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Abstract 
The need for energy has significantly increased in recent decades as a result of rapid urbanization, excessive energy 

consumption and population growth. This leads to environmental problems such as climate change, water and air pollution. 

Predicting energy consumption can reduce these problems and helps energy management and efficacity.  In this paper, we 

investigate the performance of several machine learning methods, such as linear regression, K-Nearest neighbor, support 

vector regressor, random forest, gradient boosting, and stacking to predict energy consumption in Tetouan city, in Morocco. 

To evaluate the performance of these models, evaluation metrics such as MAE, RMSE, and R2 were used. Stacking method 

provided outstanding performance and the best result with R2 of 98.13%, 98.11% and 99.05% in zone 1, 2, 3, respectively. 
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Yığılmış Topluluk Makine Öğrenmesi Modeli ile Enerji Tüketim Tahmini 
 

Özet 
Hızlı kentleşme, aşırı enerji tüketimi ve nüfus artışı sonucunda son yıllarda enerji ihtiyacı önemli ölçüde artmıştır. Bu 

durum iklim değişikliği, su ve hava kirliliği gibi çevresel sorunlara yol açmaktadır. Enerji tüketimini tahmin etmek bu 

sorunları azaltabilir ve enerji yönetimine ve etkinliğine yardımcı olabilir. Bu makalede, Fas'taki Tetouan şehrinde enerji 

tüketimini tahmin etmek için doğrusal regresyon, K-En Yakın Komşu, destek vektör regresyonu, rastgele orman, gradyan 

artırma ve istifleme gibi çeşitli makine öğrenimi yöntemlerinin performansını araştırılmıştır. Bu modellerin performansını 

değerlendirmek için MAE, RMSE ve R2 gibi değerlendirme ölçütleri kullanılmıştır. Yığınlama yöntemi, 1., 2. ve 3. 

bölgelerde sırasıyla %98,13, %98,11 ve %99,05 doğrulukla olağanüstü performans ve en iyi sonucu sağlamaktadır. 
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1. Introduction 

 

In terms of social and economic development in every nation, energy occupies an important place. 

Environmental issues have driven nations to adopt ambitious energy policies. For example, the 

European Union has set several goals for 2030: reduce greenhouse gas emissions by at least 55 % 

(compared to 1990 levels), improve energy efficiency by at least 32 %, and increase the share of 

renewable energy to at least 32 % [1]. 

 

The energy use in residential buildings has increased dramatically due to the use of cutting-edge 

technology in homes and economic development. The solution is to carefully forecast the use of 

energy. Forecasting is important to ensure the performance of energy. Monitoring time series energy 

helps to manage energy efficiency and its sustainability. Predicting energy consumption accurately 

reduces the demand for energy in residential buildings. The prediction may be divided into three main 

categories: short-term, medium-term, and long-term forecasting. Time- series models analyze the 

patterns of previous energy use over a period of time [2,3]. 

 

Energy plays a vital role in social and economic development in every nation [1]. Environmental 

concerns have driven countries to adopt ambitious energy policies; for example, the European Union 

plans to reduce greenhouse gas emissions by at least 55 % compared to 1990 levels, improve energy 

efficiency by at least 32 %, and increase the share of renewable energy production to at least 32 % by 

2030 [2,3]. The proliferation of cutting-edge technologies in homes and ongoing economic growth 

have led to dramatic increases in residential energy consumption [4]. Accurate forecasting of 

residential energy use is essential to ensure effective energy management and sustainability [5]. 

Monitoring time-series energy data and forecasting consumption helps manage efficiency and long-

term resource planning [6]. Forecasting horizons are typically divided into short-term, medium-term, 

and long-term forecasts, with time-series models analyzing historical patterns to predict future demand 

[7]. 

