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 With the age of advanced cyber attacks, robust intrusion detection systems are 
inevitable in order to protect the network from insecurity. This work presents a new 
comparative performance evaluation of two deep learning models, namely, 
Bidirectional Gated Recurrent Unit with Multi Head Attention (BiGRU + MHA) and 
Convolutional Neural Network (CNN), on the updated CSE-CIC-IDS 2018 dataset 
(Version 1, 2024). The data set was cleaned and balanced meticulously by eliminating 
duplicate entries and a two-stage resampling method with random undersampling 
accompanied with synthetic minority oversampling for accurate representation of 
both frequent as well as infrequent types of attacks. The experimental results confirm 
that both models provided superior detection performance, with BiGRU + MHA 
consistently outperforming CNN. Specifically, BiGRU + MHA provided 99.65 percent 
accuracy as well as ROC AUC of 99.71 percent, whereas CNN provided 98.85 percent 
accuracy as well as ROC AUC of 98.92 percent. The observations identify the advantage 
of using the combination of temporal sequence modeling as well as attention for 
identifying advanced intrusion patterns in network traffic. Generally, the results 
confirm that the use of deep temporal learning in combination with structured 
preparation of the data holds the capability for leading to highly effective intrusion 
detection, with great potential for strengthening cybersecurity solutions. 
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Introduction  
 

Network intrusion detection systems play an 
important role in securing computer networks 
against a wide range of malicious activities. 
Traditional signature-based systems fail in 
detection of novel or emerging attacks. Overcoming 

this weakness, machine learning as well as deep 
learning techniques have proven efficient 
alternatives in learning dynamically how to 
distinguish between malicious and normal traffic 
patterns. Recent advances in artificial intelligence 
and machine learning have demonstrated 
remarkable success across various engineering 
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domains, establishing neural networks as robust 
architectures for pattern recognition and 
classification tasks [44]. Yang et al. presented a 
BiGRU-Inception-CNN model with attention, 
hybrid sampling, and feature selection for 
enhancing IIoT intrusion detection over complex as 
well as imbalanced datasets [1]. Hu et al. presented 
a SAG-BiGRU model employing self-attention as 
well as resampling for enhancing intrusion 
detection accuracy, especially over imbalanced 
datasets such as CICIDS2017 as well as NSL-KDD 
[2]. Song et al. presented TGA, an intrusion 
detection hybrid model that combines TCN, BiGRU, 
as well as self-attention for both local as well as 
global temporal features, with 97.83 accuracy for 
CSE-CIC-IDS2018 [3]. Wang et al. tested six deep 
learning models over CSE-CIC-IDS2018, finding 
that individual DNN, RNN, as well as CNN models 
provided high accuracy with increased efficiency in 
inference over combined models [4]. Alzughaibi as 
well as El Khediri implemented DNN-based IDS 
models with MLP as well as backpropagation as 
well as with PSO, achieving over 98% for binary as 
well as multi-class intrusion detection in 
environments of clouds [5]. Cao et al. presented 
intrusion detection-based CNN-GRU with hybrid 
sampling as well as attention mechanisms, 
achieving high accuracy in multiple datasets with 
efficient handling of class imbalance [6]. Kanimozhi 
as well as Jacob performed classifier-based 
comparison for botnet detection using the CSE-CIC-
IDS2018 dataset, which showed that AI-based 
methods performed better in accuracy as well as 
calibration when compared with traditional 
models [7]. Cao et al. presented intrusion 
detection-based CNN-BiGRU with hybrid sampling 
as well as feature selection, achieving enhanced 
accuracy in multiple benchmark datasets [8]. 
Udurume et al. performed comparison of 
traditional ML models with the CNN-BiLSTM-based 
deep learning-based intrusion detection with 
traditional models for detection in the Internet of 
Things, wherein CNN-BiLSTM performed with 
highest accuracy over NSL-KDD as well as UNSW-
NB15 datasets [9]. Zhang et al. presented an 
enhanced BiLSTM with multi-head attention for 
enhancing intrusion detection accuracy over high-
dimensional as well as imbalanced datasets, with 
over 95 accuracy for three benchmark datasets 
[10]. Guo and Xie developed the TRBMA model that 
combines 1D-ResNet, TCN, BiGRU, and Multi-Head 
Attention in order to enhance temporal feature 
learning as well as improve classification accuracy. 
The advanced variant, namely, TRBMA (BS-OSS), 
adopts hybrid sampling for detection of minority 

