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Abstract

Brain cancer, resulting from abnormal tumor growth in brain tissue, requires accurate and
timely diagnosis. Although MRI plays a crucial role, manual interpretation is prone to errors
and delays. To address this, we propose a hybrid system combining deep learning (VGG16,
ResNet50, DenseNet201) with reinforcement learning (Q-learning) for brain tumor
classification. Using three distinct MRI datasets within MATLAB, the models achieved high
classification accuracies: 97.45% (VGG16), 96.06% (ResNet50), and 96.93% (DenseNet201).
The integration of reinforcement learning improved decision-making and interpretability.
Additionally, a user-friendly interface was developed to support clinical decision-making. This
study demonstrates that combining deep learning with reinforcement learning enhances model
adaptability, offering a more reliable and effective diagnostic approach.

Keywords: Brain tumor, MRI classification, Deep learning, Reinforcement learning, CNN
models

1. Introduction

The brain, as the central nervous system's control center, governs motor control,
cognition, and vital physiological processes. Cancer, a result of abnormal cell growth, can
affect any tissue, but brain tumors are among the most severe and life-threatening forms
[1]. According to the CBTRUS report (2015-2019), brain and CNS tumors caused 84,264
deaths in the U.S., with 93,470 new cases reported of which 26,670 were malignant [2].

Common adult brain tumors include gliomas, meningiomas, and pituitary tumors [3].
Gliomas, particularly glioblastomas, are highly malignant, while meningiomas are
typically benign and slow-growing. Pituitary tumors, though usually benign, can disrupt
hormonal balance [4]. Due to their biological complexity, traditional treatment methods
often fall short. Therefore, improvements in early diagnosis, biomarker identification, and
Al-supported medical imaging are critical. Though neurological assessments are useful,
advanced imaging techniques such as CT and MRI are essential for definitive diagnosis

[5].
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MRI is preferred for its superior soft tissue contrast, spatial resolution, and absence of
ionizing radiation. Gadolinium-based contrast agents further enhance visualization of
tumor vascularity [6,7]. However, manual interpretation of MRIs remains time-
consuming and susceptible to observer variability [8]. Al and ML techniques promise to
improve diagnostic accuracy and reduce human error [9].

Al, emerging post-1950, encompasses machine learning and problem-solving. Initially
limited by hardware constraints, its progress accelerated in the 1990s [10]. Deep learning,
particularly CNNs, has advanced medical imaging through classification, segmentation,
and feature extraction [11]. Architectures such as VGG, ResNet, and DenseNet are widely
adopted [12,13]. Reinforcement learning (RL), through trial-and-error learning,
complements CNNs by dynamically adapting classification strategies using Q-learning
[14].

Combining RL with CNN architectures such as VGG16, ResNet50, and DenseNet201
represents a significant advancement over static CNN models, enabling continuous
adaptation and improved generalization [15,16]. This integration mitigates overfitting and
enhances performance on diverse datasets. Despite their promise, CNNs often struggle
with generalization and overfitting when applied to limited or imbalanced datasets [17].
These limitations are particularly pronounced in brain tumor imaging. This study
addresses these challenges by proposing a reinforcement learning (RL)-augmented
convolutional neural network (CNN) model that dynamically learns from environmental
feedback, leading to improved classification performance. Recent research highlights the
potential of hybrid frameworks combining deep learning and RL for robust clinical
decision-making [18].

Interpretability remains a significant challenge. CNN models, often criticized as black
boxes, hinder clinical trust and widespread application. Although supervised learning
achieves high accuracy, it is heavily dependent on large labeled datasets, which is a
notable drawback [19]. In contrast, reinforcement learning enhances model adaptability
through sequential learning, although its application to brain tumor diagnosis remains
limited [20]. Existing literature still predominantly focuses on supervised deep learning
methods, with few studies integrating RL with CNNs like VGG16, ResNet50, or
DenseNet201 for brain tumor classification. However, promising results using hybrid
models and CNN architectures in brain tumor imaging have started to emerge [21-23].