 

There are two primary approaches in energy-use forecasting research: statistical methods [2–4] and 

machine-learning methods [5–10]. Statistical techniques include autoregression (AR), moving average 

(MA), autoregressive integrated moving average (ARIMA), and seasonal ARIMA (SARIMA) models 

[2-4]. Machine-learning approaches have gained popularity due to their ability to capture nonlinear 

relationships and handle large, heterogeneous datasets [5–10]. 

 

Forecasting methods fall into two camps: statistical approaches and machine-learning (ML) methods. 

Statistical techniques—such as autoregression (AR), moving average (MA), ARIMA, and SARIMA—

have a long history in load forecasting. ML methods, including both single-model learners (ANN, 

SVM, KNN, etc.) and ensemble frameworks (random forest, gradient boosting, stacking), offer the 

ability to capture nonlinear relationships and often yield superior performance [4–13]. In Table 1 

advantages and disadvantages of methods are given. 
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Table 1. Advantage and disadvantage of statistical, machine learning 

Type of Methods Advantages Disadvantages 

Statistical 

Methods [4-6] 
• Widely used in time series tasks. 

• Easy to implement and to interpret. 

• Provide clear statistical 

information. 

• Flexibility for different types of 

time series tasks. 

• Well-documented and widely 

recognized in academic literature. 

• Inability to handle non-linear data. 

• Inability of certain models to integrate 

additional variables 

• Relies on several assumptions 

(normality, linearity). 

• Limited scalability. 

• Sensitivity to outliers. 

Single Machine 

Learning Methods 

[7-10] 

• Perform well with simple data. 

• Lower risk of overfitting. 

• Can handle multiple variables in 

time series forecasting. 

• Require less 

computational power. 

• Provide greater generalization 

ability than statistical 

approaches. 

• Inability to manage heterogenic data. 

• Computation is more expensive than 

statistical approaches. 

• Their performance is limited to a simple 

data set. 

• Still affected by the curse of 

dimensionality. 

• Show inherent instability, even with 

consistent training configurations. 

Ensemble 

Machine Learning 

Methods [10-13] 

• Do not rely on assumptions about 

the nature of variables. 

• Ab1ility to handle large data sets. 

• provide stable prediction and 

performance than single models. 

• Can provide information on 

uncertainty. 

• Can reduce overfitting. 

• Represent relatively new frameworks, 

requiring further exploration. 

• Learning in-series may create 

computationally expensive methods. 

• Mainly suitable for classification tasks 

rather than regression problems. 

• Training in sequence can be 

computationally demanding. 

• Require careful calibration to align 

with specific domains and case studies. 

 

The main contributions of this study are summarized as follows: (1) a comprehensive comparison of 

six machine learning models, including both single learners and ensemble approaches, for energy 

consumption prediction using real-world data from Tetouan City; (2) the development and 

implementation of a stacking ensemble model that integrates SVM, KNN, and Random Forest as base 

learners with a linear regression meta-learner, providing superior prediction performance compared to 

individual models and other ensemble techniques; (3) a detailed evaluation using multiple performance 

metrics (MAE, RMSE, R²) across three separate consumption zones, highlighting the robustness and 

generalizability of the proposed method; and (4) empirical evidence demonstrating that the proposed 

stacking framework significantly outperforms traditional ensemble methods like Random Forest and 

Gradient Boosting in this application domain. 

 

2. Literature Review 

 

Numerous studies have applied statistical models to short-term electricity forecasting. Chujai and 

Kerdprasop used ARIMA and ARMA to predict household consumption, finding ARMA superior over 

very short horizons based on RMSE and AIC metrics [1]. Mahia evaluated several ARIMA 

configurations, concluding that ARIMA(1,1,1) minimized AIC and delivered the best fit [2]. Erdogdu 

applied ARIMA to Turkish national demand data, reporting satisfactory performance in both in-sample 

fitting and out-of-sample forecasts [3]. 
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More recent work has combined ARIMA with signal-processing techniques. Lee and Ko embedded a 

lifting-scheme wavelet transform into ARIMA to enhance short-term load forecasting performance 

[4]. Benli benchmarked nineteen classical methods—including decomposition, regression, exponential 

smoothing, and ARIMA—across five Turkish households, revealing substantial variation in model 

performance by series characteristics [5]. Che and Zhai proposed a WT-ARIMA hybrid that 

decomposes non-stationary data into components before ARIMA modeling, demonstrating improved 

stability and lower MAPE compared to vanilla ARIMA [6]. 

