orthonormal
basis {e1,...,en} of T,M and an orthonormal basis {en+1,-..,em} of T;M such

1H | +7(T, M) =7 (ILy) - (3.7)
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that (a) I, = Span{es,...,ex} and (b) the forms of shape operators A.,, r =
n+1,...,m, become

o't 0 o0
0 ot .. 0
. . ) 0
A= o (3.8)
ent1 0 0 o ’
o1 Ol oy,
Ol b T,
ST : 0
A, = b1 , re{n+2,...,m}. (3.9
01k 92 - Z o
i=1
0 On—k
Proof. Let 1I, C T,M be a k-plane section. We choose an orthonormal basis
{e1,e2,...,¢e,} for T,M and {e,+1,...,en} for the normal space Tle at p such
that I, = Span {ey, ..., ex}, the mean curvature vector H is in the direction of the

normal vector to e,41, and ey, ..., e, diagonalize the shape operator A., . ,. Then
the shape operators take the forms

A, ., =diag (o7 ottt omt) (3.10)
A, = (afj) , trace A, = ZO’Z =0 (3.11)

foralli,j=1,...,nand r =n+2,...,m. Thus, we rewrite (2.8) as

n

(Zo”+1> (n—k+1) | (o%t) Z Z +wl|, (312

i=1 r=n+21i,j=1
where 2( )
. n(n—2
w =27 (p) = 27 (T,M) — — —— |H|?. (3.13)

Applying Lemma to equation (3.12)), we get

2 Y ontelt>w Z Z . (3.14)

1<i<j<k r=n+2i,j=1
From equation ([2.7)) it also follows that

T() =7 M)+ > oftloni 4 Z 3 ( o (o—;?j)2). (3.15)

1<i<j<k r=n+21<i<j<k
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From and we get

m
() > %(nk)+§w+ 3D {01+ (05> + -+ (01,)%)
r=n+2 j>k
m
5 0114‘052"‘ o)’

N —

ﬁMS
M

() > 7 (TT,) + %w. (3.16)

In view of (3.13)) and (3.16]), we get (3.7).

If the equality in (3.7) holds, then the inequalities given by (3.14]) and (3.16|)

become equalities. In this case, for r =n + 2,...,m we have
ot =opft =0t =0,  j=k+1,...,n
o; =0, ij=k+1,....n, (3.17)

o1+ 05+ +op, =0.

Applying Lemma [I] we also have

ottt ottt - +0"+1 —JZ‘H, l=k+1,...,n. (3.18)

Thus, after choosing a suitable orthonormal basis {eq, ..., e}, the shape operator
of M becomes of the form given by (3.8]) and (3.9). The converse is easy to follow.
O

In particular case of k = 2, we have the following:

Theorem 2. Let M be an n-dimensional (n > 3) submanifold in an m-dimensional

Riemannian manifold M. Then, for each point p € M and each plane section
I, C T,M, we have

n*(n - 2)
dm(p) < 2n—1)

The equality in (3.19) holds at p € M if and only if there exist an orthonormal basis
{e1,...,en} of T,M and an orthonormal basis {ep+1,...,em} of TPLM such that

(a) IIs = Span{ej,ea} and (b) the forms of shape operators A.., r =n+1,...,m,
become

1H|” +7 (T, M) — K (IL). (3.19)

a 0 0
Aepy =1 0 b 0 , (3.20)
0 0 (a+0b)Ih—2
¢ d, 0
A, =1 dp —c¢. O , re{n+2,...,m}. (3.21)
0 0 Op2

In particular case of k = n — 1, we have the following:



INEQUALITIES INVOLVING k-CHEN INVARIANTS... 473

Theorem 3. Let M be an n-dimensional submanifold in a Riemannian manifold.
Let {e1,...,e,} be an orthonormal basis of T,M. Then,

1. For each unit vector U € T, M, we have
1 ~
Ric (U) < ZnQHHH2 + T (U). (3.22)

2. If the mean curvature H(p) = 0, then a unit vector U € T,M satisfies the
equality case of (3.22)) if and only if U lies in the relative null space N, at

p.

3. The equality case of (3.22) holds for all unit vectors U € T, M, if and only
if either p is a totally geodesic point or n = 2 and p is a totally umbilical
point.

