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INEQUALITIES INVOLVING k-CHEN INVARIANTS FOR
SUBMANIFOLDS OF RIEMANNIAN PRODUCT MANIFOLDS

MEHMET GÜLBAHAR, MUKUT MANI TRIPATHI, AND EROL KILIÇ

Abstract. An optimal inequality involving the scalar curvatures, the mean
curvature and the k-Chen invariant is established for Riemannian submani-
folds. Particular cases of this inequality is reported. Furthermore, this in-
equality is investigated on submanifolds, namely slant, F -invariant and F -anti
invariant submanifolds of an almost constant curvature manifold.

1. Introduction

Riemannian invariants have an essential role in Riemannian geometry since they
affect the intrinsic features of Riemannian manifolds. In this manner, these in-
variants are considered as DNA of a Riemannian manifold (cf. [6]). The most
fundamental notions in Riemannian invariants are curvature invariants. Curvature
invariants play key roles in physics as in geometry. According to Newton’s laws, the
magnitude of a force, required to move an object at constant speed, is a constant
multiple of the curvature of the trajectory. According to Einstein, the motion of
a body in a gravitational field is determined by the curvatures of space time. All
sorts of shapes, from soap bubbles to red blood cells, seem to be determined by
various curvatures (cf. [15]).
The main extrinsic curvature invariant is the squared mean curvature and the

main intrinsic curvature invariants include the classical curvature invariants namely
the Ricci curvature and the scalar curvature. In [4], B.-Y. Chen introduced a new
curvature invariant, now known as (first) Chen invariant. In [8], he introduced and
investigated two strings of new types of curvature invariants. These new curvature
invariants seem to play significant roles in several areas of mathematics including
submanifold theory and Riemannian, spectral and symplectic geometries. For more
details, we refer to [7] and [10].
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Beside these facts, the theory of almost product manifolds and their subman-
ifolds have been developed in a similar manner with theories of almost complex
manifolds and almost contact manifolds. In [16], S. Tachibana firstly introduced
locally product manifolds and then submanifolds of locally product manifolds have
been intensely studied by various geometers. Invariant and anti-invariant sub-
manifold of a locally product manifold were studied by T. Adati in [1], semi-slant
submanifolds of a locally product manifold were investigated by A. Bejancu in [3],
slant submanifolds of Riemannian product manifolds were presented by B. Sahin
in [14] and M. Atçeken in [2], almost semi-invariant submanifolds of a locally prod-
uct manifold were studied by the second author in [17], and skew semi-invariant
submanifolds (which are a special class of almost-semi-invariant submanifolds) of a
locally product manifold were studied by X. Liu and F.-M. Shao in [13]. Recently,
proper slant surfaces of locally product Riemannian manifolds were investigated by
the first and third authors and S. Saraçoǧlu Çelik [11]. Finally, Chen-Ricci inequal-
ities for slant submanifolds of a Riemannian product manifold were established by
the authors in [12].
Based on the above presented facts, we are going to give some relations involving

the Chen invariants, the intrinsic and extrinsic curvature invariants of a Riemannian
submanifold. Also, we are going to investigate these relations on submanifolds of a
Riemannian product manifold and an almost constant curvature manifold.

2. Riemannian submanifolds

In this section, we are going to focus on some basic facts about Riemannian
submanifolds by following the notations and formulas used in [7] and [10].
Let (M̃, g̃) be anm-dimensional Riemannian manifold equipped with a Riemann-

ian metric g̃ and (M, g) be submanifold of (M̃, g̃) such that g is just the restriction
of g̃. For all vector fields X and Y in the tangent bundle TM and N in the normal
bundle T⊥M , the Gauss and Weingarten formulas are given by

∇̃XY = ∇XY + σ (X,Y ) (2.1)

and

∇̃XN = −ANX +∇⊥XN, (2.2)

where ∇̃, ∇ and ∇⊥ are respectively the Riemannian, induced Riemannian and
induced normal connections in M̃ , M and the normal bundle T⊥M of M , and σ is
the second fundamental form related to the shape operator AN by

〈σ (X,Y ) , N〉 = 〈ANX,Y 〉 . (2.3)

Here, 〈 , 〉 denotes the inner product notation for both the metric g̃ and the induced
metric g.
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Let R̃ and R are the curvature tensors of M̃ and M respectively. For all
X,Y, Z,W ∈ TM , the following relation between these tensors holds:

R(X,Y, Z,W ) = R̃(X,Y, Z,W ) + 〈σ(X,W ), σ(Y, Z)〉
− 〈σ(X,Z), σ(Y,W )〉 (2.4)

We note that the equation (2.4) is known as the Gauss equation.