To address this gap, this study proposes a hybrid Al framework for classifying primary
brain tumors using CNNSs integrated with Q-learning. Current diagnostic approaches
often depend on subjective assessments by radiologists. While CNNs offer automation,
their limited generalizability restricts clinical deployment. The proposed model leverages
the strengths of VGG16, ResNet50, and DenseNet201 within a reinforcement learning
framework to overcome issues associated with small and imbalanced datasets. This
approach aims to enhance diagnostic consistency, reduce clinician variability, and support
personalized treatment planning, ultimately improving clinical decision-making and
patient outcomes. This study makes several key contributions to the field of medical
image classification. It introduces a hybrid deep-learning framework that integrates
reinforcement learning (Q-learning) with well-known CNN architectures (VGG16,
ResNet50, and DenseNet201) for brain tumor classification. The proposed approach
formulates an interpretable reinforcement structure by explicitly defining states, actions,
and reward functions linked to classification performance. Through this design, the model
achieves high classification accuracy (up to 97.95%) and robust performance across
multiple datasets while reducing overfitting. Furthermore, the framework provides an
adaptable and reproducible implementation that can serve as a foundation for future
clinical decision-support systems.
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2. Material and Method

2.1. Dataset and preprocessing

This study utilized three publicly available brain tumor MRI datasets [24-26], each
including four categories: glioma, meningioma, pituitary tumor, and healthy tissue. A
total of 7168 MRI images were collected, annotated, and prepared for classification using
deep learning models. All images were standardized by converting them to RGB format
and resized to 224x224 pixels using MATLAB's augmentedlmageDatastore function to
ensure compatibility with the selected CNN architectures. Pixel values were normalized
to the [0,1] range using the im2double function to facilitate efficient training. These
preprocessing steps aimed to provide uniformity in data input and to optimize model
learning.

2.2. Data splitting

The preprocessed dataset was randomly divided into training (70%), validation (15%),
and testing (15%) subsets using MATLAB’s splitEachLabel function, ensuring balanced
class distribution across all sets.

»  The training set was used to optimize model parameters.
»  The validation set supported hyperparameter tuning and overfitting prevention.

» The test set, unseen during training, provided an unbiased evaluation of model
performance.

2.3. Data augmentation

To improve model generalization and mitigate overfitting, data augmentation was
applied to the training set. Techniques included random rotations (0°-30°), brightness
adjustments (80%-120%), horizontal flipping, and random cropping. These operations
simulated real-world variability and enhanced the model’s robustness to spatial and
illumination differences across MRI scans.

2.4. Deep learning model development

Three pre-trained CNN architectures such as VGG16, ResNet50, and DenseNet201
were employed through transfer learning within MATLAB's Deep Learning Toolbox.
Each model was initialized with ImageNet weights and fine-tuned for four-class
classification by modifying the final fully connected and softmax layers.

*  VGGI16 uses 3x3 convolution filters in a deep, uniform architecture, ideal for
detailed feature extraction.

*  ResNet50, with 50 layers and residual connections, addresses vanishing gradient
issues and supports deeper training.

+ DenseNet201 connects each layer to all preceding layers, promoting feature reuse
and reducing overfitting with fewer parameters.

All models were trained on input images resized to 224x224 pixels, aligning with their
architectural requirements.

2.5. Supervised learning approach

Labeled MRI scans were used to train each CNN model under a supervised learning
framework. During training, the models learned to associate input features with
corresponding class labels using the Stochastic Gradient Descent with Momentum
(SGDM) optimizer. The validation set was employed to monitor training progress and
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adjust hyperparameters, while the test set was used for final performance evaluation.
Metrics such as accuracy, precision, recall, and F1-score were calculated to assess
classification success and generalization ability.

2.6. Reinforcement learning and Q-table approach

To improve the classification performance of the deep learning models, a
reinforcement learning-based Q-table approach was applied. This method allowed the
estimation of class probabilities and provided deeper insights into prediction
uncertainties, enhancing the interpretability of model outputs. The Q-learning algorithm
was configured with 16 states, 4 actions, a learning rate (a) of 0.1, a discount factor (y)
of 0.9, and an epsilon-greedy strategy (initial epsilon = 1.0, minimum epsilon = 0.01,
decay rate = 0.99). Training was conducted over 500 episodes with 10 steps per episode
to ensure a stable balance between exploration and exploitation (Table 1).