Proof. Let M be an n-dimensional submanifold in an m-dimensional Riemannian
manifold M. Now, we use Theorem |Il Thus, for each point p € M and each
(n — 1)-plane section II,,_; C T, M, we have

7(p) = K (Iln—1) < *HHH +7(T,M) = K (T,—1). (3.23)

The equality in holds at p € M if and only if there exist an orthonormal
basis {e1,...,e,} of T,M and an orthonormal basis {e,+1,...,€mn} of TPLM such
that (a) IIx = Span{ei,...,e,—1} and (b) the forms of shape operators A._,
r=n+1,...,m, become

ottt 0 0 0
0 opft ... 0 0
Aen = i i ’ n+1 : 9 (324)
+1 0 0 SRR ARSIV 0
0 0 - 0 (Z a”“)
o1 o1z T 0'714(7171) 0
T2 Th2 T Ug(n—l)
A. = 1 1 o |, re{n+2,...,m}. (3.25)
%in-1) Oom-1) "7 Z Tii
0 0o .- 0 0

Now, we assume that the unit vector U is e,,. Then, from ({3.23)), then we get (3.22]).

Assuming U = e, from (3.24) and (3.25]), we see that the equality in (3.22) is valid
if and only if

{02n=0’£1+052+ 01y (1) (3.26)

r g T P A
O1p = O2p = J(n—l)n 0.



474 MEHMET GULBAHAR, MUKUT MANI TRIPATHI, AND EROL KILIC

for r € {n+1,...,m}. If H(p) = 0, then implies that U = e, lies in the
relative null space N,. Conversely, if U = e, lies in the relative null space, then
is true because H(p) = 0 is assumed. Thus (2) is proved.

Now we prove (3). Assuming the equality case of for all unit tangent
vectors to M at p, in view of , for each 7 € {n+1,...,m}, we have

QO—Z = 0-71“1 + 0—52 +oeeet 0-277.7
{ o =0, i#) (3:27)
foralli € {1,...,n}andr € {n+1,...,m}. Thus, we have two cases, namely either

n =2 or n # 2. In the first case p is a totally umbilical point, while in the second
case p is a totally geodesic point.
The proof of converse part is straightforward. ([

4. ALMOST PRODUCT MANIFOLDS

Let M be an m-dimensional smooth manifold. A system of coordinate neigh-
borhood is called a separating coordinate system if, in the intersection of any two

coordinate neighborhoods (xl) and (xi/)7 there exist the following relations:

’ ’ ’ ’

= @), e = (@),
with
oz oz
det [ — 0, det | —— 0,
( ox® ) 7 ( ox® ) 7
where the indices a,b, ¢, d run over the range 1,...,mq, the indices «, 3,7, run
over mi + 1,...,mq1 + mo = m, and the indices ¢, j, k, h run over 1,...,m.

Now, let M be a manifold covered by a separating coordinate system. Suppose
that M, is a subspace defined by

2% = constant, a€{mi+1,....,m +mas=m},
and by Mg is a subspace defined by
x® = constant, ac{l,...,m}.

Then it follows that M is locally the product Ml X ]\72 of two manifolds. Such
a manifold is called a locally product manifold. If we define (F JZ) as the following

matrix form
i 0 0
Fj_< 0 —63)’ (4.1)

then it is obvious that there exists always a natural tensor field F of type (1,1) on
M satisfied
F?=1, (4.2)

where I denotes the identity transformation.



INEQUALITIES INVOLVING k-CHEN INVARIANTS... 475

A locally product manifold M equipped with a Riemannian metric defined by
ds® = Gi; (v) dz'da? (4.3)

is called a locally product Riemannian manifold. 1f we define Fj; = (F})gui, t €

{1,...m} such that in fact
o Gba 0
Fj; = < 0 — goe ) ) (4.4)

Thus, we have Fj; = Fj;. In view of (4.3) and (4.4)), there exists always a natural
tensor field F of type (1,1) on any locally product Riemannian manifold satisfied

§(FX,FY) = §(X.Y) (45)
for any X,Y € TM. If the metric g of a locally product Riemannian manifold M
has the form

ds? = Gap (2°) dzda® + Gop (27) dzdz?,
then M is called a locally decomposable Riemannian manifold. We note that a

locally Eroduct Rieman~nian manifold is a locally decomposable manifold if and
only if VF = 0, where V is the Riemannian connection of (M, ).

