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Abstract

The need for energy has significantly increased in recent decades as a result of rapid urbanization, excessive energy
consumption and population growth. This leads to environmental problems such as climate change, water and air pollution.
Predicting energy consumption can reduce these problems and helps energy management and efficacity. In this paper, we
investigate the performance of several machine learning methods, such as linear regression, K-Nearest neighbor, support
vector regressor, random forest, gradient boosting, and stacking to predict energy consumption in Tetouan city, in Morocco.
To evaluate the performance of these models, evaluation metrics such as MAE, RMSE, and R2 were used. Stacking method
provided outstanding performance and the best result with R? of 98.13%, 98.11% and 99.05% in zone 1, 2, 3, respectively.
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Yigilmis Topluluk Makine Ogrenmesi Modeli ile Enerji Tiiketim Tahmini

Ozet

Hizli kentlesme, asir1 enerji tliketimi ve niifus artist sonucunda son yillarda enerji ihtiyact onemli 6lgiide artmistir. Bu
durum iklim degisikligi, su ve hava kirliligi gibi ¢evresel sorunlara yol agmaktadir. Enerji tiiketimini tahmin etmek bu
sorunlar1 azaltabilir ve enerji yonetimine ve etkinligine yardimei olabilir. Bu makalede, Fas'taki Tetouan sehrinde enerji
tilketimini tahmin etmek i¢in dogrusal regresyon, K-En Yakin Komsu, destek vektor regresyonu, rastgele orman, gradyan
artirma ve istifleme gibi gesitli makine 6grenimi yontemlerinin performansini arastirilmistir. Bu modellerin performansini
degerlendirmek icin MAE, RMSE ve R2 gibi degerlendirme olgiitleri kullanmilmistir. Yiginlama yontemi, 1., 2. ve 3.
bolgelerde sirasiyla %98,13, %98,11 ve %99,05 dogrulukla olaganiistii performans ve en iyi sonucu saglamaktadir.
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1. Introduction

In terms of social and economic development in every nation, energy occupies an important place.
Environmental issues have driven nations to adopt ambitious energy policies. For example, the
European Union has set several goals for 2030: reduce greenhouse gas emissions by at least 55 %
(compared to 1990 levels), improve energy efficiency by at least 32 %, and increase the share of
renewable energy to at least 32 % [1].

The energy use in residential buildings has increased dramatically due to the use of cutting-edge
technology in homes and economic development. The solution is to carefully forecast the use of
energy. Forecasting is important to ensure the performance of energy. Monitoring time series energy
helps to manage energy efficiency and its sustainability. Predicting energy consumption accurately
reduces the demand for energy in residential buildings. The prediction may be divided into three main
categories: short-term, medium-term, and long-term forecasting. Time- series models analyze the
patterns of previous energy use over a period of time [2,3].

Energy plays a vital role in social and economic development in every nation [1]. Environmental
concerns have driven countries to adopt ambitious energy policies; for example, the European Union
plans to reduce greenhouse gas emissions by at least 55 % compared to 1990 levels, improve energy
efficiency by at least 32 %, and increase the share of renewable energy production to at least 32 % by
2030 [2,3]. The proliferation of cutting-edge technologies in homes and ongoing economic growth
have led to dramatic increases in residential energy consumption [4]. Accurate forecasting of
residential energy use is essential to ensure effective energy management and sustainability [5].
Monitoring time-series energy data and forecasting consumption helps manage efficiency and long-
term resource planning [6]. Forecasting horizons are typically divided into short-term, medium-term,
and long-term forecasts, with time-series models analyzing historical patterns to predict future demand

[7].

There are two primary approaches in energy-use forecasting research: statistical methods [2-4] and
machine-learning methods [5-10]. Statistical technigques include autoregression (AR), moving average
(MA), autoregressive integrated moving average (ARIMA), and seasonal ARIMA (SARIMA) models
[2-4]. Machine-learning approaches have gained popularity due to their ability to capture nonlinear
relationships and handle large, heterogeneous datasets [5-10].

