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Abstract 

Brain cancer, resulting from abnormal tumor growth in brain tissue, requires accurate and 

timely diagnosis. Although MRI plays a crucial role, manual interpretation is prone to errors 

and delays. To address this, we propose a hybrid system combining deep learning (VGG16, 

ResNet50, DenseNet201) with reinforcement learning (Q-learning) for brain tumor 

classification. Using three distinct MRI datasets within MATLAB, the models achieved high 

classification accuracies: 97.45% (VGG16), 96.06% (ResNet50), and 96.93% (DenseNet201). 

The integration of reinforcement learning improved decision-making and interpretability. 

Additionally, a user-friendly interface was developed to support clinical decision-making. This 

study demonstrates that combining deep learning with reinforcement learning enhances model 

adaptability, offering a more reliable and effective diagnostic approach. 

Keywords: Brain tumor, MRI classification, Deep learning, Reinforcement learning, CNN 

models 

1. Introduction 

The brain, as the central nervous system's control center, governs motor control, 

cognition, and vital physiological processes. Cancer, a result of abnormal cell growth, can 

affect any tissue, but brain tumors are among the most severe and life-threatening forms 

[1]. According to the CBTRUS report (2015–2019), brain and CNS tumors caused 84,264 

deaths in the U.S., with 93,470 new cases reported of which 26,670 were malignant [2].  

Common adult brain tumors include gliomas, meningiomas, and pituitary tumors [3]. 

Gliomas, particularly glioblastomas, are highly malignant, while meningiomas are 

typically benign and slow-growing. Pituitary tumors, though usually benign, can disrupt 

hormonal balance [4]. Due to their biological complexity, traditional treatment methods 

often fall short. Therefore, improvements in early diagnosis, biomarker identification, and 

AI-supported medical imaging are critical. Though neurological assessments are useful, 

advanced imaging techniques such as CT and MRI are essential for definitive diagnosis 

[5].  
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MRI is preferred for its superior soft tissue contrast, spatial resolution, and absence of 

ionizing radiation. Gadolinium-based contrast agents further enhance visualization of 

tumor vascularity [6,7]. However, manual interpretation of MRIs remains time-

consuming and susceptible to observer variability [8]. AI and ML techniques promise to 

improve diagnostic accuracy and reduce human error [9].  

AI, emerging post-1950, encompasses machine learning and problem-solving. Initially 

limited by hardware constraints, its progress accelerated in the 1990s [10]. Deep learning, 

particularly CNNs, has advanced medical imaging through classification, segmentation, 

and feature extraction [11]. Architectures such as VGG, ResNet, and DenseNet are widely 

adopted [12,13]. Reinforcement learning (RL), through trial-and-error learning, 

complements CNNs by dynamically adapting classification strategies using Q-learning 

[14]. 

Combining RL with CNN architectures such as VGG16, ResNet50, and DenseNet201 

represents a significant advancement over static CNN models, enabling continuous 

adaptation and improved generalization [15,16]. This integration mitigates overfitting and 

enhances performance on diverse datasets. Despite their promise, CNNs often struggle 

with generalization and overfitting when applied to limited or imbalanced datasets [17]. 

These limitations are particularly pronounced in brain tumor imaging. This study 

addresses these challenges by proposing a reinforcement learning (RL)-augmented 

convolutional neural network (CNN) model that dynamically learns from environmental 

feedback, leading to improved classification performance. Recent research highlights the 

potential of hybrid frameworks combining deep learning and RL for robust clinical 

decision-making [18]. 

Interpretability remains a significant challenge. CNN models, often criticized as black 

boxes, hinder clinical trust and widespread application. Although supervised learning 

achieves high accuracy, it is heavily dependent on large labeled datasets, which is a 

notable drawback [19]. In contrast, reinforcement learning enhances model adaptability 

through sequential learning, although its application to brain tumor diagnosis remains 

limited [20]. Existing literature still predominantly focuses on supervised deep learning 

methods, with few studies integrating RL with CNNs like VGG16, ResNet50, or 

DenseNet201 for brain tumor classification. However, promising results using hybrid 

models and CNN architectures in brain tumor imaging have started to emerge [21-23]. 

