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ABSTRACT 
 
Coprime array geometries provide robust performance for direction-of-arrival estimation problem with more sources than 

sensor elements. In previous works it is shown that K source directions can be resolved using only 2M + N -1 sensor 

elements where K is less than or equal to MN for M and N are integer numbers. In this paper we introduce a new approach to 

enhance the degrees of freedom (DOF) from MN to 2MN by using the same number of sensor elements. The proposed 

method is based on computing the covariance matrix of the observation data multiple times. Hence more DOF can be 

obtained. The resulting cross terms corresponding to the coherent sources are modeled as interference in a sparse recovery 

algorithm which is solved effectively by an alternating minimization procedure. The theoretical analysis of the proposed 

method is provided and its superior performance is evaluated through numerical simulations. 
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1. INTRODUCTION 
 

In array signal processing direction-of-arrival (DOA) estimation is an important issue for several 

applications such as radar, sonar and wireless communications [1, 2]. In such a scenario, an antenna 

array is used for the estimation of the target/source DOA angles where the outputs of the antennas in 

the array are utilized. Basically, the time/phase differences among the antenna outputs are employed to 

determine the target DOA angles. 
 

Several methods are proposed for the estimation of unknown source directions and one of the most 

popular methods in this context is the MUSIC (MUltiple SIgnal Classification) algorithm [3]. For an 

M-element sensor array, the MUSIC algorithm can identify K≤M-1 source directions which poses the 

performance limit for M-element uniform linear arrays (ULAs). 
 

In the last decades, nonuniform array structures gain much attention due to their ability to increase the 

degrees of freedom (DOF) for parameter estimation [4-7]. In [4], the performance of the minimum 

redundancy arrays (MRA) are discussed. While MRA provides higher DOF than usual ULAs, there is 

no closed for expression for the sensor positions of an MRA for a certain number of sensor M [7]. In 

[5], the augmentation of covariance matrices for enhancing DOF is proposed where the resulting 

covariance matrix is not positive semidefinite for a finite number of snapshots. In [7], nested array 

structures are proposed for estimating O(N2) sources with O(N) sensors. Since nested arrays have 

more closely spaced sensors that eventually cause relatively higher mutual coupling, coprime array 

structures are introduced in [8] where the array is composed of less number of element pairs that are 

closely spaced hence less mutual coupling. In [8], it is shown that using a coprime array K≤MN 

sources can be identified with only 2M+N-1 sensor elements. 
 

In this paper, coprime arrays are considered and a new approach is proposed for further enhancing the 

DOF. In conventional techniques [8], covariance of the observation data is obtained where a longer 

virtual ULA data is exploited. Since this virtual ULA data is a single snapshot, spatial smoothing [9] is 

applied and the obtained covariance matrix can be used to estimate sources up to O(MN). In this 
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study, the covariance matrix of this single snapshot data is taken for further increasing the size of the 

virtual array. Thus the advantage of this approach is to increase the DOF from O(MN) to O(2MN). 

However a major drawback of taking the covariance of single snapshot data is that it introduces 

unwanted cross terms corresponding to the coherent sources which corrupt the array data. In order to 

circumvent this issue, a sparse recovery approach is proposed where the corrupting data is modeled as 

an interference vector. Then an alternating minimization procedure is followed and the DOA angles 

are accurately estimated. 
 

2. ARRAY SIGNAL MODEL 
 

Consider a coprime array composed of two subarrays with 2𝑀 (with 𝑁𝑑 inter-element spacing) and 

𝑁 (with 𝑀𝑑 inter-element spacing) elements respectively in 𝑥-axis where 𝑀 < 𝑁 and 𝑀, 𝑁 ∈ ℕ+ are 

coprime numbers [8]. Since the first elements of the subarrays have the same locations the total 

number of physical sensors is 2𝑀 + 𝑁 − 1. An example for the antenna placement for a coprime 

array (CPA) for 𝑀 = 2, and 𝑁 = 3 is shown in Figure 1. The output of the array is given by  
 