Forecasting methods fall into two camps: statistical approaches and machine-learning (ML) methods.
Statistical techniques—such as autoregression (AR), moving average (MA), ARIMA, and SARIMA—
have a long history in load forecasting. ML methods, including both single-model learners (ANN,
SVM, KNN, etc.) and ensemble frameworks (random forest, gradient boosting, stacking), offer the
ability to capture nonlinear relationships and often yield superior performance [4-13]. In Table 1
advantages and disadvantages of methods are given.
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Table 1. Advantage and disadvantage of statistical, machine learning

Type of Methods Advantages Disadvantages
Statistical = Widely used in time series tasks. = |nability to handle non-linear data.
Methods [4-6] = Easy to implement and to interpret. = |nability of certain models to integrate
< Provide clear statistical additional variables
information. = Relies on several assumptions
= Flexibility for different types of (normality, linearity).
time series tasks. = Limited scalability.
= Well-documented and  widely = Sensitivity to outliers.

recognized in academic literature.

Single Machine = Perform well with simple data. = |nability to manage heterogenic data.
Learning Methods < Lower risk of overfitting. = Computation is more expensive than
[7-10] = Can handle multiple variables in statistical approaches.
time series forecasting. = Their performance is limited to a simple
= Require less data set.
computational power. = Still affected by the curse of
= Provide greater generalization dimensionality.
ability than statistical = Show inherent instability, even with
approaches. consistent training configurations.
Ensemble = Do not rely on assumptionsabout = Represent relatively new frameworks,
Machine Learning the nature of variables. requiring further exploration.
Methods [10-13] < Ablility to handle large data sets. e Learning  in-series may  create
= provide stable prediction and computationally expensive methods.
performance than single models. = Mainly suitable for classification tasks
= Can provide information on rather than regression problems.
uncertainty. = Training in sequence can be
= Can reduce overfitting. computationally demanding.

= Require careful calibration to align
with specific domains and case studies.

The main contributions of this study are summarized as follows: (1) a comprehensive comparison of
six machine learning models, including both single learners and ensemble approaches, for energy
consumption prediction using real-world data from Tetouan City; (2) the development and
implementation of a stacking ensemble model that integrates SVM, KNN, and Random Forest as base
learners with a linear regression meta-learner, providing superior prediction performance compared to
individual models and other ensemble techniques; (3) a detailed evaluation using multiple performance
metrics (MAE, RMSE, R?) across three separate consumption zones, highlighting the robustness and
generalizability of the proposed method; and (4) empirical evidence demonstrating that the proposed
stacking framework significantly outperforms traditional ensemble methods like Random Forest and
Gradient Boosting in this application domain.

2. Literature Review

Numerous studies have applied statistical models to short-term electricity forecasting. Chujai and
Kerdprasop used ARIMA and ARMA to predict household consumption, finding ARMA superior over
very short horizons based on RMSE and AIC metrics [1]. Mahia evaluated several ARIMA
configurations, concluding that ARIMA(Z,1,1) minimized AIC and delivered the best fit [2]. Erdogdu
applied ARIMA to Turkish national demand data, reporting satisfactory performance in both in-sample
fitting and out-of-sample forecasts [3].
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More recent work has combined ARIMA with signal-processing techniques. Lee and Ko embedded a
lifting-scheme wavelet transform into ARIMA to enhance short-term load forecasting performance
[4]. Benli benchmarked nineteen classical methods—including decomposition, regression, exponential
smoothing, and ARIMA—across five Turkish households, revealing substantial variation in model
performance by series characteristics [5]. Che and Zhai proposed a WT-ARIMA hybrid that
decomposes non-stationary data into components before ARIMA modeling, demonstrating improved
stability and lower MAPE compared to vanilla ARIMA [6].

Artificial intelligence and ML techniques have become increasingly popular due to their ability to
model complex, nonlinear patterns. Ahmad et al. reviewed the use of ANNs and SVMs for building
energy forecasting, noting that each method has unique strengths and that hybridization (e.g., GMDH-
LSSVM) shows promise for future work [7]. Neto and Fiorelli compared a detailed EnergyPlus
simulation to an ANN model for building load prediction, finding that the ANN provided comparable
accuracy with far lower computational cost [8]. Raza and Khosravi surveyed Al-based load-demand
forecasting for smart grids and buildings, highlighting the crucial role of feature selection and
parameter tuning [9]. Pham et al. predicted multi-building energy use using a range of ML regressors,
reporting strong generalization across heterogeneous datasets [10].