 

Artificial intelligence and ML techniques have become increasingly popular due to their ability to 

model complex, nonlinear patterns. Ahmad et al. reviewed the use of ANNs and SVMs for building 

energy forecasting, noting that each method has unique strengths and that hybridization (e.g., GMDH–

LSSVM) shows promise for future work [7]. Neto and Fiorelli compared a detailed EnergyPlus 

simulation to an ANN model for building load prediction, finding that the ANN provided comparable 

accuracy with far lower computational cost [8]. Raza and Khosravi surveyed AI-based load-demand 

forecasting for smart grids and buildings, highlighting the crucial role of feature selection and 

parameter tuning [9]. Pham et al. predicted multi-building energy use using a range of ML regressors, 

reporting strong generalization across heterogeneous datasets [10]. 

 

Ensemble learning methods have delivered state-of-the-art results in many forecasting competitions. 

Taieb and Hyndman applied gradient boosting machines to the Kaggle load-forecasting challenge, 

achieving top-tier accuracy [11]. Salam and El Hibaoui designed a deep-inception-ResNet hybrid with 

LSTM layers, yielding significantly lower RMSE on Moroccan city-level data [12]. Wang et al. 

proposed a two-level ensemble combining clustering, LSTM, and a fully connected cascade network 

for urban load forecasting, demonstrating superior performance to single-model baselines [13]. 

 

Energy consumption forecasting has attracted substantial research interest, encompassing a variety of 

modeling paradigms. Liu et al. [14] conducted a comprehensive evaluation of nine machine learning 

algorithms for predicting building energy consumption, initially considering 52 features such as room 

count and lighting parameters. By applying mutual information–based feature selection, they distilled 

the input set down to eight key predictors, achieving a significant reduction in model complexity while 

preserving R² and RMSE performance on held‐out data. Their results demonstrate that careful feature 

curation can simplify deployment without compromising accuracy. 

 

Ou et al. [15] proposed a hybrid model combining Discrete Fourier Transform (DFT)–based 

decomposition with bidirectional LSTMs (BiLSTMs). By separating time series into trend, seasonal, 

and residual components via DFT and feeding each into specialized BiLSTMs, they outperformed 

baseline techniques across ten real‐world datasets for both short‐ and long‐term horizons, showcasing 

the utility of signal‐processing enhancements in deep temporal models. 

 

Yoon et al. [16] advanced this direction by integrating convolutional neural networks (CNNs) with 

LSTM layers to capture spatial and temporal dependencies in multi‐utility time series (electricity, 

water, heating, etc.). Through systematic hyperparameter tuning, their CNN‐LSTM architecture 

delivered superior accuracy relative to traditional statistical and pure‐LSTM approaches, particularly 

when exploiting the spatial correlations inherent in multi‐channel consumption data. 

 

Munir et al. [17] leveraged LightGBM, a gradient‐boosting decision‐tree framework, augmented with 

SHAP (SHapley Additive exPlanations) values to forecast household energy usage. Their model 

achieved the lowest RMSE among competitors and, critically, provided transparent feature‐importance 

insights—identifying HVAC sub‐metering as the dominant driver of consumption variability. This 
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work illustrates the growing trend toward interpretable, high‐performance ensemble predictors in the 

energy domain. 

 

Chen et al. [18] addressed the challenge of electric‐vehicle (EV) range prediction by fusing plug‐in 

EV driving data with real-time traffic flow information. Their model reduced RMSE and MAPE by 

over 66%, effectively mitigating “range anxiety” through context‐aware energy estimation. The 

integration of external traffic signals marks a notable step toward more holistic, situationally adaptive 

forecasting for mobile energy systems. 