types of attacks with improved accuracy up to 
99.88% with the CIC-IDS-2017 dataset [11]. Susilo 
et al. presented an intrusion detection system in 
IoT settings involving autoencoders, LSTM 
network, as well as multistage feature extraction 
using CNN for intrusion detection. [12]. Aljabri 
presented an effective intrusion detection system 
with an optimized IWSO for IoT settings involving 
integration of the Bidirectional GRU with Multi-
Head Attention (BiGRU-MHA). The system 
evaluated with Edge-IIoT dataset produced 
98.28% classification accuracy [13]. Wang et al. 
presented an intrusion detection system involving 
the integration of CNN-BiGRU capable of extracting 
both spatial as well as temporal patterns for 
enhancing intrusion detection accuracy as well as 
suppressing false alarms [14]. Hu et al. developed a 
CNN-KOA-BiGRU model that accurately detects 
APT attacks by combining deep learning with an 
optimization algorithm to enhance feature 
extraction and classification [15]. Hewapathirana 
introduced a two-stage intrusion detection 
framework using SAE and Spark-based 
approaches, showing SAE's superior accuracy and 
Spark’s strength in real-time efficiency [16]. Li et al. 
proposed ADFCNN-BiLSTM, combining deformable 
convolution, BiLSTM, and attention mechanisms to 
improve intrusion detection across spatial and 
temporal features [17]. Zhang et al. reviewed deep 
learning applications in IDS, highlighting key 
challenges in spatiotemporal feature extraction 
and data imbalance, and suggested future research 
directions [18]. Deshmukh and Ravulakollu 
introduced IIDNet, optimized CNN-based IDS for 
IoT, achieving high accuracy and reduced training 
time on the UNSW-NB15 dataset [19].   El-Shafeiy 
et al. proposed DCGR_IoT, a deep learning-based 
IDS combining CNN and CGRN to achieve 99.2% 
accuracy in detecting IoT network intrusions [20]. 
Attack et al. (2025) developed an ensemble model 
using FA-CNN and autoencoders, achieving strong 
detection rates on NSL-KDD and CICIDS2017, 
especially for rare attacks like U2R and Heartbleed 
[21]. Han and Pak (2023) demonstrated that using 
entire session packet data with a hierarchical LSTM 
significantly boosts intrusion detection accuracy 
[22]. Imrana et al. (2024) introduced CNN-GRU-FF, 
a fusion-based intrusion detection model that 
effectively handles class imbalance and achieves 
high detection rates on benchmark datasets [23]. 
Xin et al. (2018) emphasized that RNNs are well-
suited for sequential data, while CNNs efficiently 
reduce model complexity using weight sharing, 
making them ideal for tasks like image and speech 
recognition [24]. The CSE-CIC-IDS 2018 dataset is a 
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contemporary benchmark for intrusion detection, 
replicating varied attack situations against realistic 
network environments. Version 1 of the dataset, 
published in February 2024, is an improvement 
over previous versions by providing recent, 
cleaned traffic records. While like most raw 
intrusion detection data it is still plagued with 
problems such as duplicate records, missing and 
malformed fields, and a heavy imbalance between 
normal and attack classes. To overcome these 
shortcomings, we used a systematic preprocessing 
pipeline. Duplicates and erroneous records were 
eliminated, and the class imbalance was resolved 
using a two-stage resampling technique. It entailed 
undersampling the majority classes using random 
undersampling and oversampling minority classes 
using synthetic oversampling with SMOTE. The 
preprocessed data offers a more balanced training 
set, which is necessary for creating unbiased and 
efficient models. Deep architectures have been 
observed to exhibit robust performance in 
intrusion detection. Convolutional neural networks 
are trained on hierarchical representations of raw 
data with little human intervention and are 
therefore particularly capable of detecting spatially 
localized patterns of trafficThe effectiveness of 
deep convolutional neural networks has been 
demonstrated across multiple domains for feature 
extraction and pattern recognition, making them 
particularly suitable for complex classification 
tasks [45]. Recurrent models, like the gated 
recurrent unit, have the capability to learn 
temporal relationships of time series data. 
Bidirectional GRUs, specifically, read sequences in 
both directions, drawing context from past and 
future packets. When paired with multi head 
attention mechanisms, these models acquire the 
capacity to pay attention to the most informative 
parts of a sequence, enhancing their sensitivity to 
subtle and long term patterns in network traffic. 
While both convolutional and recurrent attention 
based models have shown individual robust 
performance, head to head comparisons between 
them on the same well processed datasets are still 
few. In this research, we systematically compare a 
bidirectional GRU with multi head attention with a 
baseline CNN, on the same cleaned and resampled 
CSE CIC IDS2018 dataset. Both models are trained 
end to end to classify network traffic into several 
classes, including benign and several types of 
attacks. Our contributions are a careful 
comparative analysis of these two architectures 
and a demonstration that the BiGRU with multi 
head attention performs very high classification 

performance under controlled data conditions 
consistently. We also highlight the essential role of 
preprocessing in achieving these results, especially 
in dealing with noise and imbalance. The rest of this 
paper is structured as follows. Section 2 explains 
the dataset and preprocessing techniques. Section 
3 defines the model architectures and training 
processes. Section 4 discusses the experimental 
results and comparative assessment. Section 5 
concludes with a discussion of important findings 
and future research directions. 
 

