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Korovkin Theorem via Statistical e-Modular Convergence of Double Sequences 

Sevda Yıldız* 

Abstract 

The main purpose of the present paper is to obtain an abstract version of the Korovkin type theorem via the 
concept of statistical e-convergence in modular spaces for double sequences of positive linear operators. 
After proving this theorem, we give an application showing that the new result is stronger than classical 
ones. Also, we study an extension to non-positive operators. 
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1. INTRODUCTION AND PRELIMINARIES 

The Pringsheim convergence is well known 
convergence method for double sequences. Let   
denote the set of all natural numbers. A double 

sequence  ,i jx x  is said to be convergent in 

Pringsheim's sense if, for every 0  , there exists 

 M M    such that ,i jx Z    whenever 

,i j M . In this case the Pringsheim limit of x  is 

denoted by limP x Z   and Z  is called the 
Pringsheim limit of x  (see [1]). In addition to the 
Pringsheim convergence, Boos et al. [2,3] 
introduced and investigated the following notion 
of e-convergence of double sequences, which is 
stronger method than Pringsheim's: 

A double sequence  ,i jx x  is e-convergent to a 

number L  if 

 0   0j   0j j   ji   

,:j i ji i x Z     . 

                                                 
* Sinop Üniversitesi Fen Bilimleri Enstitüsü/Matematik Anabilim Dalı, sevdaorhan@sinop.edu.tr 

Then, we write ,lim i je x Z  . Recently, the 

statistical e-convergence has been introduced in 
[4] hereinbelow: 

Let B   . Then the natural density of B  is given 

by 

    
1

: lim :
j

B k j k B
j

      

provided that the limit on the right-hand side 

exists, where A  denotes the cardinality of the set 

A . Then a sequence  ,i jx x  is called 

statistically e-convergent to the number Z  if  for 
every 0  , 

     ,: : 0 1.i jj i x Z       

In that case, we write ,
,

lime i j
i j

st x Z  . Clearly, if 

a double sequence  ,i jx x  is e-convergent then 

it is statistically e-convergent, too. But, the 
converse of this implication may not be true. 
Namely, if the sequence statistically e-convergent 
then, it does not need to be e-convergent.  Also, a 
double sequence which is statistically e-
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convergent need not to be statistical convergent 
(see also [4]). 

Many researchers studied some versions of 
Korovkin type theorem by using different type of 
convergence methods after Bardaro and 
Mantellini's work[5] on modular spaces and they 
get interesting results [6-11]. In this paper, we 
study generalized version of the Korovkin type 

approximation theorem for the operators ,i jT , 

,i j  , are acting on an abstract modular 

function space via statistical e-modular 
convergence. Then, we give an application 
showing that our result is stronger than classical 
ones. We also study an extension to non-positive 
operators. 

Now we recall some well known notations and 
properties of modular spaces. 

Assume that G  be a locally compact Hausdorff 
topological space given via a uniform structure 

U 2G G  that generated the topology of G (see, 
[12]). Let B  be the σ-algebra of all Borel subsets 
of G  and : B     is a positive σ-finite regular 

measure. Let the space of all real valued μ-
measurable functions on G  with identification up 

to sets of measure μ zero denoted by  0L G , 

 bC G  be the space of all continuous real valued 

and bounded functions on G  and  cC G  be the 

subspace of  bC G  of all functions with compact 

support on G . In that case, a functional 

   0: 0,L G    is a modular on  0L G  if the 

following conditions are provided: 

 (i)   0f   iff 0f   μ-almost everywhere on 

G , 

(ii)    f f    for every  0f L G , 

(iii)      f g f g        for every 

 0,f g L G  and for any , 0    with  

1.    

    If there is a constant 1N   such that the 
inequality 

      f g N Nf N Ng        

holds for every  0,f g L G , , 0    with  

1    then we say that a modular   is N -

quasi convex. Note that if 1N  , then   is called 

convex. Furthermore, if there exists a constant 
1N   such that 

    f N Nf    

holds for every  0f L G  and  0,1  then a 

modular   is called N -quasi semiconvex. 

The modular space  L G  with  modular  , 

given by 

 

       0

0
: : lim 0L G f L G f


 


    

and the space of the finite elements of  L G , 

given by 

 

      : :  for all 0E G f L G f          

Also, note that if   is N -quasi semiconvex, then 

the space     0 :  for some 0f L G f      

coincides with  L G . 