To address this gap, this study proposes a hybrid AI framework for classifying primary 

brain tumors using CNNs integrated with Q-learning. Current diagnostic approaches 

often depend on subjective assessments by radiologists. While CNNs offer automation, 

their limited generalizability restricts clinical deployment. The proposed model leverages 

the strengths of VGG16, ResNet50, and DenseNet201 within a reinforcement learning 

framework to overcome issues associated with small and imbalanced datasets. This 

approach aims to enhance diagnostic consistency, reduce clinician variability, and support 

personalized treatment planning, ultimately improving clinical decision-making and 

patient outcomes. This study makes several key contributions to the field of medical 

image classification. It introduces a hybrid deep-learning framework that integrates 

reinforcement learning (Q-learning) with well-known CNN architectures (VGG16, 

ResNet50, and DenseNet201) for brain tumor classification. The proposed approach 

formulates an interpretable reinforcement structure by explicitly defining states, actions, 

and reward functions linked to classification performance. Through this design, the model 

achieves high classification accuracy (up to 97.95%) and robust performance across 

multiple datasets while reducing overfitting. Furthermore, the framework provides an 

adaptable and reproducible implementation that can serve as a foundation for future 

clinical decision-support systems. 
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2. Material and Method 

2.1. Dataset and preprocessing 

This study utilized three publicly available brain tumor MRI datasets [24-26], each 

including four categories: glioma, meningioma, pituitary tumor, and healthy tissue. A 

total of 7168 MRI images were collected, annotated, and prepared for classification using 

deep learning models. All images were standardized by converting them to RGB format 

and resized to 224×224 pixels using MATLAB's augmentedImageDatastore function to 

ensure compatibility with the selected CNN architectures. Pixel values were normalized 

to the [0,1] range using the im2double function to facilitate efficient training. These 

preprocessing steps aimed to provide uniformity in data input and to optimize model 

learning. 

2.2. Data splitting 

The preprocessed dataset was randomly divided into training (70%), validation (15%), 

and testing (15%) subsets using MATLAB’s splitEachLabel function, ensuring balanced 

class distribution across all sets. 

• The training set was used to optimize model parameters. 

• The validation set supported hyperparameter tuning and overfitting prevention. 

• The test set, unseen during training, provided an unbiased evaluation of model 

performance. 

2.3. Data augmentation 

To improve model generalization and mitigate overfitting, data augmentation was 

applied to the training set. Techniques included random rotations (0°-30°), brightness 

adjustments (80%-120%), horizontal flipping, and random cropping. These operations 

simulated real-world variability and enhanced the model’s robustness to spatial and 

illumination differences across MRI scans. 

2.4. Deep learning model development 

Three pre-trained CNN architectures such as VGG16, ResNet50, and DenseNet201 

were employed through transfer learning within MATLAB's Deep Learning Toolbox. 

Each model was initialized with ImageNet weights and fine-tuned for four-class 

classification by modifying the final fully connected and softmax layers. 

• VGG16 uses 3×3 convolution filters in a deep, uniform architecture, ideal for 

detailed feature extraction. 

• ResNet50, with 50 layers and residual connections, addresses vanishing gradient 

issues and supports deeper training. 

• DenseNet201 connects each layer to all preceding layers, promoting feature reuse 

and reducing overfitting with fewer parameters. 

All models were trained on input images resized to 224×224 pixels, aligning with their 

architectural requirements. 

2.5. Supervised learning approach 

Labeled MRI scans were used to train each CNN model under a supervised learning 

framework. During training, the models learned to associate input features with 

corresponding class labels using the Stochastic Gradient Descent with Momentum 

(SGDM) optimizer. The validation set was employed to monitor training progress and 
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adjust hyperparameters, while the test set was used for final performance evaluation. 

Metrics such as accuracy, precision, recall, and F1-score were calculated to assess 

classification success and generalization ability. 