Now, let {e1, . . . , en} be an orthonormal basis of the tangent space TpM , p ∈M .
The mean curvature vector, denoted by H(p), is defined by

H(p) =
1

n

n∑
i=1

σ (ei, ei) . (2.5)

The submanifold M is called totally geodesic in M̃ if σ = 0, and minimal if H = 0.
If σ (X,Y ) = g (X,Y )H for all X,Y ∈ TM , then M is called totally umbilical.

Suppose that er belongs to an orthonormal basis {en+1, . . . , em} of the normal
space T⊥p M . Then we can write

σrij = 〈σ (ei, ej) , er〉 and ‖σ‖2 =

n∑
i,j=1

〈σ (ei, ej) , σ (ei, ej)〉 . (2.6)

In view of (2.4) and (2.6), we get

Kij = K̃ij +

m∑
r=n+1

(
σriiσ

r
jj − (σrij)

2
)
, (2.7)

where Kij and K̃ij denote the sectional curvature of the plane section spanned by
ei and ej at p in the submanifold M and in the ambient manifold M̃ respectively.
Thus, we can say that Kij and K̃ij are the “intrinsic” and “extrinsic” sectional
curvatures of the Span{ei, ej} at p. From (2.7), it follows that

2τ(p) = 2τ̃ (TpM) + n2 ‖H‖2 − ‖σ‖2 , (2.8)

where τ̃ (TpM) denotes the scalar curvature of the n-plane section TpM in the
ambient manifold M̃ defined by

τ̃ (TpM) =
∑

1≤i<j≤n
K̃ij .

Thus, we can say that τ(p) and τ̃ (TpM) are the “intrinsic”and “extrinsic”scalar
curvature of the submanifold at p respectively.
The relative null space of a Riemannian submanifold M at p is defined by [5]

Np = {X ∈ TpM |σ (X,Y ) = 0 for all Y ∈ TpM} ,
which is also known as the kernel of the second fundamental form [8].
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3. Chen invariants

Let (M, g) be an n-dimensional Riemannian (sub)manifold and Πk be a k-plane
section of TpM . Suppose that {e1, . . . , ek} to be an orthonormal basis of Πk. For
each 2 ≤ i < k, k-Ricci curvature of Πk at ei, denoted RicΠk

(X), is defined by [5]

RicΠk
(ei) =

k∑
j 6=i

Kij . (3.1)

We note that

a. if k = n, then Πn = TpM and an n-Ricci curvature RicTpM (ei) is the usual
Ricci curvature of ei, denoted Ric (ei). Thus for any orthonormal basis
{e1, . . . , en} for TpM and for a fixed i ∈ {1, . . . , n}, we have

RicTpM (ei) ≡ Ric (ei) =
n∑
j 6=i

Kij .

b. if k = 2, then Π is a plane section of TpM and the 2-Ricci curvature becomes
the sectional curvature.

The scalar curvature τ (Πk) of the k-plane section Πk is given by

τ (Πk) =
∑

1≤i<j≤k
Kij (3.2)

In view of (3.2), we get

τ (Πk) =
1

2

k∑
i=1

k∑
j 6=i

Kij =
1

2

k∑
i=1

RicΠk
(ei). (3.3)

The scalar curvature τ(p) of M at p is identical with the scalar curvature of the
tangent space TpM of M at p, that is,

τ (p) = τ (TpM) .

If Πk is a 2-plane section, τ(Πk) is nothing but the sectional curvature K (Πk) of
Πk. Geometrically, τ(Πk) is the scalar curvature of the image expp(Πk) of Πk at p
under the exponential map at p.
Now, we shall recall the following definition of B.-Y. Chen in [9]:

Definition 1. Let (M, g) be an n-dimensional Riemannian (sub)manifold. For
2 ≤ k ≤ n− 1, the k-Chen invariant δkM is defined to be

δkM (p) = τ(p)− (infτ (Πk)) (p) , (3.4)

where
(infτ (Πk)) (p) = inf{τ(Πk) |Πk is a k-plane section ⊂ TpM}.

We note that
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a. if k = 2, δkM reduces to the well known Chen invariant [4] of M given by

δM (p) = τ(p)− (infK)(p).

b. if k = n− 1, δkM reduces to the maximum Ricci curvature of M given by

R̂ic(p) = max
{

Ric(X) |X ∈ T 1
pM

}
= τ(p)− (infτ(Πn−1))(p).