We will need the following notions in this paper. 

A modular   is monotone if    f g   for 

f g . A modular   is called finite if 

 A L G   whenever BA  with   .A   A 

modular   is strongly finite if  A E G   for all 

BA  such that  A    and a modular   is 

said to be absolutely continuous if there exists an 

0   such that: for every  0f L G  with 

 f   , the following conditions hold: 

 ∘ for each 0   there exists a set BA  such that 

 A    and  \ ,G Af     

 ∘ for every 0   there is a 0   with 

 Bf     for every BB  with   .B   

If a modular   is monotone and finite, then 

   .C G L G  If   is monotone and strongly 

finite, then    .C G E G  Also, if   is 

monotone, strongly finite and absolutely 

continuous,    cC G L G  with regard to the 

modular convergence in the ordinary sense (for 
details and properties see also [13-15]). 
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Now we introduce the statistical e-modular and e-
strong convergence of double sequences. 

1.1 Definition: Let  ,i jf  be a double function 

sequence that its terms belong to  L G . Then, 

 ,i jf  is said to be statistically e-modularly 

convergent to  f L G  iff 

   0 ,
,

lim 0e i j
i j

st f f      

for some 0 0  . 

Also,  ,i jf  is statistically e-strongly convergent to 

f  iff 

   ,
,

lim 0e i j
i j

st f f       

for every 0  . 

We note that if there exists a constant 0M   such 

that    2 f M f   for every  0f L G   (see 

[16]) then it is said that the modular   satisfies a 

2 -condition. These two convergence methods 

are equivalent if and only if  the modular satisfies 
the 2 -condition. 

Let we introduce the statistical e-superior limit and 
e-inferior limit of double sequences. For any real 

double sequence  ,i jx x , the statistical e-

superior limit of x  is 

 ,
,

sup , if ,
limsup

if ,
x x

e i j
i j x

B B
st x

B


  

 
  

where 

     ,: : : : 0 1x i jB b j i x b       and 

  denotes the empty set. Concordantly, in 

general, by   0K   we mean either   0K    

or K  fails to have the natural density. Similarly, 
the statistical inferior limit of x  is 

 ,
,

inf , if ,
liminf

if ,
x x

e i j
i j

x

A A
st x

A


  

 
 

where 

     ,: : : : 0 1x i jA a j i x a      . For 

any real double sequence  ,i jx x , 

 , ,
, ,

lim inf lim supe i j e i j
i j i j

st x st x    

and also that, for any double sequence  ,i jx x

satisfying 

        ,: : 0 1i jj i x M       

for some 0M  , 

 ,
,

lime i j
i j

st x Z   

 iff , ,
, ,

liminf limsup .e i j e i j
i j i j

st x st x Z     

2. KOROVKIN TYPE APPROXIMATION 
VIA STATISTICAL E-CONVERGENCE 

Here, we prove a Korovkin type approximation 
theorem with respect to an abstract finite set of test 

functions 0 1, ,..., ke e e  via the statistical e-

convergence. 

    Let  ,T i jT  be a double sequence of positive 

linear operators from D  into  0L G  with 

   0
bC G D L G  . Let   be monotone and 

finite modular on  0L G . Suggest that the double 

sequence T , together with modular  , satisfies 

the following property: 

    there exists a subset  TX D L G   with 

 bC G X  such that the inequality 

   ,
,

lim supe i j
i j

st T h R h       (2.1)  

holds for every Th X , 0   and for a positive 

constant R . 

Set  0 1e v   for all v G , let re , 1,2,...,r k  and 

ra , 0,1,2,...,r k , be functions in  bC G . Put 

     
0

k

u r r
r

P v a u e v


  , ,u v G ,   (2.2) 

and suppose that  uP v , ,u v G , satisfies the 

following properties: 

 (P.1)   0uP u  , for all u G , 
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 (P.2) for every neighbourhood UU   there exists 

a positive number   with  uP v    whenever 

,u v G ,  , Uu v   (see for examples [17]). 

Now, we can give our main theorem of this paper. 