𝑥(𝑡𝑖) = ∑𝐾
𝑘=1 𝑎(𝜃𝑘)𝑠𝑘(𝑡𝑖) +   𝑛(𝑡𝑖),    𝑖 = 1, … , 𝑇    (1) 

 

where 𝑇 is the number of snapshots and   𝑛(𝑡𝑖) ∈ ℂ2𝑀+𝑁−1 is temporarily and spatially white noise 

vector. {  𝑠𝑘(𝑡𝑖)}𝑘=1,𝑖=1
𝐾,𝑇

 is the set of uncorrelated source signals and   𝑎(𝜃𝑘) denotes the steering 

vector corresponding to the 𝑘th source with direction 𝜃𝑘. Since the sensor array is deployed in one 

dimension, i.e. 𝑥-axis, only one dimensional DOA estimation can be performed. Hence the 𝑖th 

element of the steering vector   𝑎(𝜃𝑘) is given as  
 

[  𝑎(𝜃𝑘)]𝑖 =   𝑎𝑖(𝜃𝑘) =   exp{𝑗
2𝜋

𝜆
𝑥𝑖𝑠𝑖𝑛(𝜃𝑘)}    (2) 

 

where 𝜆 is the wavelength and 𝑥𝑖 ∈ 𝕊 denotes the 𝑖th antenna position. 𝕊 is the set of sensor positions 

in the array and it is given as  
 

𝕊 = {𝑀𝑛𝑑: 0 ≤ 𝑛 ≤ 𝑁 − 1} ∪ {𝑁𝑚𝑑: 0 ≤ 𝑚 ≤ 2𝑀 − 1} 
 

where 𝑑 is the fundamental element spacing in the array and 𝑑 = 𝜆/2 to avoid spatial aliasing. 

 

The aim in this work is to estimate DOAs {𝜃𝑘}1≤𝑘≤𝐾 when the antenna positions {𝑥𝑖}1≤𝑖≤2𝑀+𝑁−1 are 

known. Moreover it is also assumed that the number of sources 𝐾 is known a priori. 

 

 
 

Figure 1. Antenna placement for a coprime array (CPA) for 𝑀 = 2, and 𝑁 = 3. Top: The positions of the physical antennas. 

Middle: The resulting co-array structure. Bottom: The virtual ULA structure that can be constructed by using 

coprime property [8]. 
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3. DOA ESTIMATION WITH COPRIME ARRAYS WITH CONVENTIONAL TECHNIQUES 

In this part, we review the method in [8] where coprime array structures are used for DOA estimation 

with DOF of 𝑂(𝑀𝑁). Using the array model in (1), the covariance matrix is defined as  

 

𝑅𝑋 =   𝐸{  𝑥  𝑥𝐻} = 𝐴𝑅𝑠𝐴𝐻 + 𝜎𝑛
2𝐼      (3) 

 

where 𝐴 is the array steering matrix and its 𝑘th column is [𝐴]:,𝑘 =   𝑎(𝜃𝑘). 𝑅𝑠 = diag{𝜎1
2, … , 𝜎𝐾

2} with 

{𝜎𝑘
2}1≤𝑘≤𝐾 being the variances of the source signals, 𝜎𝑛

2 is the noise variance and 𝐼 is the identity 

matrix of size 2𝑀 + 𝑁 − 1. In order to exploit the co-array structure of 𝑅𝑋, vectorization is applied to 

𝑅𝑋 and we get  

𝑦 = vec{𝑅𝑋} = 𝐴𝑝 + 𝑣       (4) 

 

where 𝐴 = 𝐴"𝐴 and " denotes the Khatri-Rao product [10]. In particular, the 𝑘th column of 𝐴 is given 

as [𝐴]:,𝑘 = 𝑎(𝜃𝑘) = 𝑎∗(𝜃𝑘) ⊗ 𝑎(𝜃𝑘) where ⊗ denotes the Kronecker product. 𝑝 = [𝜎1
2, … , 𝜎𝐾