Now, we are going to give the following algebraic lemma:

Lemma 1. If 2 ≤ k < 2 and a1, . . . , an, a are real numbers such that(
n∑
i=1

ai

)2

= (n− k + 1)

(
n∑
i=1

a2
i + a

)
, (3.5)

then

2
∑

1≤i<j≤k
aiaj ≥ a,

with equality holding if and only if

a1 + a2 + · · ·+ ak = ak+1 = · · · = an.

Proof. By the Cauchy-Schwartz inequality, we have(
n∑
i=1

ai

)2

≤(n−k+1)((a1+a2+· · ·+ak)2+a2
k+1+· · ·+a2

n). (3.6)

From (3.5) and (3.6), we get
n∑
i=1

a2
i + a ≤ (a1 + a2 + · · ·+ ak)

2
+ a2

k+1 + · · ·+ a2
n.

The above equation is equivalent to

2
∑

1≤i<j≤k
aiaj ≥ a.

The equality holds if and only if a1 + a2 + · · ·+ ak = ak+1 = · · · = an. �

Theorem 1. LetM be an n-dimensional (n ≥ 3) submanifold in an m-dimensional
Riemannian manifold M̃ . Then, for each point p ∈ M and each k-plane section
Πk ⊂ TpM (n > k ≥ 2), we have

δkM (p) ≤ n2 (n− k)

2 (n− k + 1)
‖H‖2 + τ̃(TpM)− τ̃ (Πk) . (3.7)

The equality in (3.7) holds at p ∈ M if and only if there exist an orthonormal
basis {e1, . . . , en} of TpM and an orthonormal basis {en+1, . . . , em} of T⊥p M such
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that (a) Πk = Span {e1, . . . , ek} and (b) the forms of shape operators Aer , r =
n+ 1, . . . ,m, become

Aen+1 =



σn+1
11 0 · · · 0
0 σn+1

22 · · · 0
...

...
. . .

...
0 0 · · · σn+1

kk

0

0

(
k∑
i=1

σn+1
ii

)
In−k


, (3.8)

Aer =



σr11 σr12 · · · σr1k
σr12 σr22 · · · σr2k
...

...
. . .

...

σr1k σr2k · · · −
k−1∑
i=1

σrii

0

0 0n−k


, r ∈ {n+ 2, . . . ,m} . (3.9)

Proof. Let Πk ⊂ TpM be a k-plane section. We choose an orthonormal basis
{e1, e2, . . . , en} for TpM and {en+1, . . . , em} for the normal space T⊥p M at p such
that Πk = Span {e1, . . . , ek}, the mean curvature vector H is in the direction of the
normal vector to en+1, and e1, ..., en diagonalize the shape operator Aen+1 . Then
the shape operators take the forms

Aen+1 = diag
(
σn+1

11 , σn+1
22 , . . . , σn+1

nn

)
, (3.10)

Aer =
(
σrij
)
, traceAer =

n∑
i=1

σrii = 0 (3.11)

for all i, j = 1, . . . , n and r = n+ 2, . . . ,m. Thus, we rewrite (2.8) as(
n∑
i=1

σn+1
ii

)2

= (n− k + 1)

 n∑
i=1

(
σn+1
ii

)2
+

m∑
r=n+2

n∑
i,j=1

(
σrij
)2

+ ω

 , (3.12)

where

ω = 2τ (p)− 2τ̃ (TpM)− n2(n− 2)

n− 1
‖H‖2 . (3.13)

Applying Lemma 1 to equation (3.12), we get

2
∑

1≤i<j≤k
σn+1
ii σn+1

jj ≥ ω +

m∑
r=n+2

n∑
i,j=1

(
σrij
)2
. (3.14)

From equation (2.7) it also follows that

τ (Πk) = τ̃ (Πk) +
∑

1≤i<j≤k
σn+1
ii σn+1

jj +

m∑
r=n+2

∑
1≤i<j≤k

(
σriiσ

r
jj −

(
σrij
)2)

. (3.15)
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From (3.14) and (3.15) we get

τ (Πk) ≥ τ̃ (Πk) +
1

2
ω +

m∑
r=n+2

∑
j>k

{(σr1j)2 + (σr2j)
2 + · · ·+ (σrkj)

2}

+
1

2

m∑
r=n+2

(σr11 + σr22 + · · ·+ σrkk)2 +
1

2

m∑
r=n+2

∑
i,j>k

(σrij)
2,

or

τ (Πk) ≥ τ̃ (Πk) +
1

2
ω. (3.16)

In view of (3.13) and (3.16), we get (3.7).
If the equality in (3.7) holds, then the inequalities given by (3.14) and (3.16)

become equalities. In this case, for r = n+ 2, . . . ,m we have
σn+1

1j = σn+1
2j = σn+1

kj = 0, j = k + 1, . . . , n,

σrij = 0, i, j = k + 1, . . . , n,
σr11 + σr22 + · · ·+ σrkk = 0.