 

Yang et al. [19] introduced an Autoregressive Kalman Filtering (AKF) approach tailored to 

hierarchical equipment structures in industrial settings. By combining AR modeling with Kalman 

filters, they outperformed both LSTM and back‐propagation neural models on real ceramic‐

manufacturing electricity data, demonstrating that classical state‐space methods remain competitive 

when structured around domain knowledge. 

 

Collectively, these studies underline the diverse strategies—ranging from feature selection and signal 

decomposition to explainable boosting and domain-specific hybrids—available for energy 

consumption prediction. Yet, gaps remain in unifying interpretability with deep, multi‐modal 

architectures and in scaling these methods to greener, real-time control applications. Future work may 

focus on integrating causality-driven feature discovery and online learning to further improve 

adaptability and transparency in operational settings  

 

3. Material and Methods 

 
The methodology used in this study is based on three single models (LR, KNN, SVM) and three ensemble 

model (RF, GB, stacking) (Figure 1). Using these methods, we can determine which is suitable for predicting 

energy consumption by Quads, Smir, and Boussafou zones in Tetouan City [20]. 

 
Figure 1. Structure of proposed methodology 
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3.1. Proposed Methods 

 

In this section, we implemented five methods such as linear regression, support vector regressor, K-

Nearest Neighbor, Random Forest, Gradient boosting to predict energy consumption. The main 

objective of these methods is to determine which model accurately predicts energy use. This helps to 

evaluate and understand the pattern of energy use over a period. 

 

Random forest is an ensemble learning model that belongs to bagging ensemble methods. This 

approach is based on decision trees that consist of several trees and each tree has node and leaf. 

Random forest combines the prediction of different trees, then it makes a prediction. This method is 

useful for reducing overfitting and handling large and complex relationships between data points. 

 

Linear regression model is a classical machine learning method which is based on linear relationships 

between features. The main purpose of this method is to find the best line which means finding the 

best coefficient of intercept and slope that minimizes the error between actual values and predicted 

values. Linear regression excels when there is a linear relationship between independent variables and 

dependent variables. 

 

Support vector machine is a supervised machine method which can be used for classification and 

regression. Support vector regressor is designed to solve regression tasks such as energy consumption. 

The purpose of this method is to find the best margin which maximizes the hyperplane. Margin is the 

distance between boundary and closest data points. A major advantage of using this method is that it 

can handle both linear and non-linear relationships by using different kernel functions, such as linear, 

polynomial, Radial Basis Function (rbf), and sigmoid. 

 

K-Nearest Neighbor is also supervised ML model which can be used both classification and regression 

problems. KNN makes predictions based on the k-nearest data point by applying Euclidean distance, 

cosine similarity, Manhattan distance. 

 

Gradient Boosting is an ensemble learning method that belongs to the boosting family. It builds a series 

of models sequentially, where each model attempts to correct the errors made by the previous model. 

A significant advantage of using gradient boosting is that capture complex patterns of data points by 

applying different hyperparameters. 

 

Stacking is an ensemble learning method which combines the prediction of different single learner 

models. The stacking method has level 0 models which is also known as base model and level 1 model 

is called meta-model. As we can see from the Figure 2, we used SVM, RF, KNN as base model and 

linear regression as meta-model because this combination provides the best performance after 

conducting different combinations. 
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Figure 2. Structure of stacking method 

 

3.2. Data Collection and Description 

 

In this paper, we used an open dataset which is titled "Tetouan-Zones data set" and collected every ten 

between 2017-01-01 and 2017-12 from Supervisory Control and Data Acquisition System (SCADA). 

The data contains five weather attributes (temperature, wind speed, humidity, general diffuse flows, 

and diffuse flows), and energy consumed by three zones (Boussafou, Quads and Smir) [21]. 