2]𝑇 

represents the signal powers and 𝑣 = vec{𝜎𝑛
2𝐼}. Now observe that 𝑦 can be viewed as the output of a 

virtual array with sensor positions {(𝑀𝑛 − 𝑁𝑚)𝑑: 0 ≤ 𝑛 ≤ 𝑁 − 1,0 ≤ 𝑚 ≤ 2𝑀 − 1} which includes 

2𝑀𝑁 + 1 contiguous terms from −𝑀𝑁 to 𝑀𝑁. Hence a longer virtual ULA can be constructed from 

the row elements of 𝑦, say 𝑦𝑈 = 𝑦𝕊𝑈
, where 𝕊𝑈 = {𝑛𝑑: −𝑀𝑁 ≤ 𝑛 ≤ 𝑀𝑁} is the set of sensor 

positions of virtual ULA. In order to extract the rows corresponding to 𝕊𝑈, we also have the 

following definitions: 𝐴𝑈 = 𝐴𝕊𝑈
 and 𝑣𝑈 = 𝑣𝕊𝑈

. Then the output of this virtual array is given by  

 

𝑦𝑈 = 𝐴𝑈𝑝 + 𝑣𝑈       (5) 
 

where 𝐴𝑈 ∈ ℂ2𝑀𝑁+1×𝐾 is the array manifold corresponding to the sensor elements with positions 𝕊𝑈. 

In order to apply the MUSIC algorithm to 𝑦𝑈 the covariance matrix 𝑅𝑌 = 𝑦𝑈𝑦𝑈
𝐻 should be used. 

Since 𝑅𝑌 is rank-deficient due to a single snapshot of 𝑦𝑈, spatial smoothing is applied to enhance the 

rank. Once spatial smoothing is employed, (𝑀𝑁 + 1) × (𝑀𝑁 + 1) covariance matrix 𝑅𝑌
ss is 

constructed for DOA estimation in the MUSIC algorithm. Due to the computation of signal and noise 

spaces, there must be at least one vector representing the noise subspace. Hence with this approach 

𝐾 ≤ 𝑀𝑁 source directions can be resolved. In the following section, we attempt to improve the size 

of the virtual array hence enhancing the DOF so that more sources than 𝑀𝑁 can be accurately 

estimated. 

 

4. DEGREES OF FREEDOM ENHANCEMENT 

 

Consider the virtual ULA output data 𝑦𝑈 given in (5) with sensor positions {𝑛𝑑: −𝑀𝑁 ≤ 𝑛 ≤ 𝑀𝑁} 

and construct the covariance matrix 𝑅𝑌 = 𝑦𝑈𝑦𝑈
𝐻 which can be given explicitly as  

 

𝑅𝑌 = 𝐴𝑈𝑅𝑃𝐴𝑈
𝐻 + 𝐴𝑈𝑝𝑣𝑈

𝐻 + 𝑣𝑈𝑣𝑈
𝐻𝐴𝑈

𝐻 + 𝑣𝑈𝑣𝑈
𝐻    (6) 

 

where 𝑅𝑃 = 𝑝𝑝𝐻 is a rank 1 covariance matrix. Note that 𝑅𝑃 can be written as 𝑅𝑃 = 𝚲𝑃 + 𝚺𝑃 where 

𝚲𝑃 = diag{𝜎1
4, … , 𝜎𝐾

4} composed of the terms in the main diagonal and 𝚺𝑃 = 𝑅𝑃 − 𝚲𝑃. Using this 

property, (6) can be rewritten as  

 

𝑅𝑌 = 𝐴𝑈𝚲𝑃𝐴𝑈
𝐻 + 𝑅E + 𝑣𝑈𝑣𝑈

𝐻      (7) 

 

where the first term in the right corresponds to the uncorrelated source signals and 𝑅E represents the 

other terms as interference and 𝑅E = 𝐴𝑈𝚺𝑃𝐴𝑈
𝐻 + 𝐴𝑈𝑝𝑣𝑈

𝐻 + 𝑣𝑈𝑝𝐻𝐴𝑈
𝐻. After vectorizing 𝑅𝑌 we get  

 