Ensemble learning methods have delivered state-of-the-art results in many forecasting competitions.
Taieb and Hyndman applied gradient boosting machines to the Kaggle load-forecasting challenge,
achieving top-tier accuracy [11]. Salam and El Hibaoui designed a deep-inception-ResNet hybrid with
LSTM layers, yielding significantly lower RMSE on Moroccan city-level data [12]. Wang et al.
proposed a two-level ensemble combining clustering, LSTM, and a fully connected cascade network
for urban load forecasting, demonstrating superior performance to single-model baselines [13].

Energy consumption forecasting has attracted substantial research interest, encompassing a variety of
modeling paradigms. Liu et al. [14] conducted a comprehensive evaluation of nine machine learning
algorithms for predicting building energy consumption, initially considering 52 features such as room
count and lighting parameters. By applying mutual information—based feature selection, they distilled
the input set down to eight key predictors, achieving a significant reduction in model complexity while
preserving R? and RMSE performance on held-out data. Their results demonstrate that careful feature
curation can simplify deployment without compromising accuracy.

Ou et al. [15] proposed a hybrid model combining Discrete Fourier Transform (DFT)-based
decomposition with bidirectional LSTMs (BILSTMSs). By separating time series into trend, seasonal,
and residual components via DFT and feeding each into specialized BiLSTMs, they outperformed
baseline techniques across ten real-world datasets for both short- and long-term horizons, showcasing
the utility of signal-processing enhancements in deep temporal models.

Yoon et al. [16] advanced this direction by integrating convolutional neural networks (CNNs) with
LSTM layers to capture spatial and temporal dependencies in multi-utility time series (electricity,
water, heating, etc.). Through systematic hyperparameter tuning, their CNN-LSTM architecture
delivered superior accuracy relative to traditional statistical and pure-LSTM approaches, particularly
when exploiting the spatial correlations inherent in multi-channel consumption data.

Munir et al. [17] leveraged LightGBM, a gradient-boosting decision-tree framework, augmented with
SHAP (SHapley Additive exPlanations) values to forecast household energy usage. Their model
achieved the lowest RMSE among competitors and, critically, provided transparent feature-importance
insights—identifying HVAC sub-metering as the dominant driver of consumption variability. This
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work illustrates the growing trend toward interpretable, high-performance ensemble predictors in the
energy domain.

Chen et al. [18] addressed the challenge of electric-vehicle (EV) range prediction by fusing plug-in
EV driving data with real-time traffic flow information. Their model reduced RMSE and MAPE by
over 66%, effectively mitigating “range anxiety” through context-aware energy estimation. The
integration of external traffic signals marks a notable step toward more holistic, situationally adaptive
forecasting for mobile energy systems.

Yang et al. [19] introduced an Autoregressive Kalman Filtering (AKF) approach tailored to
hierarchical equipment structures in industrial settings. By combining AR modeling with Kalman
filters, they outperformed both LSTM and back-propagation neural models on real ceramic-
manufacturing electricity data, demonstrating that classical state-space methods remain competitive
when structured around domain knowledge.

Collectively, these studies underline the diverse strategies—ranging from feature selection and signal
decomposition to explainable boosting and domain-specific hybrids—available for energy
consumption prediction. Yet, gaps remain in unifying interpretability with deep, multi-modal
architectures and in scaling these methods to greener, real-time control applications. Future work may
focus on integrating causality-driven feature discovery and online learning to further improve
adaptability and transparency in operational settings

3. Material and Methods

The methodology used in this study is based on three single models (LR, KNN, SVM) and three ensemble
model (RF, GB, stacking) (Figure 1). Using these methods, we can determine which is suitable for predicting
energy consumption by Quads, Smir, and Boussafou zones in Tetouan City [20].
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Figure 1. Structure of proposed methodology
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3.1. Proposed Methods

In this section, we implemented five methods such as linear regression, support vector regressor, K-
Nearest Neighbor, Random Forest, Gradient boosting to predict energy consumption. The main
objective of these methods is to determine which model accurately predicts energy use. This helps to
evaluate and understand the pattern of energy use over a period.