(3.17)

Applying Lemma 1 we also have

σn+1
11 + σn+1

22 + · · ·+ σn+1
kk = σn+1

ll , l = k + 1, . . . , n. (3.18)

Thus, after choosing a suitable orthonormal basis {e1, . . . , em}, the shape operator
of M becomes of the form given by (3.8) and (3.9). The converse is easy to follow.

�

In particular case of k = 2, we have the following:

Theorem 2. LetM be an n-dimensional (n ≥ 3) submanifold in an m-dimensional
Riemannian manifold M̃ . Then, for each point p ∈ M and each plane section
Π2 ⊂ TpM , we have

δM (p) ≤ n2(n− 2)

2 (n− 1)
‖H‖2 + τ̃ (TpM)− K̃ (Π2) . (3.19)

The equality in (3.19) holds at p ∈M if and only if there exist an orthonormal basis
{e1, . . . , en} of TpM and an orthonormal basis {en+1, . . . , em} of T⊥p M such that
(a) Π2 = Span {e1, e2} and (b) the forms of shape operators Aer , r = n+1, . . . ,m,
become

Aen+1 =

 a 0 0
0 b 0
0 0 (a+ b) In−2

 , (3.20)

Aer =

 cr dr 0
dr −cr 0
0 0 0n−2

 , r ∈ {n+ 2, . . . ,m} . (3.21)

In particular case of k = n− 1, we have the following:
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Theorem 3. Let M be an n-dimensional submanifold in a Riemannian manifold.
Let {e1, . . . , en} be an orthonormal basis of TpM . Then,

1. For each unit vector U ∈ TpM , we have

Ric (U) ≤ 1

4
n2‖H‖2 + τ̃ (TpM) (U) . (3.22)

2. If the mean curvature H(p) = 0, then a unit vector U ∈ TpM satisfies the
equality case of (3.22) if and only if U lies in the relative null space Np at
p.

3. The equality case of (3.22) holds for all unit vectors U ∈ TpM , if and only
if either p is a totally geodesic point or n = 2 and p is a totally umbilical
point.

Proof. Let M be an n-dimensional submanifold in an m-dimensional Riemannian
manifold M̃ . Now, we use Theorem 1. Thus, for each point p ∈ M and each
(n− 1)-plane section Πn−1 ⊂ TpM , we have

τ (p)−K (Πn−1) ≤ 1

4
‖H‖2 + τ̃ (TpM)− K̃ (Πn−1) . (3.23)

The equality in (3.23) holds at p ∈ M if and only if there exist an orthonormal
basis {e1, . . . , en} of TpM and an orthonormal basis {en+1, . . . , em} of T⊥p M such
that (a) Πk = Span {e1, . . . , en−1} and (b) the forms of shape operators Aer ,
r = n+ 1, . . . ,m, become

Aen+1 =



σn+1
11 0 · · · 0 0
0 σn+1

22 · · · 0 0
...

...
. . .

...
...

0 0 · · · σn+1
(n−1)(n−1) 0

0 0 · · · 0

(
n−1∑
i=1

σn+1
ii

)


, (3.24)

Aer =



σr11 σr12 · · · σr1(n−1) 0

σr12 σr22 · · · σr2(n−1) 0
...

...
. . .

...
...

σr1(n−1) σr2(n−1) · · · −
n−2∑
i=1

σrii 0

0 0 · · · 0 0


, r ∈ {n+ 2, . . . ,m} . (3.25)

Now, we assume that the unit vector U is en. Then, from (3.23), then we get (3.22).
Assuming U = en from (3.24) and (3.25), we see that the equality in (3.22) is valid
if and only if {

σrnn = σr11 + σr22 + · · ·+ σr(n−1)(n−1)

σr1n = σr2n = · · · = σr(n−1)n = 0.
(3.26)
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for r ∈ {n+ 1, . . . ,m}. If H(p) = 0, then (3.26) implies that U = en lies in the
relative null space Np. Conversely, if U = en lies in the relative null space, then
(3.26) is true because H(p) = 0 is assumed. Thus (2) is proved.
Now we prove (3). Assuming the equality case of (3.22) for all unit tangent

vectors to M at p, in view of (3.26), for each r ∈ {n+ 1, . . . ,m}, we have{
2σrii = σr11 + σr22 + · · ·+ σrnn,
σrij = 0, i 6= j