Dataset Preparation 
 

Dataset consolidation 
 

Mohamed (2024) published the preprocessed 
and balanced CSE-CIC-IDS2018 dataset, providing 
a more polished benchmark for testing intrusion 
detection systems. [25]. Dataset preparation began 
with systematically extracting and arranging the 
CSV files. Each file, corresponding to a specific 
traffic situation, was validated and then combined 
into a single, unified dataset. This combining 
reduced fragmentation, ensured consistency, and 
allowed for easier downstream processing for 
machine learning purposes. 
 

Preprocessing challenges 
 

Before preprocessing, the dataset also 
contained several quality problems that could 
hinder uniform model training. They were 
duplicate records, missing information, 
inconsistent formats, unprocessed categorical 
variables, and extreme class imbalance. The 
original dataset consisted of approximately 9.6 
million records, the majority of which introduced 
noise or unreliability. For enabling robust analysis, 
a strict data cleaning pipeline was required to 
improve overall data integrity. 
 

Data cleaning and deduplication 
 

The cleaning activity was centered on 
improving the dataset's reliability and consistency. 
Duplicate records were dropped to avoid data 
leakage, missing or corrupted values were imputed 
or dropped, depending on the severity. 
Inconsistent records containing irrelevant content 
or incorrect formatting were also dropped to 
guarantee the end dataset included just valid and 
structured traffic data. Following this cleaning 
process, the dataset was shrunk to 5,183,021 
records, dramatically enhancing its quality and 
readiness for model training. 
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Table 1. Data counts before and after cleaning 
Attack Type Initial Data Distribution - 

Sample Count 
Data Distribution after Cleaning and 

Deduplication 

Benign 6876913 3830384 

DDoS attack-HOIC 686012 575364 

DDoS attacks-LOIC-HTTP 576191 198861 

DoS attacks-Hulk 461912 145199 

Bot 286191 144535 

FTP-BruteForce 193360 140610 

SSH-Bruteforce 187589 94048 

Infiltration 161934 41406 

DoS attacks-SlowHTTPTest 139890 9908 

DoS attacks-GoldenEye 41508 1730 

DoS attacks-Slowloris 10990 555 

DDoS attack-LOIC-UDP 1730 228 

Brute Force -Web 611 84 

Brute Force -XSS 230 55 

SQL Injection 87 54 

Total 9625148 51,83,021 

 

This drop shows the dramatic improvement in data 
consistency and purity, providing a strong 
foundation for accurate and unbiased model 
training. 
 

Class imbalance handling 
 

Class imbalance is a recurring problem with 
intrusion detection datasets and usually results in 
models with poor performance on minority attack 
types. Even though the CSE–CIC-IDS2018 dataset is 
commonplace, there are few studies that have 
seriously tackled this issue [26]. Kamal and 
Mashaly [27] illustrated that the hybrid models like 
Transformer–CNN can gain greatly from 
resampling strategies such as SMOTE, ADASYN, 
and class weight. Similarly, Buda et al. [28] 
explored how imbalance skews deep learning 
models, while Abd Elrahman and Abraham [29] 
argued that no single resampling strategy fits all 
cases. To tackle this challenge, we adopted a two-
phase resampling strategy. First, Random  
 

 

 
Undersampling (RUS) was used to reduce 
overrepresented classes to a maximum of 100,000 
records each. Then, the Synthetic Minority Over-
sampling Technique (SMOTE) was used to increase 
minority class samples without repeating current 
entries. The choice of 10,000 samples for minority 
classes was determined through empirical testing, 
balancing between providing sufficient 
representation for model learning and maintaining 
computational feasibility. This threshold ensures 
each minority class has adequate training samples 
(≥10,000) while preventing excessive 
computational overhead during training. For 
example, the Brute Force Attack class, which 
initially had only 837 instances, was increased to 
10,000 varied synthetic instances. Lastly, label 
encoding transformed categorical class names into 
numerical labels to enable supervised learning, a 
step suggested by Fernández et al. [30] to enhance 
model efficiency. 
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Table 2. Class distribution after resampling 
Category Groupe