Table 1. Hyperparameter settings of the Q-learning algorithm utilized in the proposed brain tumor
classification model

Future Epsilo | Number Numbe
Numbe | Numbe | Learnin | Reward | Initial Minimu pnl uo f r of
r of r of g Rate Discoun | Epsilo m Deca Episode Steps
States Actions (o) t Factor n Epsilon y P per
Rate S .
(%) Episode
16 4 0.1 0.9 1.0 0.01 0.99 500 10

During training, the Q-table was updated based on rewards received for each state-
action pair. After convergence, it was adapted to predict class probability distributions.
The final Q-tables for VGG16, ResNet50, and DenseNet201 models were compared
using heatmaps, and an interactive interface was developed to visualize model
performance and support model selection.

In this study, the state space was defined as 16 distinct conditions representing the
distribution of class probabilities derived from CNN outputs. The action space consisted
of 4 actions corresponding to the four target classes (glioma, meningioma, pituitary, and
no tumor). The reward function was designed to assign a positive reward (+1) for correct
classification and a penalty (1) for incorrect classification. This ensured that the Q-
learning agent gradually optimized its policy toward accurate tumor identification. The
Q-table was updated using the Bellman equation with o =0.1 and y = 0.9, balancing short-
term and long-term rewards. This explicit formulation enhances the reproducibility of our
approach.

While the Q-tables provide a clear mapping of learned policies and decision
transitions, they should not be interpreted as visual explanations of CNN behavior.
Instead, they reveal how the reinforcement agent updates its action policy based on state—
reward interactions. Accordingly, the interpretability of our system lies in understanding
decision logic rather than feature localization. We have revised our claims to reflect this
distinction, clarifying that Q-tables primarily support transparency of decision policies,
whereas true visual interpretability would require feature-level explanation methods such
as Grad-CAM or LIME. The methodological novelty of this work lies in the adaptive
integration of Q-learning with CNN architectures, where the reward function is explicitly
tied to classification accuracy and penalizes incorrect predictions. This design enables
dynamic decision-boundary adjustment and greater learning stability, which collectively
enhance the model’s adaptability to heterogeneous MRI data.
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To clarify the connection between CNN feature outputs and Q-learning updates, an
additional explanatory description was incorporated. The CNN generates probability
distributions that serve as the state representations for the Q-learning agent. These states
are used to update the Q-table through reward feedback, linking the CNN’s probabilistic
outputs to reinforcement-based decision refinement. This textual clarification was
provided in place of a schematic figure, as the workflow is conceptually straightforward.

3. Results

3.1. Dataset preparation

The dataset consisted of 7168 brain MRI scans categorized into glioma, meningioma,
pituitary tumor, and healthy (no tumor) classes (Table 2). All images were resized to
224x224 pixels and converted to RGB format in MATLAB to match the input
requirements of the VGG16, ResNet50, and DenseNet201 architectures.

Table 2. Distribution of MRI scans by tumor type

Tumor Type Number of Images
Glioma 1548
Meningioma 1362
Pituitary 1787
No Tumor 2471

The dataset was partitioned into training (70%), validation (15%), and testing (15%)
sets using MATLAB’s splitEachLabel function, maintaining balanced representation
across classes (Table 3).

Table 3. Dataset splitting across tumor types

Tumor Type Training | Validation Testing
Glioma 1084 232 232
Meningioma 954 204 204
Pituitary 1251 268 268
No Tumor 1729 371 371

Data augmentation techniques, including random rotation (0°-30°), brightness
adjustments (80%-120%), and horizontal flipping, were applied to the training set to
improve model generalization. These augmentations exposed models to various spatial
and illumination variations, thereby enhancing classification robustness.

210



DOI: 10.29233/sdufeffd.1694369 2025, 20(2): 206-221

Figure 1. Preprocessing of brain MRI images: (A) Original grayscale T2-weighted MRI; (B) Pseudo-
colored version to enhance contrast and feature distinction for improved tumor detection and
classification by CNNs [27].

Brain MR images are preprocessed and transformed to serve as input for deep learning
algorithms. The original grayscale T2-weighted MRI image (A) is converted into a
pseudo-colored representation (B) to enhance contrast and feature distinction during
training. This color enhancement improves feature extraction by convolutional neural
networks, leading to more accurate tumor detection and classification (Figure 1).