𝑧 = vec{𝑅𝑌} = 𝚿̃𝑢 + 𝑤       (8) 
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where 𝚿̃ = 𝐴 + 𝐵 and the 𝑘th column of 𝐴 ∈ ℂ(2𝑀𝑁+1)2×𝐾 is given as [𝐴]:,𝑘 = 𝑎(𝜃𝑘)∗"𝑎(𝜃𝑘) where 

𝑎(𝜃𝑘) is the 𝑘th column of 𝐴. 𝑢 = [𝜎1
4, … , 𝜎𝐾

4]𝑇 and 𝑤 = vec{𝑣𝑈𝑣𝑈
𝐻} denotes the deterministic noise 

term. In order to utilize the interference term, we define 𝐵 ∈ ℂ(2𝑀𝑁+1)2×𝐾 which represents the 

vectorization of the interference together with 𝑢, namely 𝐵𝑢 = vec{𝑅𝐸}. Note that in (8), 𝑧 ∈

ℂ(2𝑀𝑁+1)2
 denotes the response of a virtual array with positions 𝕂𝐶 = {(𝑛1 − 𝑛2)𝑑: −𝑀𝑁 ≤

𝑛1, 𝑛2 ≤ 𝑀𝑁} which includes a contiguous part from −2𝑀𝑁 to 2𝑀𝑁 which is defined by 𝕂𝑈 =
{𝑛𝑑: −2𝑀𝑁 ≤ 𝑛 ≤ 2𝑀𝑁} where |𝕂𝑈| = 4𝑀𝑁 + 1. By collecting the rows of 𝑧 in accordance with 

the set 𝕂𝑈 we obtain 𝑧 = 𝑧𝕂𝑈
 given by  

 

𝑧 = 𝚿𝑢 + 𝑤       (9) 

 

where 𝚿 = 𝒜 + 𝐵 and 𝒜 ∈ ℂ4𝑀𝑁+1×𝐾 steering matrix constructed from the rows of 𝐴 

corresponding to 𝕂𝑈 and similarly we define 𝐵 = 𝐵𝕂𝑈
 and 𝑤 = 𝑤𝕂𝑈

. 

 

In (9), we present the virtual array data of a ULA with DOF of 4𝑀𝑁 + 1. In the following we 

introduce a sparse recovery approach where 𝐾 ≤ 2𝑀𝑁 source directions can be uniquely identified. 

 

5. SPARSE RECOVERY FOR DOA ESTIMATION AND INTERFERENCE MITIGATION 

 

Since the signal model given in (9) includes the interference term 𝐵𝑢, spatial smoothing cannot 

provide accurate results. In order to solve this issue and mitigate the effect of interference, a sparse 

recovery approach with perturbed dictionary is proposed. In this case, the virtual array output 𝑧 ∈
ℂ4𝑀𝑁+1 is used for the estimation of DOA angles. Then (9) can be written in the following context  

 

𝑧 = 𝚿𝑢 + 𝑤 = 𝚽𝑠 + 𝑤      (10) 

 

where 𝚽 = 𝐴𝜃 + 𝐵𝜃. 𝐴𝜃 ∈ ℂ4𝑀𝑁+1×𝑁𝜃 is the dictionary matrix with 𝐾 ≪ 𝑁𝜃 and its 𝑛th column is 

given by [𝐴𝜃]:,𝑛 = 𝑎(𝜃𝑛) which is the steering vector corresponding to angle 𝜃𝑛 with sensor positions 

𝕂𝑈. 𝑠 ∈ ℂ𝑁𝜃 is a 𝐾-sparse vector, i.e. all entries of 𝑠 but 𝐾 are zero. In other words, ||𝑠||0 = 𝐾 where 

the 𝑙0-norm is defined as the cardinality of 𝑠, that is to say, ||𝑠||0 = |{1 ≤ 𝑖 ≤ 𝑁𝜃: 𝑠𝑖 ≠ 0}|. Then the 

following problem setting can be written, i.e.  