d 
Catego

ry 
Counts 

After 
RUS 

Count 

After 
SMOT

E 
Count 

Numer
ic 

Label 

NORMA
L 

38303
84 

1000
00 

1000
00 

0 

DoS/DD
oS 
Attack 

97252
3 

1000
00 

1000
00 

1 

Botnet 
Activity 

14453
5 

1000
00 

1000
00 

2 

Brute 
Force 
Attack 

837 837 1000
0 

3 

Infiltrati
on & 
Exploits 

14069
4 

1000
00 

1000
00 

4 

SSH-
Brute 
Force 

94048 9404
8 

1000
00 

5 

 

The balanced distribution obtained ensures 
the models learn from both frequent and 
infrequent classes of attacks well, enhancing 
generalization and accuracy of detection. 
Furthermore, we conducted feature importance 
analysis with Random Forest feature importance 
scores to determine the most discriminative 
features. We selected the top 20 features that 
contribute to intrusion detection on the basis of 
importance scores, which reduced 
dimensionality while preserving classification 
performance. We also investigated Principal 
Component Analysis (PCA) as another 
dimensionality reduction approach, but feature 
selection using importance scores performed 
better in terms of interpretability and 
performance preservation. Korkmaz and Şahin 
(2024) demonstrated that proper feature 
selection techniques can significantly enhance 
intrusion detection performance while reducing 
computational complexity, supporting our 
approach to feature importance-based selection 
[31]. 
 

Methodology 
 

This part describes the architecture, training 
procedure, and testing of two deep learning 
models for multi-class network intrusion 
detection: a Bidirectional Gated Recurrent Unit 
model with Multi-Head Attention (BiGRU+MHA), 

and a Convolutional Neural Network (CNN). Both 
models strive to correctly separate benign traffic 
from different types of malicious attacks using 
spatial and temporal features of the input data. 
 

Overview of models 
 

The models were chosen to demonstrate two 
alternative approaches to sequence modeling: 
one addressing temporal dynamics with 
recurrent units and attention mechanisms, and 
the other addressing spatial dependencies with 
convolutional operations. Both networks were 
adapted to accept one-dimensional time-series 
input following preprocessing of the network 
traffic data. Erdoğan et al. (2024) conducted 
comprehensive comparisons of various deep 
learning architectures for network security 
applications, highlighting the importance of 
architectural choices in achieving optimal 
performance [32]. Input sequence length was set 
to 100 time steps after careful examination of 
different lengths (50, 100, 150, 200). The 
parameter was tuned using grid search 
validation, where sequence length 100 provided 
the optimal balance between temporal 
dependency capture and computational expense. 
Reducing sequence length (≤50) could not 
capture long-term attack patterns, and increasing 
sequence length (≥150) increased training time 
with minimal improvement in performance. 
Vaswani et al. (2017) introduced the Transformer 
architecture, a breakthrough model based 
entirely on attention mechanisms, which 
outperformed existing models in machine 
translation while enabling faster training and 
greater parallelization [33]. Benchama et al. 
(2024) introduced a hybrid CNN-BiGRU model 
optimized with Optuna and enhanced by SMOTE 
to address data imbalance in NIDS, achieving 
98.83% accuracy on the NSL-KDD dataset while 
effectively detecting minority class intrusions 
[34]. Yang et al. (2024) proposed an advanced 
intrusion detection approach for Industrial IoT by 
integrating attention mechanisms, BiGRU, and 
Inception-CNN, coupled with hybrid sampling 
and feature selection techniques, achieving 
improved detection rates on datasets like Edge-
IIoTset and CIC-IDS2017 [35]. The initial model 
employs recurrent units and attention to model 
temporal relationships, whereas the second 
employs convolution operations to model spatial 
relationships. Each of them is designed to take 
one-dimensional time-series data. This bringing 
together of methods supports intrusion detection 
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by leveraging both time and spatial attributes for 
higher accuracy. 

 
 

 
Figure 1. Workflow of BiGRU+MHA and CNN 
models for intrusion detection using the  
CSE-CIC-IDS2018 dataset. 
 

Bigru with multi-head attention 
Recurrent Neural Networks (RNNs) are 

inherently well-formulated to address sequential 
dependencies but conventional variants struggle 
with long dependencies. Neural network 
architectures have proven their versatility in 
modeling complex relationships across diverse 
applications, making them particularly effective 
for sequential data processing tasks [46]. Gated 
Recurrent Units (GRUs) circumvent this problem 
using gating mechanisms in managing 
information flow and retention. In this study, a 
Bidirectional GRU (BiGRU) is utilized to capture 
context from preceding and succeeding time 
steps. 