Random forest is an ensemble learning model that belongs to bagging ensemble methods. This
approach is based on decision trees that consist of several trees and each tree has node and leaf.
Random forest combines the prediction of different trees, then it makes a prediction. This method is
useful for reducing overfitting and handling large and complex relationships between data points.

Linear regression model is a classical machine learning method which is based on linear relationships
between features. The main purpose of this method is to find the best line which means finding the
best coefficient of intercept and slope that minimizes the error between actual values and predicted
values. Linear regression excels when there is a linear relationship between independent variables and
dependent variables.

Support vector machine is a supervised machine method which can be used for classification and
regression. Support vector regressor is designed to solve regression tasks such as energy consumption.
The purpose of this method is to find the best margin which maximizes the hyperplane. Margin is the
distance between boundary and closest data points. A major advantage of using this method is that it
can handle both linear and non-linear relationships by using different kernel functions, such as linear,
polynomial, Radial Basis Function (rbf), and sigmoid.

K-Nearest Neighbor is also supervised ML model which can be used both classification and regression
problems. KNN makes predictions based on the k-nearest data point by applying Euclidean distance,
cosine similarity, Manhattan distance.

Gradient Boosting is an ensemble learning method that belongs to the boosting family. It builds a series
of models sequentially, where each model attempts to correct the errors made by the previous model.
A significant advantage of using gradient boosting is that capture complex patterns of data points by
applying different hyperparameters.

Stacking is an ensemble learning method which combines the prediction of different single learner
models. The stacking method has level 0 models which is also known as base model and level 1 model
is called meta-model. As we can see from the Figure 2, we used SVM, RF, KNN as base model and
linear regression as meta-model because this combination provides the best performance after
conducting different combinations.
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Figure 2. Structure of stacking method

3.2. Data Collection and Description

In this paper, we used an open dataset which is titled "Tetouan-Zones data set™ and collected every ten
between 2017-01-01 and 2017-12 from Supervisory Control and Data Acquisition System (SCADA).
The data contains five weather attributes (temperature, wind speed, humidity, general diffuse flows,
and diffuse flows), and energy consumed by three zones (Boussafou, Quads and Smir) [21].

Table 2. Data description

Variables Description Class Type
DateTime Collected period for each 10 minutes Temporal Obiject datetime
Temperature Temperature of Tetouan city Continuous float64
Humidity Weather Humidity of Tetouan city Continuous float64
WindSpeed Wind speed of the city Continuous float64
GeneralDiffuseFlows General diffuse flows Continuous float64
DiffuseFlows Diffuse flows Continuous float64
PowerConsumption_Zonel Power consumption of Quads Continuous float64
PowerConsumption_Zone2 Power consumption of Smir Continuous float64
PowerConsumption_Zone3 Power consumption of Boussafou Continuous float64

GridSearch was applied to optimize each model’s key hyperparameters: for the SVM, three kernels
(linear, poly, RBF), five regularization strengths (C € {0.001, 0.01, 0.1, 1, 10}) and two gamma
settings (scale, auto) were tested, yielding an RBF kernel with C = 10 and gamma = scale; the k-nearest
neighbors model evaluated neighbor counts (5, 11, 15), Minkowski distance orders (p = 1, 2) and
weight schemes (uniform vs. distance), selecting 5 neighbors with p = 1 and distance weights; the
random forest searched over tree counts (50-400), tree depths (4-20), minimum samples per leaf (2—
10) and split thresholds (5-15), choosing 400 trees, max depth = 20, min_samples_leaf = 2 and
min_samples_split = 5; and the gradient boosting model considered 50-400 estimators, max depths
(2, 4, 6) and leaf sizes (3, 6, 9), settling on 400 estimators, max_depth = 6 and min_samples_leaf =9
in Table 3.

Specifically, the Tetouan-Zones dataset includes approximately 52,560 observations, recorded at 10-
minute intervals throughout the year 2017. Key descriptive statistics of the input features are as
follows: the temperature ranges from 4.0°C to 35.6°C, with a mean of approximately 18.5°C and a
standard deviation of 5.4°C; humidity varies between 10% and 99%, with a mean of 72.4%; wind
speed ranges from 0 to 9.8 m/s, averaging 2.6 m/s. For the energy consumption variables, Zone 1
(Quads) shows power consumption ranging from 200 to 18,500 kW, with a mean around 8,200 kW.
Zones 2 (Smir) and 3 (Boussafou) show similar distributions, with average consumption values
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approximately 7,900 kW and 8,400 kW respectively. This statistical overview provides a clearer
understanding of the dataset used for model development and evaluation.