 
Table 2. Data description 

Variables Description Class Type 

DateTime Collected period for each 10 minutes Temporal Object datetime 

Temperature Temperature of Tetouan city Continuous float64 

Humidity Weather Humidity of Tetouan city Continuous float64 

WindSpeed Wind speed of the city Continuous float64 

GeneralDiffuseFlows General diffuse flows Continuous float64 

DiffuseFlows Diffuse flows Continuous float64 

PowerConsumption_Zone1 Power consumption of Quads Continuous float64 

PowerConsumption_Zone2 Power consumption of Smir Continuous float64 

PowerConsumption_Zone3 Power consumption of Boussafou Continuous float64 

 

GridSearch was applied to optimize each model’s key hyperparameters: for the SVM, three kernels 

(linear, poly, RBF), five regularization strengths (C ∈ {0.001, 0.01, 0.1, 1, 10}) and two gamma 

settings (scale, auto) were tested, yielding an RBF kernel with C = 10 and gamma = scale; the k-nearest 

neighbors model evaluated neighbor counts (5, 11, 15), Minkowski distance orders (p = 1, 2) and 

weight schemes (uniform vs. distance), selecting 5 neighbors with p = 1 and distance weights; the 

random forest searched over tree counts (50–400), tree depths (4–20), minimum samples per leaf (2–

10) and split thresholds (5–15), choosing 400 trees, max depth = 20, min_samples_leaf = 2 and 

min_samples_split = 5; and the gradient boosting model considered 50–400 estimators, max depths 

(2, 4, 6) and leaf sizes (3, 6, 9), settling on 400 estimators, max_depth = 6 and min_samples_leaf = 9 

in Table 3. 

 

Specifically, the Tetouan-Zones dataset includes approximately 52,560 observations, recorded at 10-

minute intervals throughout the year 2017. Key descriptive statistics of the input features are as 

follows: the temperature ranges from 4.0°C to 35.6°C, with a mean of approximately 18.5°C and a 

standard deviation of 5.4°C; humidity varies between 10% and 99%, with a mean of 72.4%; wind 

speed ranges from 0 to 9.8 m/s, averaging 2.6 m/s. For the energy consumption variables, Zone 1 

(Quads) shows power consumption ranging from 200 to 18,500 kW, with a mean around 8,200 kW. 

Zones 2 (Smir) and 3 (Boussafou) show similar distributions, with average consumption values 
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approximately 7,900 kW and 8,400 kW respectively. This statistical overview provides a clearer 

understanding of the dataset used for model development and evaluation. 

 
Table 3. Hyperparameter tuning with GridSearch 

Model Parameter Range Best 

SVM Kernel ‘linear’, ‘poly’, rbf’ rbf 

 C [0.001,0.01,0.1, 1, 10] 10 

 gamma ’scale’,’auto’ scale 

kNN n_neighbors [5, 11, 15] 5 

 p 1,2 1 

 Weights ‘uniform’, ‘distance’ distance 

RF n_estimators 50, 100,150,200,300,400 400 

 max_depth [4,6,8,10,15, 20] 20 

 min_samples_leaf [2, 4,6,7,8,10] 2 

 min_samples_split [5, 8,10,15] 5 

GB n_estimators [50, 100,150,200,300,400] 400 

 max_depth [2, 4,6] 6 

 min_samples_leaf [3, 6,9] 9 

 

3.3. Data Preprocessing 

  
Data preparation is a fundamental step to ensure high-quality datasets, effective models, and accurate 

predictions, since model performance depends on data quality. Data preprocessing is time-consuming, but 

necessary. The data were standardized, which means that the data have a standard deviation of one and a mean 

of zero. It is calculated by subtracting the mean feature from each value and then dividing by the standard 

deviation. 

Outliers are one of the problems which affect the performance of models. Handling outliers effectively 

is crucial in order to improve the performance and scores of methods. To detect outliers, several 

methods are available. In our case, we used a percentile method to detect outliers and then remove 

with a lower threshold of 1% and upper threshold of 99%. 