 

 
Figure 2. BiGRU + Multi-head attention (MHA) 
architecture for intrusion detection 
 

 
To enhance the representations learned, an 

MHA layer is stacked over the BiGRU output. This 
allows the model to weigh different regions of the 
sequence together, making the model better 
capable of recognizing sophisticated patterns. 
The multi-head attention uses 8-sized 64 
attention heads to allow the model to examine 
different patterns simultaneously. Every 
attention head is trained to examine different 
sections of the input sequence, and these sections 
contribute complementary information to allow a 
general pattern to be detected. It is then 
processed through a global average pooling layer, 
fully connected layers, and a final softmax layer 
for prediction. 
 

Mathematical notation for bigru + multi-head 
attention model 
 

Let the input feature sequence be denoted 
by 𝑿 ∈ 𝑹𝑻 ×𝑭 , where 𝑻 is the number of timesteps 
and 𝑭 = 𝟏 is the number of input features per 
timestep (after reshaping). The model processes 
the input through the following stages: 
Bidirectional GRU Layer  
𝑯 = 𝑩𝒊𝑮𝑹𝑼(𝑿) ∈  𝑹𝑻×𝟐𝒅                                         (1) 
Where 𝒅 is the number of hidden units per 
direction (here 𝒅 = 48) 
Dropout and Layer Normalization : 

 𝑯′ = 𝑳𝒂𝒚𝒆𝒓𝑵𝒐𝒓𝒎(𝑫𝒓𝒐𝒑𝒖𝒕(𝑯))                           (2) 
Multi-Head Self Attention: 
𝑨 = 𝑴𝑯𝑨(𝑯′, 𝑯′ , 𝑯′) ∈ 𝑹𝑻×𝟐𝒅                              (3)  
Residual Connection with Activation: 

𝑹 = 𝑳𝒂𝒚𝒆𝒓𝑵𝒐𝒓𝒎( 𝑯′ +
 𝑹𝒆𝑳𝑼 (𝑫𝒓𝒐𝒑𝒐𝒖𝒕(𝑨)))(4) 
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Global Average Pooling :   

𝒗 =  
𝟏

𝑻
∑ 𝑹𝒕  ∈  𝑹𝟐𝒅𝑻

𝒕=𝟏                                              (5) 

Fully Connected Layers and Output:  

𝒛 = 𝒅𝒓𝒐𝒑𝒐𝒖𝒕 (𝑹𝒆𝑳𝑼 (𝑾𝟏 𝒗 + 𝒃𝟏)) ∈ 𝑹𝟐𝒅          (6) 

 𝒚̂ = 𝑺𝒐𝒇𝒕𝒎𝒂𝒙(𝑾𝟐  𝒛 + 𝒃𝟐) ∈ 𝑹𝑪                          (7) 
Here, ŷ represents the predicted class 
probabilities, and C is the number of output 
classes. 
 

Convolutional neural network  
 

While CNNs are widely used in image 
processing, they can actually be used on time-
series data as well with local temporal learning. 
Machine learning classification techniques have 
demonstrated consistent performance across 
various pattern recognition applications, with 
convolutional architectures showing particular 
effectiveness in feature extraction tasks [47]. We 
employ a stacked CNN structure of a 1D CNN for 
our model, where hierarchical features in 
network traffic sequences are learned using 
multiple convolutional layers. Each convolutional 
block has ReLU activation, max-pooling to 
decrease dimension and increase robustness, and 
dropout layers to prevent overfitting. The last 
feature maps are flattened and then passed 
through fully connected layers before providing 
class probabilities through a softmax output. 

 

 
Figure 3: Convolutional neural network (CNN) 
architecture for intrusion detection 
 

Mathematical notation for convolutional 
neural network model 
 

The same input sequence  𝑋 = ∈  𝑅𝑇 × 𝐹 is 
processed as follows: 
First Convolution +Pooling 
    
 𝐶1

= 𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣1𝐷𝑘 = 3,𝑐=64(𝑋)) ∈ 𝑅𝑇 × 64    (8) 

                                                    𝑃1 =

𝑀𝑎𝑥𝑃𝑜𝑜𝑙1𝐷(𝐶1, 𝑃 = 2) ∈ 𝑅𝑇/2×64       (9) 

Second Convolution + Pooling:  