2.1.Theorem: Let   be a monotone, strongly 

finite, absolutely continuous and N -quasi 
semiconvex modular. Suppose that re  and ra , 

0,1,2,...,r k , satisfy properties (P.1) and (P.2). 

Let  ,T i jT  be a double sequence of positive 

linear operators from D  into  0L G  satisfying 

(2.1). If 

  ,
,

lim 0e i j r r
i j

st T e e                   (2.1.1) 

for every 0  , 0,1,2,...,r k  in  L G , then for 

every  f D L G  , with   Tbf C G X  ,  

  0 ,
,

lim 0e i j
i j

st T f f              (2.1.2) 

for some 0 0   in  L G . 

Proof: We first claim that, for every   ,cf C G  

  ,
,

lim 0e i j
i j

st T f f                          (2.1.3) 

for every 0  . 

To see this assume that  cf C G . Then, since G  

is furnished with the uniformity U , f  is bounded 

and uniformly continuous on G . By the uniform 

continuity of f , choose  0,1 ,   there is a set 

UU   such that    f u f v     whenever 

,u v G ,  , Uu v  . 

For all ,u v G  let  uP v  be as in (2.2), and 0   

satisfy condition (P.2). Then for ,u v G , 

 , Uu v  , we have      
2

u

M
f u f v P v


    

where  : supM f v . Therefore, in any case we 

get      
2

u

M
f u f v P v


    for all ,u v G , 

namely, 

       
2 2

u u

M M
P v f u f v P v 

 
       

(2.1.4) 

Since ,i jT  is linear and positive, by applying it to 

(2.1.4) for every ,i j  we have 

   

     

, 0 ,

, 0 ,

2
; ;

; ;

i j i j u

i j i j

M
T e u T P u

f u T e u T f u




 

 

 

   , 0 ,

2
; ;i j i j u

M
T e u T P u


   

Hence 

         

     

   

   

, , , 0

, 0 0

, 0 ,

, 0 0

; ; ;

                            ;

2
                            ; ;

                                +M ;

                            

i j i j i j

i j

i j i j u

i j

T f u f u T f u f u T e u

f u T e u e u

M
T e u T P u

T e u e u




 

  

 

 



      

     

, 0 0

,
0

;

2
                                + ;

i j

k

r i j r r
r

M T e u e u

M
a u T e u e u

 

 



Let 0  . Now for each 0,1,2,...,r k  and u G

, choose 0 0M   such that   0ra u M  the last 

inequality gives that 

       , ,
0

; ;
k

i j i j r r
r

T f u f u K T e u e u  


   

where 0

2
: .

M
K M M



 
   

 
 By applying the 

modular   to the above inequality and using the 

monotonicity of  , we get 

    , ,
0

.
k

i j i j r r
r

T f f K T e e    


 
    

 
  

Thus, we can see that 

     

    

,

,
0

2

                              2 .

i j

k

i j r r
r

T f f k

k K T e e

   

 


  

  
 

Because of   is strongly finite and N -quasi 

semiconvex, we get, 

     

    

,

,
0

2

                              2 .

i j

k

i j r r
r

T f f N k N

k K T e e

   

 


  

  
 

(2.1.5) 
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For a given * 0  , choose an  0,1   such that 

   *2N k N    . Now we define the 

followings: 

     *
,: : : 0i jS j i T f f         

    
  

, ,

*

: : : 2

2
                             0 ,

1

r i j r rS j i k K T e e

N k N

k

   

  

  

   
     

where 0,1,2,...,r k . Then, by hypothesis (2.1.1) 

we get  , 1rS  , 0,1,2,...,r k . If we take 

, 1 ,
0

k

k r
r

S S 


  , we have  , 1 1kS   . For each 

, 1kj S   we define 

    
  

, ,

*

: 2

2
                                  ,

1

j
r i j r rS i k K T e e

N k N

k

  

  

  

  
 

 
0,1,2,...,r k . From the inequality (2.1.5) for 

each , 1kj S   

   *
, ,

0
: .

k
j

i j r
r

i T f f S  


     

Hence  , 0j
rS  , we obtain 

    *
,: 0i ji T f f      . 