3.2. Model training and performance evaluation

3.2.1. VGG16 model

The VGG16 model was trained using the same hyperparameters as summarized in
Table 4. It achieved the highest validation accuracy (97.95%) and F1-score (0.9759), with
the longest training time. The training and validation curves are shown in Figure 2.
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Figure 2. Training effectiveness of the proposed reinforcement learning-integrated VGG16
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3.2.2. ResNet50 model

The ResNet50 model also underwent 10 epochs of training with similar
hyperparameters. Validation accuracy reached 96.09%, and the F1-score was 0.95437.
The model exhibited rapid convergence with low loss values (Figure 3), maintaining
stability across training and validation datasets. Training time was significantly shorter at
203 minutes, though slight misclassifications, particularly within the meningioma class,
were observed.

i
Training Progress (01-Dec-2024 23:48:18) Realts
Validation accuracy: 96.09%
Training finished: Max epochs completed

o T CUTRVAT 6ok T o Y% Fial raining Time
%WM\{'W@A& oy eenee el S e

%0 Start time: 01-Dec-2024 23:48:18
80 Elapsed time: 203 min 48 sec
70 Training Cycle
= Epoch: 100f 10
£ e
z Iteration: 1560 of 1560
8
g 50 Iterations per epoch 156
< 40 Maximum iterations: 1560
% Validation
Frequency 30 iterations
20
Other Information
10
3 !
Epoch1 Epoch2 Epoch3 Epoch4 Epoch5 Epoch6 Epoch7 Epoch8 Epoch9 Epoch 10 g rsouce Single CEU
0 Learning rate schedule:  Constant
0 200 400 600 800 1000 1200 1400 1600
Iteration Learning rate: 0.0001

16

14) (3 Export as image | (i) Learn more
12 \
g ' L) Accuracy
Sos- R Train h
, ing (smoothed)
06 "" A Training
04
.6'70]. vy ,?\ — —— - Validation
R o a;a-»o—o—,
Epoch 1 Epoch2 Epoch 3 15& o D o A D S R S S AT ARG Final e
% 200 400 600 800 1000 1200 1400 1600 . )
fteration raining (smoothed)
Training

Figure 3. Training performance of a ResNet50-based model combined with reinforcement

3.2.3. DenseNet201 model

The model demonstrated smooth convergence (Figure 4) and consistent performance
across training and validation datasets. Training took 425 minutes, indicating a balance
between classification performance and computational efficiency. DenseNet201
exhibited strong performance with fewer parameters, supporting its potential for
resource-limited environments.
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Figure 4. Training results for a DenseNet201-based model enhanced with reinforcement
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3.2.4. Comparative performance analysis

All CNN architectures (VGG16, ResNet50, and DenseNet201) were trained under
identical hyperparameter settings using transfer learning. The key training parameters and
performance results are summarized in Table 4. This tabular format minimizes repetition
and allows direct comparison of model efficiency and accuracy. While VGG16 achieved
the highest validation accuracy, ResNet50 offered the shortest training time.
DenseNet201 provided a favorable balance between the two.

An analysis of variance (ANOVA) was performed on the Fl-scores of the three
models, yielding an F-statistic of 0.661 and a p-value of 0.540 (p > 0.05), confirming that
there were no statistically significant differences between the models.

Table 4. Summary of training settings and performance of CNN architectures

- Learning Mini- Validation Training
Model Epoch  Optimizer Batch F1-Score . .
Rate Size Accuracy Time (min)
VGG16 10 SGDM 0.0001 32 97.95% 0.9759 561
ResNet50 10 SGDM 0.0001 32 96.09% 0.9544 203
DenseNet201 10 SGDM 0.0001 32 96.93% 0.9634 425

3.3. Confusion matrix analysis

Confusion matrices for all three CNN architectures demonstrated high classification
accuracy across classes, with minor misclassifications in the meningioma class. Figures
5-7 present the confusion matrices for VGG16, DenseNet201, and ResNet50,
respectively. While VGG16 achieved near-perfect results, DenseNet201 performed
consistently across all classes, and ResNet50 exhibited slightly higher misclassification
in meningioma

— ——

Predict Labed

A B

Figure 5. Confusion matrices illustrating the performance of the reinforcement learning-supported
deep learning model: (A) Test dataset results show near-perfect classification for glioma, pituitary, and no
tumor images, with minor errors in the meningioma class; (B) Training dataset results demonstrate high
accuracy across all classes, indicating strong generalizability and reliability in multi-class brain tumor
detection.
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A B

Figure 6. Confusion matrices showing the classification performance of the DenseNet201 model with
reinforcement learning: (A) Test results demonstrate high accuracy, especially for glioma, pituitary, and
no tumor classes, with minor errors in meningioma; (B) Training results confirm strong overall
performance with minimal class confusion.

st Luw Pl |

A B

Figure 7. Confusion matrices of the ResNet50 model with reinforcement learning: (A) Test results
show high accuracy in identifying glioma, pituitary, and no tumor cases, with slight misclassification in
meningioma; (B) Training results confirm consistent performance across all classes, supporting the
model’s reliability in distinguishing brain tumor types and healthy cases.