𝑪𝟐

=  𝑹𝒆𝑳𝑼 (𝑪𝒐𝒏𝒗𝟏𝑫𝒌=𝟑,𝒄=𝟏𝟐𝟖(𝑷𝟏)) 𝑹
𝑻
𝟐

 ×𝟏𝟐𝟖    (𝟏𝟎) 

  𝑷𝟐 = 𝑴𝒂𝒙𝑷𝒐𝒐𝒍𝟏𝑫(𝑪𝟐, 𝒑 = 𝟐) ∈ 𝑹𝑻/𝟒 ×𝟏𝟐𝟖       

(11) 
Flatten and Fully Connected Layers:  
𝒇 = 𝑭𝒍𝒂𝒕𝒕𝒆𝒏(𝑷𝟐) ∈  𝑹𝟏𝟐𝟖.𝑻/𝟒                     (12) 

𝒛 = 𝑫𝒓𝒐𝒑𝒐𝒖𝒕(𝑹𝒆𝑳𝑼(𝑾𝟏𝒇 + 𝒃𝟏)) ∈ 𝑹𝟔𝟒          

(13) 
𝒚̂ = 𝑺𝒐𝒇𝒕𝒎𝒂𝒙(𝑾𝟐𝒛 + 𝒃𝟐) ∈ 𝑹𝑪                           (14) 
 

Experimental setup 
 

All the experiments were performed in an 
accelerator-enabled setup with Google Colab 
backing a Tesla T4 accelerator and 13 GB RAM. 
Python 3.9 with TensorFlow 2.x, NumPy, Pandas, 
Scikit-learn, and Matplotlib was utilized for code 
implementation. Both the models were tuned 
with the Adam optimizer and categorical 
crossentropy loss. We explored alternative loss 
functions including focal loss and class-weighted 
categorical crossentropy to address potential 
class imbalance issues. However, after systematic 
evaluation, standard categorical crossentropy 
performed optimally on our balanced dataset, as 
the resampling techniques effectively addressed 
the imbalance concern. Initial hyperparameter 
tuning led to the selection of a batch size of 32 and 
30 training epochs to achieve model convergence 
while maintaining effective training. The 
hyperparameter tuning was done using a careful 
grid search for the following spaces: batch size 
[16, 32, 64, 128], learning rate [0.001, 0.01, 0.1], 
dropout rate [0.2, 0.3, 0.5], and hidden units [32, 
48, 64, 96]. The BiGRU model was sensitive to 
learning rate, performing best at 0.001, but 
relatively insensitive to changes in batch size. The 
CNN model exhibited uniform performance with 
varying dropout, but preferred batch size of 32. 
Training time took around 45 minutes per epoch 
for BiGRU+MHA and 28 minutes per epoch for 
CNN on the Tesla T4 GPU, while inference latency 
was 2.3ms and 1.8ms per sample respectively. 
 

Evaluation metrics  
 

Model performance was also measured with 
overall and per-class metrics. We report accuracy, 
macro-averaged precision, recall, and F1-score to 
deal with class imbalance. We also examined 
confusion matrices to analyze classification 
results in detail. To further explore each model's 
capability for class distinction, we also calculated 
ROC curves and AUC scores in one-versus-rest 
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settings. Additionally, we computed false positive 
rates (FPR) and false negative rates (FNR) for 
each attack class to assess operational impact. 
The false positive analysis revealed that both 
models maintain low FPR (<2%) across all 
classes, with BiGRU+MHA showing superior FPR 
performance (1.2%) compared to CNN (1.8%) for 
minority attack classes. These metrics in total 
give an explicit view of the models' performance 
in classification. For statistical significance of our 
findings, we carried out 5-fold cross-validation 
and calculated 95% confidence intervals for all 
performance measures. Average accuracy of 
99.58±0.12% was recorded by BiGRU+MHA 
across folds, whereas CNN recorded 
98.73±0.18%, validating the statistically 
significant difference in performance (p<0.001 
using paired t-test). 
 

Discussion Of Experimental Results 
 

This section has an extensive comparison 
between the CNN and BiGRU+MHA models across 
numerous evaluation criteria. We contrast total 
performance on commonly used measures, 
contrast confusion matrices and ROC curves of 
models, contrast models' classification reports, 
and examine training dynamics. We end this 
section with a comparison of results critically 
with experiment design. 
 

Performance indicators 
 

Table 3 is a summary table of the most 
important evaluation metrics-Accuracy, 
Precision, Recall, F1-score, and ROC-AUC to which 
both models in the test set have been subjected. 
 

Table 3. Performance metrics for each model on 
the test set. 