(3.27)

for all i ∈ {1, ..., n} and r ∈ {n+ 1, . . . ,m}. Thus, we have two cases, namely either
n = 2 or n 6= 2. In the first case p is a totally umbilical point, while in the second
case p is a totally geodesic point.
The proof of converse part is straightforward. �

4. Almost product manifolds

Let M̃ be an m-dimensional smooth manifold. A system of coordinate neigh-
borhood is called a separating coordinate system if, in the intersection of any two

coordinate neighborhoods
(
xi
)
and

(
xi
′
)
, there exist the following relations:

xa
′

= xa
′
(xa) , xα

′
= xα

′
(xα) ,

with

det

(
∂xa

′

∂xa

)
6= 0, det

(
∂xα

′

∂xα

)
6= 0,

where the indices a, b, c, d run over the range 1, . . . ,m1, the indices α, β, γ, ν run
over m1 + 1, . . . ,m1 +m2 = m, and the indices i, j, k, h run over 1, . . . ,m.

Now, let M̃ be a manifold covered by a separating coordinate system. Suppose
that M̃1 is a subspace defined by

xα = constant, α ∈ {m1 + 1, . . . ,m1 +m2 = m} ,

and by M̃2 is a subspace defined by

xa = constant, a ∈ {1, . . . ,m1} .

Then it follows that M̃ is locally the product M̃1 × M̃2 of two manifolds. Such
a manifold is called a locally product manifold. If we define (F ij ) as the following
matrix form

F ij =

(
δab 0
0 − δαβ

)
, (4.1)

then it is obvious that there exists always a natural tensor field F of type (1, 1) on
M̃ satisfied

F 2 = I, (4.2)

where I denotes the identity transformation.
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A locally product manifold M̃ equipped with a Riemannian metric defined by

ds2 = g̃ij (x) dxidxj (4.3)

is called a locally product Riemannian manifold. If we define Fji = (F tj )gti, t ∈
{1, . . .m} such that in fact

Fji =

(
gba 0
0 − gβα

)
. (4.4)

Thus, we have Fij = Fji. In view of (4.3) and (4.4), there exists always a natural
tensor field F of type (1, 1) on any locally product Riemannian manifold satisfied

g̃ (FX,FY ) = g̃ (X,Y ) (4.5)

for any X,Y ∈ TM̃ . If the metric g̃ of a locally product Riemannian manifold M̃
has the form

ds2 = g̃ab (xc) dxadxb + g̃αβ (xγ) dxαdxβ ,

then M̃ is called a locally decomposable Riemannian manifold. We note that a
locally product Riemannian manifold is a locally decomposable manifold if and
only if ∇̃F = 0, where ∇̃ is the Riemannian connection of (M̃, g̃).

Theorem 4. [20, Theorem 2.4, p. 421] Let M̃ = M̃1×M̃2 be a locally decomposable
Riemannian manifold with dim(M̃`) = m` > 2, ` = 1, 2. Then, both the manifolds
M̃1 and M̃2 are Einstein if and only if the Ricci tensor S̃ of M̃ has the form

S̃ij = k1g̃ij + k2Fij

for certain constants k1 and k2.

Theorem 5. [20, Theorem 2.5, p. 422] Let M̃ = M̃1×M̃2 be a locally decomposable
Riemannian manifold with dim(M̃`) = m` > 2, ` = 1, 2. both the manifolds M̃1

and M̃2 are of constant sectional curvatures λ1 and λ2, respectively, that is, the
curvature tensor R̃ of M̃ has the form

R̃abcd = λ1(g̃adg̃bc − g̃acg̃bd), R̃αβγν = λ2(g̃αν g̃βγ − g̃αγ g̃βν)

if and only if

R̃hijk = a{(g̃hkg̃ij − g̃hj g̃ik) + (FhkFij − FhjFik)}
+ b{(Fhkg̃ij − Fhj g̃ik) + (g̃hkFij − g̃hjFik)},

where

a =
1

4
(λ1 + λ2) , b =

1

4
(λ1 − λ2) .