2.6. Reinforcement learning and Q-table approach 

To improve the classification performance of the deep learning models, a 

reinforcement learning-based Q-table approach was applied. This method allowed the 

estimation of class probabilities and provided deeper insights into prediction 

uncertainties, enhancing the interpretability of model outputs. The Q-learning algorithm 

was configured with 16 states, 4 actions, a learning rate (α) of 0.1, a discount factor (γ) 

of 0.9, and an epsilon-greedy strategy (initial epsilon = 1.0, minimum epsilon = 0.01, 

decay rate = 0.99). Training was conducted over 500 episodes with 10 steps per episode 

to ensure a stable balance between exploration and exploitation (Table 1). 

 

Table 1. Hyperparameter settings of the Q-learning algorithm utilized in the proposed brain tumor 

classification model 

Numbe

r of 

States 

Numbe

r of 

Actions 

Learnin

g Rate 

(α) 

Future 

Reward 

Discoun

t Factor 

(γ) 

Initial 

Epsilo

n 

Minimu

m 

Epsilon 

Epsilo

n 

Decay 

Rate 

Number 

of 

Episode

s 

Numbe

r of 

Steps 

per 

Episode 

16 4 0.1 0.9 1.0 0.01 0.99 500 10 

 

During training, the Q-table was updated based on rewards received for each state-

action pair. After convergence, it was adapted to predict class probability distributions. 

The final Q-tables for VGG16, ResNet50, and DenseNet201 models were compared 

using heatmaps, and an interactive interface was developed to visualize model 

performance and support model selection. 

In this study, the state space was defined as 16 distinct conditions representing the 

distribution of class probabilities derived from CNN outputs. The action space consisted 

of 4 actions corresponding to the four target classes (glioma, meningioma, pituitary, and 

no tumor). The reward function was designed to assign a positive reward (+1) for correct 

classification and a penalty (–1) for incorrect classification. This ensured that the Q-

learning agent gradually optimized its policy toward accurate tumor identification. The 

Q-table was updated using the Bellman equation with α = 0.1 and γ = 0.9, balancing short-

term and long-term rewards. This explicit formulation enhances the reproducibility of our 

approach. 

While the Q-tables provide a clear mapping of learned policies and decision 

transitions, they should not be interpreted as visual explanations of CNN behavior. 

Instead, they reveal how the reinforcement agent updates its action policy based on state–

reward interactions. Accordingly, the interpretability of our system lies in understanding 

decision logic rather than feature localization. We have revised our claims to reflect this 

distinction, clarifying that Q-tables primarily support transparency of decision policies, 

whereas true visual interpretability would require feature-level explanation methods such 

as Grad-CAM or LIME. The methodological novelty of this work lies in the adaptive 

integration of Q-learning with CNN architectures, where the reward function is explicitly 

tied to classification accuracy and penalizes incorrect predictions. This design enables 

dynamic decision-boundary adjustment and greater learning stability, which collectively 

enhance the model’s adaptability to heterogeneous MRI data. 
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To clarify the connection between CNN feature outputs and Q-learning updates, an 

additional explanatory description was incorporated. The CNN generates probability 

distributions that serve as the state representations for the Q-learning agent. These states 

are used to update the Q-table through reward feedback, linking the CNN’s probabilistic 

outputs to reinforcement-based decision refinement. This textual clarification was 

provided in place of a schematic figure, as the workflow is conceptually straightforward. 

3. Results 

3.1. Dataset preparation 

The dataset consisted of 7168 brain MRI scans categorized into glioma, meningioma, 

pituitary tumor, and healthy (no tumor) classes (Table 2). All images were resized to 

224×224 pixels and converted to RGB format in MATLAB to match the input 

requirements of the VGG16, ResNet50, and DenseNet201 architectures. 

 

Table 2. Distribution of MRI scans by tumor type 

Tumor Type Number of Images 

Glioma 1548 

Meningioma 1362 

Pituitary 1787 

No Tumor 2471 

 

The dataset was partitioned into training (70%), validation (15%), and testing (15%) 

sets using MATLAB’s splitEachLabel function, maintaining balanced representation 

across classes (Table 3). 