Model 
Accurac

y (%) 
Precisio

n (%) 
Recal
l (%) 

F1-
Score 
(%) 

ROC-
AUC 
(%) 

CNN 98.85 98.68 98.74 
98.71

0 
98.9

2 

BiGRU+MH
A 

99.65 99.62 99.58 99.60 
99.7

1 

 

The BiGRU+MHA model shows superior 
performance than the CNN for all the parameters 
under measurement. Its Accuracy, in fact, stands 
at 99.65%, its F1-score at 99.60%, and its ROC-
AUC at 99.71%, while for the CNN we have 
corresponding figures of 98.85%, 98.71%, and 
98.92%. The above improvements, though small 
in magnitude (approximately 1%), illustrate the 

strengths of the synergy between bidirectional 
recurrent layers and attention mechanisms. The 
ability of the BiGRU+MHA to learn sequential 
dependencies and emphasize important features 
will probably be at the center of facilitating its 
enhanced performance. 
 

Confusion matrices and roc curves 
To also examine the models in detail, 

confusion matrices were plotted graphically to 
provide a visual representation of class-wise 
prediction performance. From Figure 4, it is 
evident that the CNN model is generally good but 
has comparatively lower accuracy for some 
attack classes like DoS and PortScan, which shows 
comparatively higher misclassification rate in 
these classes. 

 

 
Figure 4. Confusion matrix – CNN model 
(98.85%) 

 

The CNN model is quite precise overall but has 
larger misclassification rates for PortScan and 
DoS attacks. Detailed analysis reveals that DoS 
attacks are often misclassified as DDoS attacks 
due to similar traffic volume patterns, while 
PortScan attacks are sometimes confused with 
normal traffic due to their low-intensity scanning 
characteristics. The CNN model struggles with 
these subtle temporal patterns that require 
sequential context for proper identification. In 
contrast, the BiGRU+MHA model (Figure 5) 
shows more stable accuracy across all classes, 
especially enhanced minority attack type 
prediction.  
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Figure 5. Confusion matrix – BiGRU+MHA model 
(99.65%) 
 

Both models share high true positive rates; 
however, BiGRU+MHA identifies minority class 
samples more effectively, indicating its stability. 
The BiGRU+MHA model illustrates better 
performance in detecting SQL Injection and Brute 
Force attacks, which are minority classes. This 
gain is attributed to the focus mechanism of the 
attention mechanism to highlight low-signature 
attacks that can last across multiple time steps in 
the sequence.ROC curves in Figure 6 also show 
the performance of the model. The curve graph of 
BiGRU+MHA is above that of CNN at every point, 
and it also has a greater upper AUC of 0.9971 
compared to 0.9892. 

  
Figure 6. ROC Curve — BiGRU+MHA vs. CNN 
models 

 

This shows that BiGRU+MHA can separate 
classes better at different thresholds. ROC curve 
of BiGRU+MHA is always higher than that of CNN, 
indicating that it is better in classification at any 
threshold. 
Classification report analysis  

 

For increasing the overall numbers, 
classification reports of both models were also 

taken into account. While the precision and recall 
of the CNN model regarding attack types of DoS 
and PortScan are good, they are slightly lower. 
This means that it has a problem with identifying 
some low or complex intrusion patterns 
correctly. On the other hand, the BiGRU+MHA 
model also has equally high precision, recall, and 
F1-scores for all classes. This uniformity is a 
promise of its ability to identify both temporal 
relations and contextual correlations in network 
traffic data that is essential for effective detection. 

 

 
Figure 7. Classification report for the CNN Model 

 

The result in the report indicates lower 
precision and recall for the PortScan and DoS 
classes, indicating a greater ratio of false positives 
and missed cases in these classes. 

 
Figure 8. Classification report for the 
BiGRU+MHA Model 

 

BiGRU+MHA enjoys excellent, all-around 
performance for all classes with good recall and 
precision even for minority classes. 
 

Training dynamics 
 

Training curves (accuracy and loss vs. epoch) 
show that all models converge within 30 epochs. 
Typically, the bidirectional model BiGRU+MHA 
take slightly longer per epoch due to greater 
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complexity, but they reach a plateau with near-
zero loss and ≈100% training accuracy. 
Validation curves track closely, indicating 
minimal overfitting thanks to the balanced data. 
For instance, the Bi-GRU+MHA’s training 
accuracy reaches 99.9% by epoch 20, matching its 
99.65% test accuracy, which suggests robust 
learning.  
 