Theorem 4. [20, Theorem 2.4, p. 421] Let M= Ml X MQ be a locally decomposable
Riemannian manifold with dim(My) = my > 2, £ = 1,2. Then, both the manifolds
My and Ma are Einstein if and only if the Ricci tensor S of M has the form

Sij = k1gij + k2 Fij
for certain constants ki and ks.
Theorem 5. [20, Theorem 2.5, p. 422] Let M= Ml X Mg be a locally decomposable
Riemannian manifold with dim(My) = my > 2, £ = 1,2. both the manifolds M,

and MQ are of constant sectional curvatures A1 and Ao, respectively, that is, the
curvature tensor R of M has the form

Rabcd = )\l(gadgbc - Eacgbd)a Raﬁ’yl/ = A2 (Eaugﬁ’y - ga’ygﬁl/>
if and only if
Ruije = a{(Gnkdij — Gnjdix) + (FurFij — FnjFir)}
+ W{(Frr9ij — Fr;gir) + (GnuFij — gnjFir)},
where

1 1
(ZZZ()\l-l-)\Q), b:Z()\l—/\Q).
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A locally decomposable Riemannian manifold is called a manifold of almost con-
stant curvature, denoted M (a,b), if its curvature tensor Ris given by

RX.Y.ZW) = a{({(X.W)(Y,2) - (X,2) (Y, WV)) (4.6)
+ (X, W)Y, FZ) — (X, FZ) (Y, FW))}
+0{({(X, FW) (Y, 2) = (X, FZ) (Y, W))
+ (X, W)Y, FZ) — (X, 2) (Y, FW))}

for all vector fields X, Y, Z, W in M (See [16], [18], [19] and [20]).
Let M be a smooth manifold equipped with a tensor of type (1, 1) which is sat-
isfies . Then M is called an almost product manifold and F is called an almost

pmduct Structure on M. If an almost product manifold M admits a Riemannian
metric g such that
J(FX,FY)=73(X,Y) (4.7)
for all vector fields X and Y on M , then M is called an almost product Riemannian
manifold [20].
Now, let (M, g) be an n-dimensional Riemannian submanifold of a Riemannian
product manifold (M ,g). For any vector field X tangent to M, we can write

FX=fX+wX, (4.8)
where fX is the tangential part of FFX and wX is the normal part of FX. From

(A7) and (4.8)), we see that
9(fX,Y) =g(X, fY) (4.9)

for all vector fields in M.
Furthermore, we note that the squared norm of f at p € M is given by

n
2 2
£ =" g(feires)”,
i,j=1
where {e1,...,e,} is any orthonormal basis of the tangent space T, M.

Let (M, g) be an almost product Riemannian manifold and (M, g) be a subman-
ifold of (M,g). For each non-zero vector X to M at p, if the angle 6(p) between
FX and X given by
(FX, £X)
XTI X]
is independent of the choice of p € M and X € T,M, then M is called a slant

submanifold. From this definition, it can be shown that M is a slant manifold there
exists a constant A € [0, 1] such that

=\ (4.11)

cos = (4.10)

A slant submanifold is called
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an F-invariant submanifold if 6 = 0,
an I-anti-invariant submanifold or totally real submanifold if 0 = 7,
a proper slant submanifold if it is neither non-invariant nor anti-invariant,

o Tp

a product slant submanifold if the endomorphism f is parallel [14].

We shall need the following results:

@

Theorem 6. [12] Theorem 4.4, p. 45] Let M be an n-dimensional proper slant
submanifold of almost product Riemannian manifold M. Then an orthonormal
basis {e1,...,en} of T,M, p € M satisfies the following condition:

For any e, vector belongs to the basis {ei,...,en}, there exists an e, vector
belongs to the basis {e1,...,e,} such that

(fea,en) = (€a, fep) = cos O
and
<f€a,6c> = <f€b,6c> =0
forc#a and c #b.

Theorem 7. [12, Theorem 4.7, p. 48] Let M be a proper 6-slant submanifold of an
almost product Riemannian manifold M. Then Vxf =0 for all X € TM if and
only if either (fe;,e;) = cos® or e; is parallel for each i € {1,...,n}.