 

Table 3. Dataset splitting across tumor types 

Tumor Type Training Validation Testing 

Glioma 1084 232 232 

Meningioma 954 204 204 

Pituitary 1251 268 268 

No Tumor 1729 371 371 

 

Data augmentation techniques, including random rotation (0°-30°), brightness 

adjustments (80%-120%), and horizontal flipping, were applied to the training set to 

improve model generalization. These augmentations exposed models to various spatial 

and illumination variations, thereby enhancing classification robustness. 
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Figure 1. Preprocessing of brain MRI images: (A) Original grayscale T2-weighted MRI; (B) Pseudo-

colored version to enhance contrast and feature distinction for improved tumor detection and 

classification by CNNs [27]. 

 

Brain MRI images are preprocessed and transformed to serve as input for deep learning 

algorithms. The original grayscale T2-weighted MRI image (A) is converted into a 

pseudo-colored representation (B) to enhance contrast and feature distinction during 

training. This color enhancement improves feature extraction by convolutional neural 

networks, leading to more accurate tumor detection and classification (Figure 1).  

3.2. Model training and performance evaluation 

3.2.1. VGG16 model 

The VGG16 model was trained using the same hyperparameters as summarized in 

Table 4. It achieved the highest validation accuracy (97.95%) and F1-score (0.9759), with 

the longest training time. The training and validation curves are shown in Figure 2. 

 

 

Figure 2. Training effectiveness of the proposed reinforcement learning-integrated VGG16  
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3.2.2. ResNet50 model 

The ResNet50 model also underwent 10 epochs of training with similar 

hyperparameters. Validation accuracy reached 96.09%, and the F1-score was 0.95437. 

The model exhibited rapid convergence with low loss values (Figure 3), maintaining 

stability across training and validation datasets. Training time was significantly shorter at 

203 minutes, though slight misclassifications, particularly within the meningioma class, 

were observed.   

 

 

Figure 3. Training performance of a ResNet50-based model combined with reinforcement  

3.2.3. DenseNet201 model 

The model demonstrated smooth convergence (Figure 4) and consistent performance 

across training and validation datasets. Training took 425 minutes, indicating a balance 

between classification performance and computational efficiency. DenseNet201 

exhibited strong performance with fewer parameters, supporting its potential for 

resource-limited environments. 

 

 

Figure 4. Training results for a DenseNet201-based model enhanced with reinforcement  
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3.2.4. Comparative performance analysis 

All CNN architectures (VGG16, ResNet50, and DenseNet201) were trained under 

identical hyperparameter settings using transfer learning. The key training parameters and 

performance results are summarized in Table 4. This tabular format minimizes repetition 

and allows direct comparison of model efficiency and accuracy. While VGG16 achieved 

the highest validation accuracy, ResNet50 offered the shortest training time. 

DenseNet201 provided a favorable balance between the two. 

An analysis of variance (ANOVA) was performed on the F1-scores of the three 

models, yielding an F-statistic of 0.661 and a p-value of 0.540 (p > 0.05), confirming that 

there were no statistically significant differences between the models.  

 

Table 4. Summary of training settings and performance of CNN architectures 

Model Epoch Optimizer 
Learning 

Rate 

Mini-

Batch 

Size 

 
Validation 

Accuracy 
F1-Score 

Training 

Time (min) 

VGG16 10 SGDM 0.0001 32  97.95% 0.9759 561 

ResNet50 10 SGDM 0.0001 32  96.09% 0.9544 203 

DenseNet201 10 SGDM 0.0001 32  96.93% 0.9634 425 

 

3.3. Confusion matrix analysis 

Confusion matrices for all three CNN architectures demonstrated high classification 

accuracy across classes, with minor misclassifications in the meningioma class. Figures 

5–7 present the confusion matrices for VGG16, DenseNet201, and ResNet50, 

respectively. While VGG16 achieved near-perfect results, DenseNet201 performed 

consistently across all classes, and ResNet50 exhibited slightly higher misclassification 

in meningioma 

 