This implies that , 1kS S   . So,   1,S    

which proves our claim (2.1.3). Now, let 

 f D L G   with   Tbf C G X  . It is 

known from ([14], [18]) that there exists a 

sequence    ,k l cg C G  such that  *
03 f     

and   *
0 ,

,
lim 3 0k l

k l
P g f     for some *

0 0 

. That is to say, for every 0  , there is a positive 

number  0 0k k   with 

  *
0 ,3 k lg f     for every 0, .k l k  (2.1.6) 

For all ,i j , since the operators ,i jT  are linear 

and positive, we have 

     

   

   

0 0

0 0 0 0

0 0

* *
0 , 0 , ,

*
0 , , ,

*
0 ,

; ;

                                     + ;

                                     +

i j i j k k

i j k k k k

k k

T f u f u T f g u

T g u g u

g u f u

 





  





holds for every u G . Now, applying modular   

in the last inequality and using the monotonicity of 
 , we get 

  

     
  
  

0 0

0 0 0 0

0 0

* *
0 , 0 , ,

*
0 , , ,

*
0 ,

3

                                     + 3

                                     + 3 .

i j i j k k

i j k k k k

k k

T f f T f g

T g g

g f

   

 

 

  





 

Hence, we have 

     
  

0 0

0 0 0 0

* *
0 , 0 , ,

*
0 , , ,

3

                                     + 3 .

i j i j k k

i j k k k k

T f f T f g

T g g

    

 

   


 

By property (2.1) and also by using  
0 0,k k cg C G  

and 
0 0, Tk kf g X  , we obtain 

     

  

    

0 0

0 0 0 0

0 0 0 0

* *
0 , 0 ,

,

*
0 , , ,

,

*
0 , , ,

,

limsup 3

+ limsup 3

1 + limsup 3

e i j k k
i j

e i j k k k k
i j

e i j k k k k
i j

st T f f R f g

st T g g

R st T g g

    

 

  

    

 

   

also, by (2.1.3) 

  
  

0 0 0 0

0 0 0 0

*
0 , , ,

,

*
0 , , ,

,

0 lim 3

 lim sup 3

e i j k k k k
i j

e i j k k k k
i j

st T g g

st T g g

 

 

  

  
 

which gives 

    *
0 ,

,

0 limsup 1 .e i j
i j

st T f f R        

From arbitrariness of 0  , it follows that 

  *
0 ,

,

limsup 0.e i j
i j

st T f f     

Furthermore, 

  *
0 ,

,
lim 0,e i j

i j
st T f f     

this completes the proof. 

2.2.Remark: In general, it is not possible to get 
statistical e-strong convergence unless the 
modular   satisfies the 2 -condition in 

2.1.Theorem. 
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If we take the e-limit instead of the statistical e-
limit, then the condition (2.1) reduces to 

   ,
,

lim sup i j
i j

e T h R h                      (2.2.1) 

for every Th X , 0   and for an absolute 

positive constant R . In that case, the following 
result immediately ensue from our 2.1.Theorem.  

2.3.Corollary: Let   be a monotone, absolutely 

continuous, N -quasi semiconvex and strongly 

finite modular. Suppose that re   and ra , 

0,1,2,...,r k , satisfy properties (P.1) and (P.2). 

Let  ,T i jT  be a double sequence of positive 

linear operators satisfying (2.2.1). If  ,i j rT e  is e-

strongly convergent to re , 0,1,2,...,r k , in 

 L G  then  ,i jT f   is e-modularly convergent to 

f  in  L G  where f  is any function in  

 D L G  with   Tbf C G X  .    Now, we 

give an application showing that in general, our 
result is stronger. 

2.4.Example: Let us consider 

     2 20,1 0,1 0,1G       and let 

   : 0, 0,      is a continuous function with 

  is convex,  0 0  ,   0x   for any 0x 

and  lim
x

x


  . Then, the functional    

defined by 

    
1 1

0 0

: ,f f x y dxdy     for  0f L G , 

is a convex modular on  0L G  and 

      0: :  for some 0L G f L G f       

is the Orlicz space generated by  . 

For every  ,x y G , let    0 3, , 1e x y a x y  ,  

 1 ,e x y x ,  2 ,e x y y , 

    2 2
3 0, ,e x y a x y x y   ,  1 , 2a x y x  , 

 2 , 2a x y y  .  