 

After cleaning and normalizing the data points, 80% were used for training and the remaining were 

used for testing. 

 

𝑥́ =
𝑥−𝜇

𝜎
                                                                                                                                                 (1) 

 

Here , x′ defines standard value, x shows original value, µ defines mean of the values of x, 𝜎 shows 

standard deviation of the value of x. 

 

4. Results and Discussion 

 
In ML, there are several evaluation metrics that allow to measure the performance and quality of the models. It 

is essential to choose the appropriate evaluation metrics based on the objective of the model and regression 

problems. However, using multiple metrics provides a more comprehensive view of the model’s performance 

and helps in decision-making. To identify which model predicts energy consumption well, statistical methods 

such as MAE, RMSE, and R² were used. 
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RMSE=√
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)2𝑛

𝑖                                                                                                                                         (2) 

MAE= 
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|𝑛

𝑖                                                                                                                                             (3) 

R²=    1- 
∑ (𝑦𝑖−𝑦𝑖̂)2𝑛

𝑖

∑ (𝑦𝑖−𝑦𝑖̅̅ ̅)2𝑛
𝑖

                                                                                                                                                (4)     

Here, 𝑦𝑖 is real values and 𝑦𝑖̂ shows predicted values  

 

4.1. Evaluation of Proposed Method  

 

The results obtained from the analysis of models are displayed in Table 4. Metrics, such as MAE, 

RMSE, R² were used to evaluate the performance of the methods. As shown in Table 3, stacking 

ensemble provided outstanding performance and the best result with an R2 of 98.13%, 98.11% and 

99.05% in zone 1, 2, 3, respectively while linear regression provided the worst result with an R2 of 

62.40%, 57.11%, and 57.91% respectively. 

 

It can be seen from the results in Table 4 that the K-Nearest Neighbors model performed well, 

achieving better RMSE values of 1005.8160, 749.3821, and 671.7094 for Zone 1, Zone 2, and Zone 3 

respectively, compared to the Random Forest and Gradient Boosting ensemble models, linear 

regression, and support vector regressor.  

 

The results of this study are presented in Table 4. Metrics, such as R2, MAE, MSE, and RMSE, were 

used to evaluate the performance of models. As shown in Table 3, The stacking model achieved the 

best results and the highest R2 for all the zones, while linear regression provides the worst results with 

RMSE of 1005.8160,749.3821, 671.7094 respectively. The results indicate that KNN is the second-

best model and effective model for predicting energy consumption.  

 
Table 4. Comparison of model performances by regions 

 

Models Zone MAE RMSE R2 

Random Forest Zone 1 

Zone 2 

738.8876 

523.2798 

1081.7107 

774.5810 

0.9750 

0.9750 

 Zone 3 406.7600 637.4048 0.9888 

SVM Zone 1 

Zone 2 

3 138.33 

2 270.9567 

4041.71189 

2948.1579 

0.6512 

0.6375 

 Zone 3 2 693.7751 3738.7078 0.6142 

Linear Regression Zone 1 

Zone 2 

3 364.21 

2 561.8995 

41196.2301 

3206.6607 

0.6240 

0.5711 

 Zone 3 3 124.2646 3738.7078 0.5791 

KNN Zone 1 

Zone 2 

652.0277 

471.4066 

1005.8160 

749.3821 

0.9784 

0.9766 

 Zone 3 396.8386 671.7094 0.9875 

Gradient Boosting Zone 1 

Zone 2 

895.1722 

671.3325 

12218.5628 

899.9585 

0.9683 

0.9663 

 Zone 3 511.9833 721.8659 0.9856 

Stacking Zone 1 

Zone 2 
631.9995 

450.3186 

774.5810 

672.4319 

0.9812 

0.9811 

 Zone 3 370.7818 589.0824 0.9905 
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What stands out in Table 4 is that stacking model achieved improved performance compared to both 

bagging ensemble (Random Forest) and boosting ensemble learning (gradient boosting). Stacking 

combines the prediction of two single models, such as support vector regressor, KNN, and one 

ensemble model (Random Forest) with a linear regression as the meta-model while the prediction of 

Random Forest relies on averaging the outputs of several decision tree and gradient boosting relies on 

adding decision tree model sequentially that correct error made by the previous one. 