Figure 5. Confusion matrices illustrating the performance of the reinforcement learning-supported 

deep learning model: (A) Test dataset results show near-perfect classification for glioma, pituitary, and no 

tumor images, with minor errors in the meningioma class; (B) Training dataset results demonstrate high 

accuracy across all classes, indicating strong generalizability and reliability in multi-class brain tumor 

detection. 
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Figure 6. Confusion matrices showing the classification performance of the DenseNet201 model with 

reinforcement learning: (A) Test results demonstrate high accuracy, especially for glioma, pituitary, and 

no tumor classes, with minor errors in meningioma; (B) Training results confirm strong overall 

performance with minimal class confusion. 

 

 

Figure 7. Confusion matrices of the ResNet50 model with reinforcement learning: (A) Test results 

show high accuracy in identifying glioma, pituitary, and no tumor cases, with slight misclassification in 

meningioma; (B) Training results confirm consistent performance across all classes, supporting the 

model’s reliability in distinguishing brain tumor types and healthy cases. 

 

Overall, all three CNN models, enhanced with reinforcement learning, demonstrated 

strong classification capabilities for multi-class brain tumor detection. VGG16 achieved 

the highest accuracy and F1-score but required the longest training time. DenseNet201 

offered a favorable trade-off between accuracy and computational cost, performing 

consistently across all tumor types. ResNet50 achieved fast training and competitive 

results but showed slightly lower precision in distinguishing meningioma instances. 

These results highlight the importance of balancing model accuracy, generalization 

ability, and computational efficiency when designing AI-based brain tumor classification 

systems. 

Across all models, minor misclassifications were observed predominantly in the 

meningioma class. This tendency can be attributed to the high intra-class variability of 

meningioma MRI appearances and the overlap of their visual features with other tumor 

types, as reported in previous studies. These intrinsic challenges explain the relatively 

lower classification precision for meningioma compared to glioma and pituitary tumors. 

3.4. Q-table construction and prediction 

In this study, a reinforcement learning-based Q-table approach was employed to 

enhance the classification process and present model predictions as percentage 
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probabilities. This method enabled more interpretable, probability-based outputs across 

the four brain tumor classes, improving the transparency of the classification results 

(Figures 8-11).  

The Q-table was designed to optimize decision-making by representing 16 distinct 

classification states and four corresponding actions (tumor classes). The reinforcement 

learning algorithm was configured with a learning rate (α) of 0.1 to ensure gradual model 

adaptation and a future reward discount factor (γ) of 0.9 to emphasize long-term decision 

benefits.  

An epsilon-greedy strategy was adopted to balance exploration and exploitation, with 

the initial epsilon set at 1.0, decreasing by 1% at each step (decay rate: 0.99) until reaching 

a minimum threshold of 0.01. Training was conducted over 500 episodes, with a 

maximum of 10 steps per episode, enabling the Q-table to converge toward optimal 

classification policies. These hyperparameter settings were crucial in refining the Q-table, 

enhancing both the stability and reliability of model predictions. In particular, the use of 

the epsilon-greedy approach was instrumental in maintaining an effective balance 

between the exploration of new actions and the exploitation of known optimal policies. 

As a result, the classification outcomes became not only accurate but also more 

interpretable and trustworthy from a clinical perspective. 

The developed brain tumor detection system features a graphical user interface (GUI) 

that integrates deep learning and reinforcement learning methodologies. Users can upload 

MRI images and receive classification results from VGG16, ResNet50, and DenseNet201 

models, including predicted tumor type, classification accuracy, and confidence scores 

(Figure 8-11). 

 

 

Figure 8. The interface output for a glioma MRI shows accurate classification by all models with high 

confidence scores (VGG16: 100%, ResNet50: 99.8983%, DenseNet201: 99.9865%), supported by Q-

tables illustrating reinforcement learning-based decision mapping. 
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Figure 9. The interface output for a pituitary tumor MRI shows accurate classification by all models 

with high confidence scores (VGG16: 99.9999%, ResNet50: 99.5939%, DenseNet201: 99.9669%), 

supported by Q-tables illustrating reinforcement learning-based decision mapping. 