 

min
𝑠∈ℂ𝑁𝜃 ,𝐵𝜃∈ℂ4𝑀𝑁+1×𝑁𝜃

||𝑠||0 

subject to: ||𝑧 − [𝐴𝜃|𝐵𝜃] [
𝑠
𝑠

] ||2 ≤ 𝜀     (11) 

 

where the residual noise term is bounded by 𝜀 and The above optimization problem in (11) is NP-

Hard due to the non-convexity of 𝑙0-norm. Moreover it is non-linear due to multiplicative unknown 

terms 𝑠 and 𝐵𝜃. In order to circumvent these issues, first 𝑙0-norm is relaxed to 𝑙1-norm and an 

alternating approach is followed. In this case, 𝑠 and 𝐵𝜃 are found iteratively from  

 

[𝑠(𝑗+1)] = arg min
𝑠∈ℂ𝑁𝜃

||𝑠||1subject to: 

||𝑧 − [𝐴𝜃|𝐵𝜃
(𝑗)

] [
𝑠
𝑠

] ||2 ≤ 𝜀      (12) 

[𝐵𝜃
(𝑗+1)

] = arg min
𝐵𝜃∈ℂ4𝑀𝑁+1×𝑁𝜃

||𝑧 − [𝐴𝜃|𝐵𝜃] [𝑠(𝑗+1)

𝑠(𝑗+1)
] ||2    (13) 

 

where the initial is given by 𝐵𝜃
(1)

= 04𝑀𝑁+1×𝑁𝜃 as a zero matrix. The 𝑙1-norm in (12) is defined as 

||𝑠||1 = ∑𝑁𝜃
𝑖=1 |𝑠𝑖|. The optimization problem in (12) and (13) is similar to the one constructed in [11] 

where off-grid DOA estimation problem is considered. Once the alternating minimization program 
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presented in (12) and (13) converges (the convergence of alternating technique is provided in [12, 

Lemma 1]), the DOA angles estimates can be found from the columns of 𝐴𝜃 corresponding to the 

non-zero values of 𝑠. In the following sections the uniqueness of the alternating minimization 

program are discussed. 

 

6. UNIQUENESS OF SPARSE RECOVERY 

 

In this section, the uniqueness of the proposed method is discussed and we show that the proposed 

method can resolve 𝐾 ≤ 2𝑀𝑁 sources with 2𝑀 + 𝑁 − 1 physical sensor elements. 

 

Theorem 1: If 𝑧 = 𝜱𝑠 has a solution satisfying ||𝑠||0 = 𝐾 < 𝑠𝑝𝑎𝑟𝑘(𝜱)/2, then 𝑠 is the unique 

solution where 𝑠𝑝𝑎𝑟𝑘(𝜱) is defined as the minimum number of linearly dependent columns of 𝜱 

[12]. 

 

Proof: Proof is by contradiction. First, assume that there exists at most one 𝑠 where ||𝑠||0 = 𝐾 and 

𝑠𝑝𝑎𝑟𝑘(𝜱) ≤ 2𝐾. Then suppose that there exists an ℎ with ||ℎ||0 = 2𝐾 and ℎ ∈ 𝑁𝑢𝑙𝑙{𝜱} i.e. the null 

space of 𝚽. This means that there exist some set of at most 2𝐾 columns that are linearly dependent. 

Since ||ℎ||0 = 2𝐾, we can write ℎ = 𝑠 − 𝑠′ for ||𝑠||0 = ||𝑠′||0 = 𝐾 with 𝑠 ≠ 𝑠′. Using ℎ ∈ 𝑁𝑢𝑙𝑙{𝜱}, 

we have 𝜱(𝑠 − 𝑠′), in other words, 𝜱𝑠 = 𝜱𝑠′. This leads to the fact that there exist two solutions 𝑠 

and 𝑠′. However, this contradicts with our assumption that there exists at most one 𝑠 with ||𝑠||0 = 𝐾. 

Therefore we must have 𝑠𝑝𝑎𝑟𝑘(𝜱) > 2𝐾. Since 𝑠𝑝𝑎𝑟𝑘(𝜱) ≤ 𝑀̅ + 1 where 𝑀̅ = 4𝑀𝑁 + 1, 𝐾 <
𝑠𝑝𝑎𝑟𝑘(𝜱)/2 leads to the final condition 2𝐾 < 𝑀̅. Then we can conclude that the uniqueness 

condition for sparse recovery is 𝐾 ≤ 2𝑀𝑁. 