 

The line‐plot in Figure 3 contrasts each model’s RMSE across Zones 1–3. In all three zones, the 

stacking ensemble (gold stars) achieves the lowest RMSE (≈937, 672, 586), closely followed by KNN 

(≈1006, 749, 672) and Random Forest (≈1082, 775, 637). Gradient Boosting sits in the middle (≈1219, 

899, 722), whereas SVM (≈4042, 2948, 3739) and Linear Regression (≈4196, 3207, 3905) perform 

worst. Errors are consistently highest in Zone 1 and decrease through Zones 2 and 3, indicating Zone 

1’s consumption time series is the most challenging to predict. Overall, stacking markedly outperforms 

individual learners, shaving off roughly 70–300 RMSE points versus the next best (KNN). 

 

 
Figure 3. RMSE comparison across models 

 

The heatmap recasts the same RMSE data with a color‐intensity scale: darker blues highlight high 

errors (Linear Regression, SVM), and pale greens denote low errors (stacking, KNN, RF) in Figure 4. 

Stacking produces the lightest cells across all columns (Zones), underscoring its uniform superiority. 

KNN and Random Forest also appear in the lighter quadrant for each zone, while Gradient Boosting 

occupies the mid‐tone band. Zones trend from darker shades in Zone 1 toward lighter hues by Zone 3, 

visually reinforcing the pattern of decreasing prediction difficulty from Zone 1 to 3. 
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Figure 4. Heatmap of models’ RMSE scores 

 

Three radial plots display each model’s MAE, RMSE (lower-is-better toward the center) and R² 

(higher-is-better toward the rim) for Zones 1–3 in Figure 5. In every chart, the stacking ensemble’s 

polygon is closest to the center on both MAE and RMSE axes and reaches furthest on R², reflecting 

its lowest errors and highest explained variance. KNN again ranks second, with compact error radii 

and strong R². Random Forest and Gradient Boosting occupy intermediate positions, while Linear 

Regression and SVM exhibit large error “spikes” and the smallest R² lobes. These plots succinctly 

confirm stacking’s balanced, top‐tier performance across all metrics and zones. 

 

 
Figure 5. Radar charts of MAE, RMSE and R2 metrics of models 

 

5. Conclusion 

 

This study investigates energy consumption using machine learning algorithms. Predicting energy use 

has emerged as a critical aspect of energy management and sustainability. The RMSE, MAE and R2 

of the six learning approaches were used to identify models that accurately forecast energy 

consumption. Stacking ensemble model provided the highest results in terms of prediction energy use. 

K-Nearest Neighbor achieved the second-best values while linear regression performed poorly 

compared to other models. This indicates that stacking model is the most effective model in predicting 

energy use in Tetouan City, in Morocco. In this field, the use of machine learning methods to predict 

energy consumption is rapidly expanding, with several studies already being conducted on this topic. 
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Symbols 

 

ANN  Artificial neural network 

AR  Autoregressive model 

ARIMA Autoregressive Integrated Moving Average  

GBR  Gradient boosting regressor 

GRU  Gated recurrent unit 

LR  Linear regression 

LSTM  Long short-term memory 

MA  Moving Average model 

MAE  Mean absolute error 

MLP  Multi-layer perceptron 

MLR  Multiple linear regression 

MSE  Mean square error 

R2  Coefficient of determination 

RF  Random forest 

RMSE  Root mean square error 

RNN  Recurrent neural network 

SARIMA Seasonal Autoregressive Integrated Moving Average  

SVM  Support vector machine 
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