 

 

Figure 10. The system correctly identifies a healthy (non-tumor) brain MRI across all models with 

high confidence (VGG16: 99.9996%, ResNet50: 99.5772%, DenseNet201: 99.8954%). The 

corresponding Q-tables visualize the learned decision strategies. 

 

 

Figure 11. For a meningioma case, VGG16, ResNet50, and DenseNet201 models accurately classify 

the MRI with high confidence, with Q-tables demonstrating the reinforcement learning-enhanced 

interpretability and decision pathways. 
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To comprehensively assess the performance of the proposed hybrid model, its results 

were compared with several recent studies that employed deep learning or hybrid 

frameworks for brain tumor classification. Table 5 presents a summary of these 

comparisons, highlighting the datasets, model architectures, classification categories, and 

reported accuracies. This comparative evaluation aims to position the proposed CNN + 

RL model within the current state-of-the-art and to emphasize its advantages in terms of 

adaptability and generalization. 

 

Table 5. Comparative analysis of the proposed hybrid CNN + RL model and recent studies in the 

literature on brain tumor classification 

Study 
Model / 

Method 
Dataset Classes 

Accuracy 

(%) 

Key 

Characteristics 

This study  
VGG16+Q-

Learning 

ThreeMRI 

datasets(7168 

images) 

4(Glioma, 

Meningioma, 

Pituitary, 

Healthy) 

97.95 

Hybrid CNN + RL 

framework, 

dynamic decision 

boundary 

adjustment, 

MATLAB GUI 

Pilaoon et al. 

(2024) [32] 

Transfer 

Learning 

(VGG16, 

ResNet50) 

Glioma 

Dataset 
3 99.19 

Transfer learning 

without RL, high 

accuracy but 

limited class scope 

Khan et al. 

(2025) [33] 

AlexNet, 

MobileNetV2, 

GoogleNet 

BrainMRI 

Dataset 
3 96–98 

Traditional CNN 

transfer learning, no 

reinforcement layer 

Munira& 

Islam(2022) 

[30] 

HybridDeep 

Learning 
Brain MRI 4 95.67 

Ensemble deep 

model, no dynamic 

learning adaptation 

Neamah etal. 

(2024) [29] 

Improved 

ResNet50 
BraTS 3 96.80 

Fine-tuned 

ResNet50, limited 

interpretability 

Amou etal. 

(2022) [23] 

CNN + 

Bayesian 

Optimization 

Brain MRI 4 94.20 

Bayesian 

hyperparameter 

tuning 

Sevinc et al. 

(2025) [34] 

Transformer+ 

Distillation 

Medical 

Images 
Multi-class 98.00 

Limited-data 

optimization via 

model distillation 

 

4. Conclusion 

In this study, we developed a hybrid brain tumor classification system that integrates 

deep learning (CNN models: VGG16, ResNet50, DenseNet201) with reinforcement 

learning (Q-learning) techniques, aiming to enhance diagnostic accuracy and 

generalizability across MRI datasets. Our experimental results demonstrated that the 

hybrid models achieved high classification accuracies with VGG16 yielding the highest 

performance (97.95%), followed closely by DenseNet201 (96.93%) and ResNet50 

(96.09%). Compared to traditional supervised deep learning models, which rely heavily 

on static datasets and suffer from issues like overfitting and lack of adaptability [28], our 

reinforcement learning-augmented framework demonstrated superior adaptability and 

robustness. Particularly, Q-learning enhanced the models' ability to adjust decision 

boundaries dynamically, thus mitigating the risk of overfitting even when trained on 

limited or imbalanced datasets a common challenge in medical imaging studies [29]. 
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Our results are consistent with prior studies advocating for reinforcement learning 

integration in medical imaging [30], but extend the literature by focusing specifically on 

brain tumor classification, an area where the application of RL remains relatively 

underexplored [31]. By coupling Q-learning with CNN architectures, we achieved both 

high predictive performance and increased model resilience against variations in data 

distribution, an important criterion for clinical applicability.  