Overall, all three CNN models, enhanced with reinforcement learning, demonstrated
strong classification capabilities for multi-class brain tumor detection. VGG16 achieved
the highest accuracy and F1-score but required the longest training time. DenseNet201
offered a favorable trade-off between accuracy and computational cost, performing
consistently across all tumor types. ResNet50 achieved fast training and competitive
results but showed slightly lower precision in distinguishing meningioma instances.
These results highlight the importance of balancing model accuracy, generalization
ability, and computational efficiency when designing Al-based brain tumor classification
systems.

Across all models, minor misclassifications were observed predominantly in the
meningioma class. This tendency can be attributed to the high intra-class variability of
meningioma MRI appearances and the overlap of their visual features with other tumor
types, as reported in previous studies. These intrinsic challenges explain the relatively
lower classification precision for meningioma compared to glioma and pituitary tumors.

3.4. Q-table construction and prediction

In this study, a reinforcement learning-based Q-table approach was employed to
enhance the classification process and present model predictions as percentage
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probabilities. This method enabled more interpretable, probability-based outputs across
the four brain tumor classes, improving the transparency of the classification results
(Figures 8-11).

The Q-table was designed to optimize decision-making by representing 16 distinct
classification states and four corresponding actions (tumor classes). The reinforcement
learning algorithm was configured with a learning rate (o)) of 0.1 to ensure gradual model
adaptation and a future reward discount factor (y) of 0.9 to emphasize long-term decision
benefits.

An epsilon-greedy strategy was adopted to balance exploration and exploitation, with
the initial epsilon set at 1.0, decreasing by 1% at each step (decay rate: 0.99) until reaching
a minimum threshold of 0.01. Training was conducted over 500 episodes, with a
maximum of 10 steps per episode, enabling the Q-table to converge toward optimal
classification policies. These hyperparameter settings were crucial in refining the Q-table,
enhancing both the stability and reliability of model predictions. In particular, the use of
the epsilon-greedy approach was instrumental in maintaining an effective balance
between the exploration of new actions and the exploitation of known optimal policies.
As a result, the classification outcomes became not only accurate but also more
interpretable and trustworthy from a clinical perspective.

The developed brain tumor detection system features a graphical user interface (GUI)
that integrates deep learning and reinforcement learning methodologies. Users can upload
MRI images and receive classification results from VGG16, ResNet50, and DenseNet201
models, including predicted tumor type, classification accuracy, and confidence scores
(Figure 8-11).

Brain Tumor Detection System

VGG - 16 Resnet50 Densenet201

Accuracy : %97... Accuracy : %96... Accuracy : %96...

Type: glioma Type: glioma Type: glioma

Confidence: 100% Confidence: 99.8983% Confidence: 99.9865%

‘ Input MR Image

VGG16 Q-Table Resnet 50 Q-Table Densenet 201 Q-Table

0 0 0 0
Run Detection 20
. e = =—1p
2 15 2 =
© 10 © 10| 10 j—
3 o 10 10
15 R ° 15 —
5 5
0 2 4

15
2 ; 1 5 20 " - 20

States

Actions Actions Actions

Figure 8. The interface output for a glioma MRI shows accurate classification by all models with high
confidence scores (VGG16: 100%, ResNet50: 99.8983%, DenseNet201: 99.9865%), supported by Q-
tables illustrating reinforcement learning-based decision mapping.
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Brain Tumor Detection System
VGG - 16 Resnet50 Densenet201
Accuracy : %97... Accuracy : %96... Accuracy : %96...
Type: pitiuitary Type: pitiuitary Type: pitiitary
Confi 99.9999% Confidence: 99.5939% Confidence: 99.9669%
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Input MR Image
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Figure 9. The interface output for a pituitary tumor MRI shows accurate classification by all models
with high confidence scores (VGG16: 99.9999%, ResNet50: 99.5939%, DenseNet201: 99.9669%),
supported by Q-tables illustrating reinforcement learning-based decision mapping.