Table 3. Hyperparameter tuning with GridSearch

Model Parameter Range Best
SVM Kernel ‘linear’, ‘poly’, rbf’ rbf
C [0.001,0.01,0.1, 1, 10] 10
gamma 'scale’, ‘auto’ scale
kNN n_neighbors [5, 11, 15] 5
p 1,2 1
Weights ‘uniform’, ‘distance’ distance
RF n_estimators 50, 100,150,200,300,400 400
max_depth [4,6,8,10,15, 20] 20
min_samples_leaf [2,4,6,7,8,10] 2
min_samples_split [5, 8,10,15] 5
GB n_estimators [50, 100,150,200,300,400] 400
max_depth [2, 4,6] 6
min_samples_leaf [3,6,9] 9

3.3. Data Preprocessing

Data preparation is a fundamental step to ensure high-quality datasets, effective models, and accurate
predictions, since model performance depends on data quality. Data preprocessing is time-consuming, but
necessary. The data were standardized, which means that the data have a standard deviation of one and a mean
of zero. It is calculated by subtracting the mean feature from each value and then dividing by the standard
deviation.

Outliers are one of the problems which affect the performance of models. Handling outliers effectively
is crucial in order to improve the performance and scores of methods. To detect outliers, several
methods are available. In our case, we used a percentile method to detect outliers and then remove
with a lower threshold of 1% and upper threshold of 99%.

After cleaning and normalizing the data points, 80% were used for training and the remaining were
used for testing.

5 = X2# 1)

Here , x’ defines standard value, x shows original value, u defines mean of the values of x, o shows
standard deviation of the value of x.

4. Results and Discussion

In ML, there are several evaluation metrics that allow to measure the performance and quality of the models. It
is essential to choose the appropriate evaluation metrics based on the objective of the model and regression
problems. However, using multiple metrics provides a more comprehensive view of the model’s performance
and helps in decision-making. To identify which model predicts energy consumption well, statistical methods
such as MAE, RMSE, and R? were used.
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Here, yi is real values and 1 shows predicted values
4.1. Evaluation of Proposed Method

The results obtained from the analysis of models are displayed in Table 4. Metrics, such as MAE,
RMSE, R? were used to evaluate the performance of the methods. As shown in Table 3, stacking
ensemble provided outstanding performance and the best result with an R? of 98.13%, 98.11% and
99.05% in zone 1, 2, 3, respectively while linear regression provided the worst result with an R? of
62.40%, 57.11%, and 57.91% respectively.

It can be seen from the results in Table 4 that the K-Nearest Neighbors model performed well,
achieving better RMSE values of 1005.8160, 749.3821, and 671.7094 for Zone 1, Zone 2, and Zone 3
respectively, compared to the Random Forest and Gradient Boosting ensemble models, linear
regression, and support vector regressor.

The results of this study are presented in Table 4. Metrics, such as R2, MAE, MSE, and RMSE, were
used to evaluate the performance of models. As shown in Table 3, The stacking model achieved the
best results and the highest R? for all the zones, while linear regression provides the worst results with
RMSE of 1005.8160,749.3821, 671.7094 respectively. The results indicate that KNN is the second-
best model and effective model for predicting energy consumption.