476 MEHMET GÜLBAHAR, MUKUT MANI TRIPATHI, AND EROL KILIÇ

A locally decomposable Riemannian manifold is called a manifold of almost con-
stant curvature, denoted M̃ (a, b), if its curvature tensor R̃ is given by

R̃(X,Y, Z,W ) = a {(〈X,W 〉 〈Y,Z〉 − 〈X,Z〉 〈Y,W 〉) (4.6)

+ (〈X,FW 〉 〈Y, FZ〉 − 〈X,FZ〉 〈Y, FW 〉)}
+ b {(〈X,FW 〉 〈Y,Z〉 − 〈X,FZ〉 〈Y,W 〉)

+ (〈X,W 〉 〈Y, FZ〉 − 〈X,Z〉 〈Y, FW 〉)}

for all vector fields X,Y, Z,W in M̃ (See [16], [18], [19] and [20]).
Let M̃ be a smooth manifold equipped with a tensor of type (1, 1) which is sat-

isfies (4.2). Then M̃ is called an almost product manifold and F is called an almost
product structure on M̃ . If an almost product manifold M̃ admits a Riemannian
metric g̃ such that

g̃ (FX,FY ) = g̃ (X,Y ) (4.7)

for all vector fields X and Y on M̃ , then M̃ is called an almost product Riemannian
manifold [20].
Now, let (M, g) be an n-dimensional Riemannian submanifold of a Riemannian

product manifold (M̃, g̃). For any vector field X tangent to M , we can write

FX = fX + ωX, (4.8)

where fX is the tangential part of FX and ωX is the normal part of FX. From
(4.7) and (4.8), we see that

g(fX, Y ) = g(X, fY ) (4.9)

for all vector fields in M .
Furthermore, we note that the squared norm of f at p ∈M is given by

‖f‖2 =

n∑
i,j=1

g (fei, ej)
2
,

where {e1, . . . , en} is any orthonormal basis of the tangent space TpM .
Let (M̃, g̃) be an almost product Riemannian manifold and (M, g) be a subman-

ifold of (M̃, g̃). For each non-zero vector X to M at p, if the angle θ(p) between
FX and X given by

cos θ =
〈FX, fX〉
‖X‖‖fX‖ (4.10)

is independent of the choice of p ∈ M and X ∈ TpM , then M is called a slant
submanifold. From this definition, it can be shown thatM is a slant manifold there
exists a constant λ ∈ [0, 1] such that

f2 = λ. (4.11)

A slant submanifold is called
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a. an F -invariant submanifold if θ = 0,
b. an F -anti-invariant submanifold or totally real submanifold if θ = π

2 ,
c. a proper slant submanifold if it is neither non-invariant nor anti-invariant,
d. a product slant submanifold if the endomorphism f is parallel [14].

We shall need the following results:

Theorem 6. [12, Theorem 4.4, p. 45] Let M be an n-dimensional proper slant
submanifold of almost product Riemannian manifold M̃ . Then an orthonormal
basis {e1, . . . , en} of TpM , p ∈M satisfies the following condition:
For any ea vector belongs to the basis {e1, . . . , en}, there exists an eb vector

belongs to the basis {e1, . . . , en} such that
〈fea, eb〉 = 〈ea, feb〉 = cos θ

and
〈fea, ec〉 = 〈feb, ec〉 = 0

for c 6= a and c 6= b.

Theorem 7. [12, Theorem 4.7, p. 48] Let M be a proper θ-slant submanifold of an
almost product Riemannian manifold M̃ . Then ∇Xf = 0 for all X ∈ TM if and
only if either 〈fei, ei〉 = cos θ or ei is parallel for each i ∈ {1, . . . , n}.

5. Some Optimal inequalities for submanifolds of almost constant
curvature manifolds

We shall begin this section with the following lemma for later uses:

Lemma 2. LetM be an n-dimensional submanifold of an almost constant curvature
manifold and Πk = Span{e1, . . . , ek} be a k-plane section of TpM . Denote fk by
the projection morphism of TpM onto Πk. For any orthonormal vector pair {ei, ej}
in Πk, we have

K̃ij = a
{

1 + 〈ei, fkei〉 〈ej , fkej〉 − 〈ei, fkej〉2
}

(5.1)

+ b {〈ei, fkei〉+ 〈ej , fkej〉} ,

R̃icΠk
(ei) = a

{
(k − 1) + 〈ei, fkei〉 trace (fk)− ‖fkei‖2

}
(5.2)

+ b {(k − 2) 〈ei, fkei〉+ trace (fk)} ,

τ̃(Πk) =
a

2

{
(k − 1)k + (trace (fk))

2 − ‖fk‖2
}

(5.3)

+ b(k − 1)trace (fk) ,

where trace (fk) denotes the trace restricted to Πk with respect to the metric g.
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Proof. We get (5.1) from (4.6). Considering (3.1) and (5.1), we have

R̃icΠk
(ei) = a

(k − 1) + 〈ei, fkei〉
k∑
j=2

〈ej , fkej〉 −
k∑
j=2

〈ei, fkej〉2


+ b

(k − 1) 〈ei, fkei〉+

k∑
j=2

〈ej , fkej〉

 ,

which implies (5.2). Next, using (3.2) and (5.2), we obtain (5.3). �

Theorem 8. Let M be an n-dimensional submanifold of an almost constant curva-
ture manifold M̃(a, b). For each point p ∈M and each k-plane section Πk ⊂ TpM ,
(n > k ≥ 2), we have