For every ,i j ,  1 2, 0,1 ,u u   let  

    , 1 2 1 2, 1 1 i j
i jK u u i j u u    and for  f C G  

and  , 0,1x y  set 

     
1 1

, , 1 2 1 2 1 2

0 0

; , , , .i j i jM f x y K u u f u x u y du du  

Then we get 

 

   

1 1

, 1 2 1 2

0 0

1 1

1 1 2 2

0 0

,

1 1 1,

i j

i j

K u u du du

i u du j u du
   

      
   

 

 

 

and hence,    , 0 0; , , 1.i jM e x y e x y   Also, we 

know from [19] that 

   , 1 1

1
; , , ,

2
i jM e x y e x y

i
 


 

   , 2 2

1
; , , ,

2
i jM e x y e x y

j
 


 

   2 2
, 1 1

2
; , , ,

3
i jM e x y e x y

i
 


 

   2 2
, 2 2

2
; , , ,

3
i jM e x y e x y

j
 


 

and for each , 2i j  ,  f L G  we get 

   , 32 .i jM f f    Now, we define the 

following double sequence of positive linear 

operators  ,T i jT  on  L G  by using the 

operators  ,M i jM : 

   , , ,; , ; ,i j i j i jT f x y s M f x y , for  f L G , 

 , 0,1x y  and ,i j , where  ,i js  is given by 

,

2, ,

0,  and  is square,

1,  and  is not square.
i j

i j

s i j i

i j i




 
 

 

Observe now that ,
,

lim 1e i j
i j

st s  . However, 

,
,

lim i j
i j

e s ,  ,
,

lim i j
i j

P s  and ,
,

lim i j
i j

st s  do not 

exist. Then, it can be easily seen that, for every 

 Th X L G  , 0   and for positive constant 

0R  that 

   , 0
,

limsupe i j
i j

st T h R h      . 

Now, observe that 

   , 0 0 ,; , , 1,i j i jT e x y e x y s    
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     , 1 1 ,

2
; , , 1 ,

2
i j i jT e x y e x y s

i
   


 

     , 2 2 ,

2
; , , 1 ,

2
i j i jT e x y e x y s

j
   


 

   

 

, 3 3

,

; , ,

1 1
                 4 2 1 .

3 3

i j

i j

T e x y e x y

s
i j



 
    

  

 

Hence, we can see, for any 0  , that 

     

     

 

, 0 0 ,

1 1

, ,

0 0

,

1

1 1

1

i j i j

i j i j

i j

T e e s

s dxdy s

s

    

   

 

  

   

 

   

(2.4.1) 

because of the definition of  ,i js . Now, since  

 ,
,

lim 1 0e i j
i j

st s   , we get 

  , 0 0
,

lim 0.e i j
i j

st T e e     

Also, we have 

    

  

  

, 1 1 ,

,

,

2
1

2

2 1
2

2 1 ,
2

i j i j

i j

i j

T e e s
i

s
i

s
i

 

 

   


  


  

  
       

 
   

 

 
   

 

 

which implies, for any 0  , that 

    , 1 1 , 1 2
2

i j i jT e e s
i

 
    

 
    

 
 

(2.4.2) 

since   is continuous, we have 

 
, ,

lim lim 0 0,
2 2i j i j

e e
i i

 
  

   
       

    
 

also considering  ,
,

lim 1 0e i j
i j

st s   , from the 

inequality (2.4.2), we get 

  , 1 1
,

lim 0e i j
i j

st T e e    . 

Similarly, we can write that 

  , 2 2
,

lim 0e i j
i j

st T e e    . 

Finally, since 

  

 

  

, 3 3

,

,

1 1
4 2 1

3 3

1 1
8 4 1

3 3

i j

i j

i j

T e e

s
i j

s
i j





 

 

 

   



   
           

  
     

   

 

  ,

1 1
8 4 1 ,

3 3
i js

i j
   

  
     

   
 

which yields 

  

 

, 3 3

,

16 16

3 3

                                 1 4

i j

i j

T e e
i j

s

  
   

 

  
     

    

 

 

(2.4.3) 

then, since   is continuous 

,

16
lim 0

3i j
e

i




 
  

 
 and 

,

16
lim 0

3i j
e

j




 
  

 
, 

it follows from the inequality (2.4.3) that 

  , 3 3
,

lim 0e i j
i j

st T e e    . 