Our results (96–98 % accuracy) are comparable with or higher than those reported in 

recent literature. For instance, Pilaoon et al. [32] achieved up to 99.19 % accuracy using 

transfer learning in glioma classification. The study by Khan et al. [33] also reports high 

accuracy across multiple CNN architectures (AlexNet, MobileNetV2, GoogleNet) for 

brain tumor classification. These findings indicate that our hybrid CNN + RL approach 

provides competitive performance within the current state of the art. 

Recent works from 2024-2025 also provide important context for our study. Sevinc, 

Uçan and Kaya [34] introduced a distillation approach to transformer-based medical 

image classification with limited data, and showed that applying distillation to 

transformer models yielded accuracy improvements of 1-2 %. Although their focus was 

transformers, the principle of enhancing a backbone model with an additional learning 

layer is conceptually similar to our reinforcement learning integration. 

Taken together, these recent studies strengthen the rationale behind layered or hybrid 

learning frameworks in medical imaging and suggest that our CNN + RL integration is 

aligned with current trends toward enhancing performance and adaptability. 

Moreover, among the three CNN backbones evaluated, VGG16 exhibited the highest 

classification performance, albeit with longer training times. DenseNet201, on the other 

hand, offered a favorable balance between computational efficiency and classification 

accuracy, making it a promising candidate for deployment in resource-constrained 

clinical settings. 

In conclusion, this study provides strong evidence that the integration of reinforcement 

learning with deep learning architectures can significantly enhance brain tumor 

classification performance from MRI images. Future research should focus on expanding 

dataset diversity, incorporating explainable AI frameworks, and validating the models 

prospectively in clinical environments to ensure safe and effective deployment in medical 

practice. Future studies will focus on validating the proposed model using larger and more 

diverse MRI datasets to ensure broader generalizability. Besides, efforts will be directed 

toward improving model interpretability to make the system more transparent and 

clinically acceptable. Optimizing the reinforcement learning component to reduce 

computational cost while maintaining high classification performance is another 

important goal. Furthermore, integrating tumor segmentation and classification into a 

fully automated clinical decision support system will be explored to enhance practical 

utility in real-world medical environments. 

In future work, we plan to expand upon several directions. First, we will conduct a 

direct baseline comparison between the CNN-only and CNN + RL architectures trained 

on the same dataset to quantify the specific contribution of the reinforcement learning 

component. This limitation stems from the absence of a baseline CNN-only model trained 

on the same datasets, which would allow direct quantification of the reinforcement 

learning contribution. Although not feasible within the current thesis framework, this 

baseline comparison is prioritized for future research to further substantiate the hybrid 

model’s advantage. Second, we intend to integrate explainable artificial intelligence 

(XAI) methods such as Grad-CAM or SHAP to visualize the MRI regions that influence 

classification outcomes, thereby improving clinical interpretability. Third, we will 

validate the hybrid model on larger and more diverse MRI datasets obtained from multiple 
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institutions to further assess its robustness and generalizability. Finally, we aim to explore 

the integration of our classification framework into a comprehensive clinical decision 

support system by combining automated tumor segmentation and classification modules. 

These steps will constitute the next stage of our research and are expected to strengthen 

both the clinical applicability and scientific impact of the proposed model. 

This study was conducted as part of a Master’s thesis, and due to practical constraints, 

several limitations remain. First, we were unable to provide a direct comparison between 

CNN-only and CNN+RL models trained on the same dataset. Although literature reports 

suggest that CNN-only models achieve high performance, our contribution lies in 

introducing reinforcement learning as an additional layer for adaptability and decision 

mapping. Second, visual interpretability methods such as Grad-CAM were not 

implemented. While our Q-table visualization provides insights into the agent’s decision 

pathways, true clinical interpretability would require feature-level visualization. These 

aspects will be addressed in future studies by incorporating larger datasets, baseline 

comparisons, and advanced explainable AI methods. 

In summary, while our hybrid approach shows promising results, further validation 

with baseline CNN-only comparisons and advanced explainability methods is necessary 

before clinical translation. 
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