Table 4. Comparison of model performances by regions

Models Zone MAE RMSE R2
Random Forest Zonel 738.8876 1081.7107 0.9750
Zone2 523.2798 774.5810 0.9750
Zone 3  406.7600 637.4048 0.9888
SVM Zonel 3138.33  4041.71189 0.6512
Zone2 2270.9567 2948.1579 0.6375
Zone3 2693.7751  3738.7078 0.6142
Linear Regression Zonel 3364.21  41196.2301 0.6240
Zone2 2561.8995 3206.6607 0.5711
Zone3 3124.2646  3738.7078 0.5791
KNN Zonel 652.0277 1005.8160 0.9784
Zone2  471.4066 749.3821 0.9766
Zone3  396.8386 671.7094 0.9875
Gradient Boosting Zonel 8951722  12218.5628 0.9683
Zone2 671.3325 899.9585 0.9663
Zone3 511.9833 721.8659 0.9856
Stacking Zonel 631.9995 774.5810 0.9812
Zone 2  450.3186 672.4319 0.9811
Zone3 370.7818 589.0824 0.9905
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What stands out in Table 4 is that stacking model achieved improved performance compared to both
bagging ensemble (Random Forest) and boosting ensemble learning (gradient boosting). Stacking
combines the prediction of two single models, such as support vector regressor, KNN, and one
ensemble model (Random Forest) with a linear regression as the meta-model while the prediction of
Random Forest relies on averaging the outputs of several decision tree and gradient boosting relies on
adding decision tree model sequentially that correct error made by the previous one.

The line-plot in Figure 3 contrasts each model’s RMSE across Zones 1-3. In all three zones, the
stacking ensemble (gold stars) achieves the lowest RMSE (=937, 672, 586), closely followed by KNN
(=1006, 749, 672) and Random Forest (<1082, 775, 637). Gradient Boosting sits in the middle (<1219,
899, 722), whereas SVM (=4042, 2948, 3739) and Linear Regression (<4196, 3207, 3905) perform
worst. Errors are consistently highest in Zone 1 and decrease through Zones 2 and 3, indicating Zone
1’s consumption time series is the most challenging to predict. Overall, stacking markedly outperforms
individual learners, shaving off roughly 70-300 RMSE points versus the next best (KNN).
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g ~e—~ Zone 3
ﬁ Best in Zone 1
3500 4 SO Bestin Zone 2
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P a &
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Figure 3. RMSE comparison across models

The heatmap recasts the same RMSE data with a color-intensity scale: darker blues highlight high
errors (Linear Regression, SVM), and pale greens denote low errors (stacking, KNN, RF) in Figure 4.
Stacking produces the lightest cells across all columns (Zones), underscoring its uniform superiority.
KNN and Random Forest also appear in the lighter quadrant for each zone, while Gradient Boosting
occupies the mid-tone band. Zones trend from darker shades in Zone 1 toward lighter hues by Zone 3,
visually reinforcing the pattern of decreasing prediction difficulty from Zone 1 to 3.
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Figure 4. Heatmap of models’ RMSE scores

Three radial plots display each model’s MAE, RMSE (lower-is-better toward the center) and R?
(higher-is-better toward the rim) for Zones 1-3 in Figure 5. In every chart, the stacking ensemble’s
polygon is closest to the center on both MAE and RMSE axes and reaches furthest on R?, reflecting
its lowest errors and highest explained variance. KNN again ranks second, with compact error radii
and strong R2. Random Forest and Gradient Boosting occupy intermediate positions, while Linear
Regression and SVM exhibit large error “spikes” and the smallest R* lobes. These plots succinctly
confirm stacking’s balanced, top-tier performance across all metrics and zones.

andom
Zone 1 Zone 2 Zore 3 I

N

Figure 5. Radar charts of MA/E: RMSE and R? metrics of modéls
5. Conclusion

This study investigates energy consumption using machine learning algorithms. Predicting energy use
has emerged as a critical aspect of energy management and sustainability. The RMSE, MAE and R2
of the six learning approaches were used to identify models that accurately forecast energy
consumption. Stacking ensemble model provided the highest results in terms of prediction energy use.
K-Nearest Neighbor achieved the second-best values while linear regression performed poorly
compared to other models. This indicates that stacking model is the most effective model in predicting
energy use in Tetouan City, in Morocco. In this field, the use of machine learning methods to predict
energy consumption is rapidly expanding, with several studies already being conducted on this topic.
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Symbols

ANN Anrtificial neural network

AR Autoregressive model

ARIMA Autoregressive Integrated Moving Average
GBR Gradient boosting regressor

GRU Gated recurrent unit

LR Linear regression

LSTM Long short-term memory

MA Moving Average model

MAE Mean absolute error

MLP Multi-layer perceptron

MLR Multiple linear regression

MSE Mean square error

R2 Coefficient of determination

RF Random forest

RMSE Root mean square error

RNN Recurrent neural network

SARIMA Seasonal Autoregressive Integrated Moving Average
SVM Support vector machine
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