5. SOME OPTIMAL INEQUALITIES FOR SUBMANIFOLDS OF ALMOST CONSTANT
CURVATURE MANIFOLDS

We shall begin this section with the following lemma for later uses:

Lemma 2. Let M be an n-dimensional submanifold of an almost constant curvature
manifold and I, = Span{es,...,ex} be a k-plane section of T,M. Denote fi by
the projection morphism of T, M onto IIy,. For any orthonormal vector pair {e;, e;}
in I, we have

IN{ij = a {1 + <€i7fk6i> <€j, fk€j> — <ei,fkej>2} (51)
+ b{(es, frei) + (€5, fuej)}s

Rien, (1) = a{(b—1)+ (es, fes) trace (fi) — Il fueil* | (5.2)
+b{(k —2) (€5, fres) + trace (fi)},

M) = 5 {(k = D+ (trace (7)) = Il *} (5.3)
+ b(k — 1)trace (fx),

where trace (fx) denotes the trace restricted to Iy with respect to the metric g.
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Proof. We get (5.1) from (4.6)). Considering (3.1)) and (5.1]), we have

k k

Ricm, (€)= ag (k— 1)+ (es, frei) Y (ej, fues) — > (i, fres)?

Jj=2 Jj=2

k
+b (k elafkez +Z ejafkej ’
Jj=2

which implies (5.2]). Next, using (3.2)) and (5.2)), we obtain (5.3). O

Theorem 8. Let M be an n-dimensional submanifold of an almost constant curva-
ture manifold M (a,b). For each point p € M and each k-plane section Il C T, M,
(n >k >2), we have

< an + 5 {n =B+ k= 1) + (trace () — (trace (1))

+ 1Al = 171 } + b{(n — Dtrace (f) — (k — 1)trace (fx)} - (5.4)

S (p)

The equality in (5.4) holds at p € M if and only if the shape operators take forms
as (3.8) and (3.9)

Proof. Putting k = n in equation (5.3) we have

1) = 5 {m— D+ (wrace (1) — |1£1°} (5.5)
+ b(n — 1)trace (f).

From (5.4), (5.3) and (5.5)), the proof of theorem is straightforward. O

Corollary 1. Let M be an n-dimensional submanifold of an almost constant cur-
vature manifold M(a,b) and {e1, ..., en} be an orthonormal basis of T,M. Then we
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have the following table:

M Inequality

2
(1) | proper 6-slant sk (p) < % IH|? + 2 {(n —k)(n+ k — 1) + (trace (£))2 — (trace (f3))2

+ 1 fxll? = ncos? 9} + b{(n — 1)trace (f) — (k — 1)trace (f)}

2
(2) | proper product 6-slant 5ﬁf(p) < % |H 1% 4+ 3 {(n —k)(n+k—1)+ (n —k)(n+k — 1) cos? 0}

+bcosf {n(n —1) — k(k —1)}

712(77,7]@)

(3) | F-invariant 5?{4(?) < 3(n—k+1)

112 + & {n(n = 2) + k(1 = k) + (trace (£))? — (brace (f1))?

+ kaHQ} + b{(n — L)trace (f) — (k — L)trace (fx)}

2 I
(4) | F-totally real 8% (0) < F TN IHI? + § {(n — K)(n+ K — 1)} .

The equality case of inequalities given by the table holds at p € M if and only if the
shape operators of M take forms as (3.8) and (3.9).

Proof. Suppose that M is a proper §-slant submanifold. We have from Theorem [f]
that

112 = cos?e.

Using (??) in (5.4) we find the inequality (1). Next, if M is a product 6-slant
submanifold with all e; are parallel we have from Theorem [7] that

g(fei,e;) = cosb.
Using (?7?) in (5.4) we find the inequality (2). Putting 6 = 7 and 0 in the inequality
(1), we get the inequalities (3) and (4), respectively. O
In particular case of k = 2, we have the followings:

Theorem 9. Let M be an n-dimensional submanifold of an almost constant cur-
vature manifold M(a,b). For any plane section II = Span{ey, ea} C T, M at a point
p € M, we have

T;(Ef__f)) IHIE 4+ 5 {(n = 2)(n -+ 1) + (brace (£)° — I — 2(fer, )

+2(fer, er)(fez, e2)} + b{(n — Dtrace (f) — (fer,e1) — (fez,e2)} . (5.6)
The equality in (5.6)) holds at p € M if and only if the shape operators take forms

as (3.20) and (3.21).

om(p) <
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Corollary 2. Let M be an n-dimensional submanifold of an almost constant cur-
vature manifold M(a,b) and {e1,...,en} be an orthonormal basis of T,M. For any
plane section II = Span{e;,e;}, we have the following table:

M Inequality

nZ(n—Q)