δkM (p) ≤ n2 (n− k)

2 (n− k + 1)
‖H‖2 +

a

2

{
(n− k)(n+ k − 1) + (trace (f))

2 − (trace (fk))
2

+ ‖fk‖2 − ‖f‖2
}

+ b {(n− 1)trace (f)− (k − 1)trace (fk)} . (5.4)

The equality in (5.4) holds at p ∈ M if and only if the shape operators take forms
as (3.8) and (3.9).

Proof. Putting k = n in equation (5.3) we have

τ̃(Π) =
a

2

{
(n− 1)n+ (trace (f))

2 − ‖f‖2
}

(5.5)

+ b(n− 1)trace (f) .

From (5.4), (5.3) and (5.5), the proof of theorem is straightforward. �

Corollary 1. Let M be an n-dimensional submanifold of an almost constant cur-
vature manifold M̃(a, b) and {e1, ..., en} be an orthonormal basis of TpM . Then we
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have the following table:

M Inequality

(1) proper θ-slant δkM (p) ≤ n2(n−k)
2(n−k+1) ‖H‖

2 + a
2

{
(n− k)(n + k − 1) + (trace (f))2 − (trace (fk))

2

+ ‖fk‖2 − n cos2 θ
}
+ b {(n− 1)trace (f)− (k − 1)trace (fk)}

(2) proper product θ-slant δkM (p) ≤ n2(n−k)
2(n−k+1) ‖H‖

2 + a
2

{
(n− k)(n + k − 1) + (n− k)(n + k − 1) cos2 θ

}
+b cos θ {n(n− 1)− k(k − 1)}

(3) F -invariant δkM (p) ≤ n2(n−k)
2(n−k+1) ‖H‖

2 + a
2

{
n(n− 2) + k(1− k) + (trace (f))2 − (trace (fk))

2

+ ‖fk‖2
}
+ b {(n− 1)trace (f)− (k − 1)trace (fk)}

(4) F -total ly real δkM (p) ≤ n2(n−k)
2(n−k+1) ‖H‖

2 + a
2
{(n− k)(n + k − 1)} .

The equality case of inequalities given by the table holds at p ∈M if and only if the
shape operators of M take forms as (3.8) and (3.9).

Proof. Suppose that M is a proper θ-slant submanifold. We have from Theorem 6
that

‖f‖2 = cos2 θ.

Using (??) in (5.4) we find the inequality (1). Next, if M is a product θ-slant
submanifold with all ei are parallel we have from Theorem 7 that

g(fei, ei) = cos θ.

Using (??) in (5.4) we find the inequality (2). Putting θ = π
2 and 0 in the inequality

(1), we get the inequalities (3) and (4), respectively. �

In particular case of k = 2, we have the followings:

Theorem 9. Let M be an n-dimensional submanifold of an almost constant cur-
vature manifold M̃(a, b). For any plane section Π = Span{e1, e2} ⊂ TpM at a point
p ∈M , we have

δM (p) ≤ n2 (n− 2)

2 (n− 1)
‖H‖2 +

a

2

{
(n− 2)(n+ 1) + (trace (f))

2 − ‖f‖2 − 2〈fe1, e2〉2

+2〈fe1, e1〉〈fe2, e2〉}+ b {(n− 1)trace (f)− 〈fe1, e1〉 − 〈fe2, e2〉} . (5.6)

The equality in (5.6) holds at p ∈ M if and only if the shape operators take forms
as (3.20) and (3.21).
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Corollary 2. Let M be an n-dimensional submanifold of an almost constant cur-
vature manifold M̃(a, b) and {e1, ..., en} be an orthonormal basis of TpM . For any
plane section Π = Span{ei, ej}, we have the following table:

M Inequality

(1) proper θ-slant δM (p) ≤ n2(n−2)
2(n−1) ‖H‖

2 + a
2

{
(n− 2)(n + 1) + (trace (f))2 − n cos2 θ + 2〈fei, ej〉2

−2〈fei, ei〉〈fej , ej〉
}
+ b

{
(n− 1)trace (f)− 〈fei, ei〉 − 〈fej , ej〉

}

(2) proper product θ-slant δM (p) ≤ n2(n−2)
2(n−1) ‖H‖

2 + a
2

{
(n− 2)(n + 1) + (n− 2)(n + 1) cos2 θ

}
+b cos θ(n− 2)(n + 1)

(3) F -invariant δM (p) ≤ n2(n−2)
2(n−1) ‖H‖

2 + a
2

{
n2 − 2n− 2 + (trace (f))2 + 2〈fei, ej〉2

−2〈fei, ei〉〈fej , ej〉
}
+ b

{
(n− 1)trace (f)− 〈fei, ei〉 − 〈fej , ej〉

}

(4) F -total ly real δM (p) ≤ n2(n−2)
2(n−1) ‖H‖

2 + a
2
{(n− 2)(n + 1)} .