Brain Tumor Detection System

VGG - 16 Resnet50 Densenet201
Accuracy : %97... Accuracy : %96... Accuracy : %96...
Type: notumor Type: notumor Type: notumor
C 99.9996% Confidence: 89.5772% Confidence: 99.8954%
Input MR Image
o VGG16 Q-Table ° Resnet 50 Q-Table &)enoevm 201 Q-Table
ot | |20
3 s 8 5 g
510 5 10 © 10
» » 10 71 1o
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15| f—1 15 15
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Figure 10. The system correctly identifies a healthy (non-tumor) brain MRI across all models with
high confidence (VGG16: 99.9996%, ResNet50: 99.5772%, DenseNet201: 99.8954%). The
corresponding Q-tables visualize the learned decision strategies.

Brain Tumor Detection System
LEORQA0 VGG - 16 Resnet50 Densenet201
Accuracy : %96...

Accuracy : %97... Accuracy : %96...

Type: meningioma Type: meningioma

Type: meningioma

Confidence: 99.6039% Confidence: 99.7236%

Confi 99.9912%
Input MR Image
—_— o VGG16 Q-Table o Resnet 50 Q-Table yensanm 201 Q-Table
5 5 | 5
3 A 5 g =
T 10 5 S0 510
» @ 10 » 20
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Figure 11. For a meningioma case, VGG16, ResNet50, and DenseNet201 models accurately classify
the MRI with high confidence, with Q-tables demonstrating the reinforcement learning-enhanced
interpretability and decision pathways.
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To comprehensively assess the performance of the proposed hybrid model, its results
were compared with several recent studies that employed deep learning or hybrid
frameworks for brain tumor classification. Table 5 presents a summary of these
comparisons, highlighting the datasets, model architectures, classification categories, and
reported accuracies. This comparative evaluation aims to position the proposed CNN +
RL model within the current state-of-the-art and to emphasize its advantages in terms of
adaptability and generalization.

Table 5. Comparative analysis of the proposed hybrid CNN + RL model and recent studies in the
literature on brain tumor classification

Model / Accuracy Key
Study Method Dataset Classes (%) Characteristics
Hybrid CNN + RL
4(Glioma framework
ThreeMRI L . S
. VGG16+Q- Meningioma, dynamic decision
This study Learning datiarz?sg)l 68 Pituitary, 97.95 boundary
g Healthy) adjustment,
MATLAB GUI
Transfer Transfer learning
Pilaoon et al. Learning Glioma 3 99.19 without RL, high
(2024) [32] (VGG16, Dataset ' accuracy but
ResNet50) limited class scope
AlexNet, . Traditional CNN
Khan et al. MobileNetV2, BrainMRI 3 96-98 transfer learning, no
(2025) [33] Dataset .
GoogleNet reinforcement layer
Munira& . Ensemble deep
Islam(2022) Hybrldl_)eep Brain MRI 4 95.67 model, no dynamic
Learning . .
[30] learning adaptation
Fine-tuned
Neamah etal. Improved .
(2024) [29] ResNet50 BraTS 3 96.80 R(_esNetSO, I|_m_|ted
interpretability
Amou etal CNN + Bayesian
i Bayesian Brain MRI 4 94.20 hyperparameter
(2022) [23] Optimizati .
ptimization tuning
. . Limited-data
Sevinc et al. Traps_former+ Medical Multi-class 98.00 optimization via
(2025) [34] Distillation Images S
model distillation

4. Conclusion

In this study, we developed a hybrid brain tumor classification system that integrates
deep learning (CNN models: VGG16, ResNet50, DenseNet201) with reinforcement
learning (Q-learning) techniques, aiming to enhance diagnostic accuracy and
generalizability across MRI datasets. Our experimental results demonstrated that the
hybrid models achieved high classification accuracies with VGG16 yielding the highest
performance (97.95%), followed closely by DenseNet201 (96.93%) and ResNet50
(96.09%). Compared to traditional supervised deep learning models, which rely heavily
on static datasets and suffer from issues like overfitting and lack of adaptability [28], our
reinforcement learning-augmented framework demonstrated superior adaptability and
robustness. Particularly, Q-learning enhanced the models' ability to adjust decision
boundaries dynamically, thus mitigating the risk of overfitting even when trained on
limited or imbalanced datasets a common challenge in medical imaging studies [29].
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Our results are consistent with prior studies advocating for reinforcement learning
integration in medical imaging [30], but extend the literature by focusing specifically on
brain tumor classification, an area where the application of RL remains relatively
underexplored [31]. By coupling Q-learning with CNN architectures, we achieved both
high predictive performance and increased model resilience against variations in data
distribution, an important criterion for clinical applicability.