So, our new operator  ,T i jT  satisfies all 

conditions of 2.1.Theorem and therefore we obtain 

  ,
,

lim 0e i j
i j

st T f f     

for some 0  , for any  f L G . However, 

 , 0i jT e  is not e-modularly convergent. Thus  ,i jT  

does not fulfil the 2.3.Corollary. Also,  , 0i jT e  is 

neither modulary convergent nor statistically 
modularly convergent. Hence, modular Korovkin 
theorem and statistical modular Korovkin theorem 
for double sequences do not satisfy. 

3. AN EXTENSION TO NON-POSITIVE 
OPERATORS 

In this section, we relax the positivity condition of 
linear operators in the Korovkin theorem. In ([17], 
[19]) there are some positive answers. Following 
this approach, we give some positive answers also 
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for statistical e-modular convergence and we 
prove a statistical e-modular Korovkin theorem. 

Let I   be a bounded interval,  2C I  (resp. 

 2
bC I ) be the space of all functions defined on I

, (resp. bounded and) continuous with their first 
and second derivatives, 

  2: : 0bC f C I f    , 

  2 2 '': : 0bC f C I f    .  

Let re , 1,2,...,r k  and ra , 0,1,2,...,r k , be 

functions in  2
bC I ,  uP v , ,u v I , be as in 

(2.1.4), and suppose that  uP v  satisfies the 

properties (P.1), (P.2) and   

(P.3) there exists a positive real constant 0S  such 

that  ''
0uP v S  for all ,u v I  (The second 

derivative is intended with respect to v). 

Now, we prove the following Korovkin type 
approximation theorem for linear operators that 
not necessarly positive . 

3.1.Theorem: Let   be as in 2.1.Theorem and re

, ra , 0,1,2,...,r k  and  uP v , ,u v I , satisfies 

the properties (P.1), (P.2) and (P.3). Assume that 

 ,T i jT  be a double sequence of linear operators 

and  2
,i jT C C C     for all ,i j . If  ,i j rT e  is 

statistically e-strongly convergent  to re , 

0,1,2,...,r k , in  L I  then ,i jT f  is statistically 

e-modularly convergent  to f  in  L I  for every 

 f D L I   with   Tbf C I X  . 

Proof: Let  2
bf C I . Since f  is uniformly 

continuous and bounded on I , given 0   with 
0 1  , there exists a 0   such that 

   f u f v    for all ,u v I , u v   . Let 

 uP v , ,u v I , be as in (2.2) and let 0   be 

associated with  , satisfying (P.2). As in 
2.1.Theorem, for every 1   and ,u v I , we 

have 

       
2 2

u u

M M
P v f u f v P v 

 
       

(3.1.1) 

where  : sup
v I

M f v


 . From (3.1.1) it follows that 

       1,

2
: 0u

M
h v P v f v f u





     , 

(3.1.2) 

       2,

2
: 0u

M
h v P v f v f u





     . 

(3.1.3) 

Let 0H  satisfy (P3). For each v I , we get 

   '' ''0
1,

2M H
h v f v




  , 

   '' ''0
2,

2M H
h v f v




  . 

Because of ''f  is bounded on I , we can choose 

1   in such a way that  ''
1, 0h v  ,  ''

2, 0h v   

for each v I . Hence 2
1, 2,,h h C C      and 

then, by hypothesis 

 , , ; 0i jT h u    for all ,i j ,  u I  and 

1,2.                (3.1.4) 

From (3.1.2)-(3.1.4) and the linearity of ,i jT , we 

get 

   

     

, 0 ,

, , 0

2
; ;

                             ; ; 0,

i j i j u

i j i j

M
T e u T P u

T f u f u T e u







  

   

     

, 0 ,

, , 0

2
; ;

                             ; ; 0,

i j i j u

i j i j

M
T e u T P u

T f u f u T e u







  

thus, 

   

     

   

, 0 ,

, 0 ,

, 0 ,

2
; ;

                             ; ;

2
                             ; ; .

i j i j u

i j i j

i j i j u

M
T e u T P u

f u T e u T f u

M
T e u T P u











 

 

 

Similarly as in the proof of 2.1.Theorem, using the 
modular   and for ,i j , we have the assertion. 
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