The equality case of inequalities given by the table holds at p ∈M if and only if the
shape operators of M take forms as (3.20) and (3.21).

In particular case of k = n− 1, we have the following:

Theorem 10. Let M be an n-dimensional submanifold of an almost constant cur-
vature manifold M̃(a, b) and {e1, ..., en} be an orthonormal basis of TpM . Then,

1. For each unit vector U ∈ TpM , we have

Ric (U) ≤ 1

4
n2‖H‖2 +

a

2

{
(k − 1)k + (trace (fk))

2 − ‖fk‖2
}

+ b(k − 1)trace (fk) . (5.7)

2. If the mean curvature H(p) = 0, then a unit vector U ∈ TpM satisfies the
equality case of (5.7) if and only if U lies in the relative null space Np at
p.

3. The equality case of (5.7) holds for all unit vectors U ∈ TpM , if and only
if either p is a totally geodesic point or n = 2 and p is a totally umbilical
point.

Now, we shall give some examples of submanifolds of almost curvature manifolds
which are satisfying the inequalities obtained throughout the paper.

Example 1. Consider a submanifold M̃ in E9 given by

M̃ = {(t,−t, 0, t,−t, cosu cos v cosw, cosu cos v sinw, cosu sin v, sinu)
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for t ∈ R and u, v, w ∈ [0, π2 ). Let F be an almost product structure on E9 defined
by

FX = (x2, x1, x3, x5, x4, x6, x7, x8, x9),

where X = (x1, x2, x3, x4, x5, x6, x7, x8, x9). Then we have

PX =
1

2
(x1 + x2, x1 + x2, 2x3, x4 + x5, x4 + x5, 2x6, 2x7, 2x8, 2x9)

and

QX =
1

2
(x1 − x2, x1 − x2, 0, x4 − x5, x5 − x4, 0, 0, 0, 0),

which show that M̃ is a locally product of the unit 3-sphere S3 given by the spherical
coordinates in E9 as

(cosu cos v cosw, cosu cos v sinw, cosu sin v, sinu, 0, 0, 0, 0, 0)

for u ranges over [0, π2 ) and the other coordinates range over [0, π2 ], and a plane
section M1 in E9 given by

M1 = {(t,−t, 0, t, t, 0, 0, 0, 0) : t ∈ R}.

Thus, it follows from Theorem 5 that M̃ is an almost constant curvature manifold
with a = b = 1

4 . By a straightforward computation, we have

e1 = (0, 0, 0, 0, 0,− sinu cos v cosw,− sinu cos v sinw,− sinu sin v, cosu),

e2 = (0, 0, 0, 0, 0,− cosu sin v cosw,− cosu sin v sinw, cosu cos v, 0),

e3 = (0, 0, 0, 0, 0,− cosu cos v sinw,− cosu cos v cosw, 0, 0),

e4 = (1,−1, 0, 1,−1, 0, 0, 0, 0).

For each unit vector U and each plane section Π on TpS3, we see that

Ric (U) = 2, H(p) = 0, trace (fk) = 2, ‖fk‖2 = 2 (5.8)

By a straightforward computation, it is clear that S3 satisfies the conditions of
Theorem 8, Corollary 1 and Theorem 10.

Example 2. Consider

R4 × S3 = {(x1, x2, x3, x4, z1, z2) : xi ∈ R, 1 ≤ i ≤ 4 and zj ∈ C, 1 ≤ j ≤ 2},
where

|z1|2 + |z2|2 = 1.

Let F be an almost product structure on R4 × S3 defined by

F (x1, x2, x3, x4, z1, z2) = (x3, x4, x1, x2, z1, z2). (5.9)

Then it is clear that (R4 × S3, F ) is of almost constant curvature manifold with
a = b = 1

4 .
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Consider a flat submanifold M of R4 × S3 given by

{(u cos θ, u cos θ, v, w, 0, 0) : u, v, w ∈ R},

where θ is constant. Then, one can see that the submanifoldM is a θ-slant subman-
ifold R4 × S3 and satisfies the conditions of Theorem 8, Corollary 1 and Theorem
10.
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