Our results (96-98 % accuracy) are comparable with or higher than those reported in
recent literature. For instance, Pilaoon et al. [32] achieved up to 99.19 % accuracy using
transfer learning in glioma classification. The study by Khan et al. [33] also reports high
accuracy across multiple CNN architectures (AlexNet, MobileNetV2, GoogleNet) for
brain tumor classification. These findings indicate that our hybrid CNN + RL approach
provides competitive performance within the current state of the art.

Recent works from 2024-2025 also provide important context for our study. Sevinc,
Ugan and Kaya [34] introduced a distillation approach to transformer-based medical
image classification with limited data, and showed that applying distillation to
transformer models yielded accuracy improvements of 1-2 %. Although their focus was
transformers, the principle of enhancing a backbone model with an additional learning
layer is conceptually similar to our reinforcement learning integration.

Taken together, these recent studies strengthen the rationale behind layered or hybrid
learning frameworks in medical imaging and suggest that our CNN + RL integration is
aligned with current trends toward enhancing performance and adaptability.

Moreover, among the three CNN backbones evaluated, VGG16 exhibited the highest
classification performance, albeit with longer training times. DenseNet201, on the other
hand, offered a favorable balance between computational efficiency and classification
accuracy, making it a promising candidate for deployment in resource-constrained
clinical settings.

In conclusion, this study provides strong evidence that the integration of reinforcement
learning with deep learning architectures can significantly enhance brain tumor
classification performance from MRI images. Future research should focus on expanding
dataset diversity, incorporating explainable Al frameworks, and validating the models
prospectively in clinical environments to ensure safe and effective deployment in medical
practice. Future studies will focus on validating the proposed model using larger and more
diverse MRI datasets to ensure broader generalizability. Besides, efforts will be directed
toward improving model interpretability to make the system more transparent and
clinically acceptable. Optimizing the reinforcement learning component to reduce
computational cost while maintaining high classification performance is another
important goal. Furthermore, integrating tumor segmentation and classification into a
fully automated clinical decision support system will be explored to enhance practical
utility in real-world medical environments.

In future work, we plan to expand upon several directions. First, we will conduct a
direct baseline comparison between the CNN-only and CNN + RL architectures trained
on the same dataset to quantify the specific contribution of the reinforcement learning
component. This limitation stems from the absence of a baseline CNN-only model trained
on the same datasets, which would allow direct quantification of the reinforcement
learning contribution. Although not feasible within the current thesis framework, this
baseline comparison is prioritized for future research to further substantiate the hybrid
model’s advantage. Second, we intend to integrate explainable artificial intelligence
(XAI) methods such as Grad-CAM or SHAP to visualize the MRI regions that influence
classification outcomes, thereby improving clinical interpretability. Third, we will
validate the hybrid model on larger and more diverse MRI datasets obtained from multiple
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institutions to further assess its robustness and generalizability. Finally, we aim to explore
the integration of our classification framework into a comprehensive clinical decision
support system by combining automated tumor segmentation and classification modules.
These steps will constitute the next stage of our research and are expected to strengthen
both the clinical applicability and scientific impact of the proposed model.

This study was conducted as part of a Master’s thesis, and due to practical constraints,
several limitations remain. First, we were unable to provide a direct comparison between
CNN-only and CNN+RL models trained on the same dataset. Although literature reports
suggest that CNN-only models achieve high performance, our contribution lies in
introducing reinforcement learning as an additional layer for adaptability and decision
mapping. Second, visual interpretability methods such as Grad-CAM were not
implemented. While our Q-table visualization provides insights into the agent’s decision
pathways, true clinical interpretability would require feature-level visualization. These
aspects will be addressed in future studies by incorporating larger datasets, baseline
comparisons, and advanced explainable Al methods.

In summary, while our hybrid approach shows promising results, further validation
with baseline CNN-only comparisons and advanced explainability methods is necessary
before clinical translation.
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