 

7. NUMERICAL SIMULATIONS 

 
In this section, numerical simulation results are illustrated to show the superior performance of the 

proposed method. The proposed method is compared with the conventional technique [7] where the 

coprime arrays are used in the MUSIC algorithm. In the experiments, two different scenarios are 

conducted for the evaluation of the methods. 

 
7.1. Scenario 1: 𝑴 = 𝟑, 𝑵 = 𝟒 And 𝑲 = 𝟏𝟕 For 𝑴𝑵 ≤ 𝑲 ≤ 𝟐𝑴𝑵 

 

In this scenario, we select 𝑀 = 3, 𝑁 = 4 and 𝐾 = 17 where at most 𝑀𝑁 = 12 sources can be 

resolved using conventional technique and the DOF of the proposed method is 2𝑀𝑁 = 24. In order to 

design a closely spaced source scenario, the source directions are located equally spaced as 𝜃̅𝑘 ∈
[−0.4, 0.4] where 𝜃̅𝑘 = sin(𝜃𝑘) is defined to obtained a normalized spectra. Note that the y-axes 

denotes the MUSIC spectra [3]. The dictionary matrix 𝐴𝜃 is constructed with resolution 𝛿𝜃 = |𝜃̅𝑛 −
𝜃̅𝑛−1| = 1/210 for 𝑁𝜃 = 210 and 𝜃̅𝑛 = sin(𝜃𝑛). The same dictionary is also used for the computation 

of the MUSIC pseudo-spectra. The results are presented in Figure 2. As it is seen the conventional 

technique (i.e. CPA (coprime array) with MUSIC) cannot estimate the source locations accurately due 

to insufficient DOF whereas the proposed method provides a better spatial spectra where source 

locations can accurately be estimated. 
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Figure 2. The spatial spectrums of the algorithms: CPA with the MUSIC algorithm (a) and CPA with the proposed method 

(b). 𝑀 = 3, 𝑁 = 4 and 𝐾 = 17. SNR 0dB and the number of snapshots 𝑇 = 1000. 

 

7.2. Scenario 2: 𝑴 = 𝟑, 𝑵 = 𝟓 and 𝑲 = 𝟐𝟏 for 𝑴𝑵 ≤ 𝑲 ≤ 𝟐𝑴𝑵 

 

In this scenario a larger array is considered with 𝑀 = 3, 𝑁 = 5 and 𝐾 = 21 sources assumed in 𝜃̅𝑘 ∈
[−0.4,0.4]. In Figure 3, the performance of the algorithms are shown. As it is seen the proposed 

method gives peaks at true source locations whereas the conventional technique cannot provide 

accurate results due to insufficient rank of the covariance matrix and short aperture of virtual ULA. 

The superior performance of the proposed method can be attributed to the enhancement of the DOF of 

the virtual ULA observation and mitigation the coherent source terms in covariance computation 

process. 

 

 
Figure 3. The spatial spectrums of the algorithms: CPA with the MUSIC algorithm (a) and CPA with the proposed method 

(b). 𝑀 = 3, 𝑁 = 5 and 𝐾 = 21. SNR −10dB and the number of snapshots 𝑇 = 2000. 
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8. CONCLUSIONS AND REMARKS 
 

In this paper, a new approach is proposed for DOA estimation with enhanced degrees of freedom 

using coprime arrays. In conventional techniques, 𝐾 ≤ 𝑀𝑁 sources can be identified by using coprime 

arrays whereas the proposed method can provide the DOF of 𝑂(2𝑀𝑁). The DOF is improved by 

computing the covariance matrix of the single snapshot virtual array data. In this case, cross terms are 

present and they corrupt the array data which constitutes one of the drawbacks of this approach. In 

order to circumvent this issue, these cross terms are modeled as interference and treated in a sparse 

recovery problem. In the future, the proposed method can be applied to different sparse array 

structures and more robust algorithms can be developed. 
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