—2(fes,ei)(fej, ej)} + b{(n — L)trace (f) — (fei,e;) — (fej,e;)}

(1) | proper 0-slant dp(p) < =1 HHH2+%{(n72)(n+1)+(trace(f))27ncos26+2(fei,ej>2

2
(2) | proper product 8-slant | &p7(p) < 7;((7:1_712)) 1= + 5 {(n —2)(n+1) + (n — 2)(n + 1) cos? 9}

+bcosf(n — 2)(n + 1)

2
R IHI? + § {n? — 20 — 24 (brace ()2 + 2(fes, ¢;)

(3) | F-invariant dm(p) <

—2(fei,ei)(fej ej)} + b{(n — trace (f) — (fei,ei) — (fej,ej)}

2(n— a
(4) | F-totally real Sy (p) < % |H|? + g{(n—=2)(n+1)}.

The equality case of inequalities given by the table holds at p € M if and only if the
shape operators of M take forms as (3.20) and (3.21)).

In particular case of k = n — 1, we have the following:

Theorem 10. Let M be an n-dimensional submanifold of an almost constant cur-
vature manifold M(a,b) and {e1,...,en} be an orthonormal basis of T,M. Then,

1. For each unit vector U € T, M, we have
. 1 a
Ric(U) < 2| H|? + 5 { (k= 1)k + (trace (0))° = |1 £l*
+ b(k — 1)trace (f) - (5.7)
2. If the mean curvature H(p) = 0, then a unit vector U € T,M satisfies the
equality case of (5.7) if and only if U lies in the relative null space N, at

p.

3. The equality case of (5.7) holds for all unit vectors U € T,M, if and only
if either p is a totally geodesic point or n = 2 and p is a totally umbilical
point.

Now, we shall give some examples of submanifolds of almost curvature manifolds
which are satisfying the inequalities obtained throughout the paper.

Example 1. Consider a submanifold M in E° given by

M = {(t,—t,0,t,—t,cos ucosvcosw,Ccos ucos v sin w, cos u sin v, sin u)
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fort € R and u,v,w € [0,%). Let F be an almost product structure on E° defined
by

FX = (22, 2, 23, 2%, 2%, 25,27, 28, 29),
where X = (o, 22, 2%, 2%, 25,25, 27, 28, 2°). Then we have

1
PX = 5(201 + a2 ! + 22,223, 2% 4+ 28 2t + 25,225,227, 228, 22)

and
1
QX = 5(:151 — 2% 2t — 22,0,z — 25, 2° — 2*,0,0,0,0),
which show that M is a locally product of the unit 3-sphere S° given by the spherical
coordinates in EY as
(cos u cos v cos w, cos u cos v sin w, cos u sin v, sinu, 0,0, 0,0, 0)

for w ranges over [0,5) and the other coordinates range over [0, 5], and a plane
section My in E° given by

My, ={(t,—t,0,t,¢,0,0,0,0) : t € R}.

Thus, it follows from Theorem that M is an almost constant curvature manifold
with a =b = %. By a straightforward computation, we have

er = (0,0,0,0,0,— sinwucosvcosw,— sinucosvsinw, — sinwu sin v, cos u),
ea = (0,0,0,0,0,— cosusinvcosw, — cosusinvsin w, cos u cos v, 0),

es = (0,0,0,0,0,— coswucosvsinw, — cosucosvcosw,0,0),

es = (1,-1,0,1,-1,0,0,0,0).

For each unit vector U and each plane section I1 on Tps3, we see that
Ric(U) =2, H(p)=0, trace(fi) =2, [fll*=2 (5.8)

By a straightforward computation, it is clear that S® satisfies the conditions of
Theorem 8, Corollary 1 and Theorem 10.

Example 2. Consider
R* x 83 = {(z1, 22,3, x4, 21,22) 1, ER, 1 <i <4 and z; € C,1 < j <2},
where
|21 + [z2f* = 1.
Let F be an almost product structure on R* x S® defined by
F(x1, 0, 23,24, 21, 22) = (X3, T4, T1, T2, 21, 72)- (5.9)

Then it is clear that (R* x S3, F) is of almost constant curvature manifold with

—p=1
a=b= 3.
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Consider a flat submanifold M of R* x S3 given by
{(ucosf,ucos,v,w,0,0) : u,v,w € R},

where 6 is constant. Then, one can see that the submanifold M is a 0-slant subman-
ifold R* x S3 and satisfies the conditions of Theorem 8, Corollary 1 and Theorem
10.
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