Discussion  
 

The findings are concrete evidence that both 
deep learning models can be provoked into 
achieving high performance provided they are 
trained on a well-organized and balanced data 
set. The BiGRU+MHA model still outperforms the 
CNN in all the performance measures, though. 
This is particularly the case when classifying rare 
or complex forms of attacks, where sequence 
modeling and attention-based operations become 
a determining factor. Results of high performance 
are most likely owing to data preprocessing 
methods employed. Removing duplicate records 
and using class balancing methods, including 
random undersampling and SMOTE, provided 
high-quality training data sets to the models, 
eliminating extreme class bias effectively. 
Notably, SMOTE removed class imbalance by 
creating synthetic instances of under-
represented classes of attacks, and this is highly 
likely to have contributed to achieving the high 
values of recall that were recorded. The strengths 
of BiGRU+MHA architecture are also of 
considerable value. Bidirectional recurrent units 
permit discovery of sequence patterns in streams 
of packets, and attention enable the model to 
concentrate on meaningful features in every 
input stream. As compared to the CNN, the CNN is 
highly efficient at identifying local patterns via 
hierarchical feature extraction and is therefore 
computationally light with a strong baseline 
performance. Yet, although the superb 
improvement of 0.8–1.0% achieved by the 
BiGRU+MHA model in the different metrics is 
remarkable, such a margin, however consistent it 
may be, would not necessarily be statistically 
significant unless further tested, e.g., confidence 
intervals or repeated experiments. The 
restriction of this must be taken into 
consideration, particularly if used in more real-
time or heterogeneous scenarios. Generally 
speaking, the outcomes confirm that BiGRU+MHA 
is an efficient approach to network intrusion 
detection when sequential context is a 
requirement. CNN-based models are yet 

competitive, nevertheless, particularly if used in 
limited-resource environments. The effectiveness 
of ensemble approaches in cybersecurity has 
been further validated by Aydın et al. (2024), who 
showed that combining multiple classifiers can 
improve network traffic classification accuracy in 
cybersecurity applications [36]. Real-time 
intrusion detection systems using machine 
learning techniques have also shown significant 
improvements in detection accuracy while 
maintaining low latency requirements, 
particularly in edge computing environments 
[48]. İncekara highlights how IIoT is reshaping 
the energy sector through real-time decision-
making and AI-driven automation [37]. Sinap 
developed a high-speed intrusion detection 
system using RF, XGB, and GB, achieving 99.90% 
accuracy while significantly reducing tuning time 
[38]. Addressing vulnerabilities in edge 
computing, Singh proposed an ML-based IDS 
using RF, DT, Extra Trees, and K-NN, which 
showed high detection accuracy [39]. Jain et al. 
emphasize AI’s impact on civil engineering and 
advocate for explainable AI and cloud tools to 
overcome scalability barriers [40]. In fraud 
detection, Sinap’s models using RF and K-NN 
reached 97% accuracy by effectively balancing 
the dataset [41]. Leka and Hoxha examined 
Albania’s software sector, noting a shift toward 
agile methodologies and the need for investment 
in people and tools [42]. Juraev and Bozorov 
underscore algebra’s role in programming, 
scientific applications, and everyday problem-
solving [43].  
 

Conclusion And Future Work 
 

This paper performed a close comparative 
study of two deep learning models—BiGRU with 
Multi-Head Attention (MHA) and a baseline 
CNN—on multi-class network intrusion detection 
on the newly released, cleaned CSE-CIC-IDS2018 
dataset (Version 1, February 2024). Both models 
exhibited excellent classification performance, 
with the BiGRU+MHA model obtaining 99.65% 
accuracy and a ROC-AUC of 99.71%, which was 
slightly better than the CNN, which obtained 
98.85% accuracy and 98.92% ROC-AUC. The 
results establish that the cooperation of temporal 
modeling and attention mechanisms can deliver 
measurable advantages over convolutional 
models in this problem. More significantly, this 
paper emphasizes the importance of systematic 
data preprocessing with deduplication and 
balanced resampling in making effective learning 
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over all attack classes possible. To bridge the gap 
in direct comparisons of performance under 
common experimental settings, this paper fills a 
needed lacuna in the network intrusion detection 
literature. These findings hold only for a curated 
and balanced sample of the CSE-CIC-IDS2018 
dataset. Additional validation must be performed 
on more heterogeneous datasets or in real-world 
operational settings to determine the 
generalizability and robustness of the proposed 
models. 
 

Future Work  
 

According to these findings, subsequent 
researchers can pursue directions like 
investigating Transformer-based models or 
blended architectures (for example, CNN-BiGRU 
ensembles or graph neural networks) in order to 
learn deeper structural and contextual patterns 
from network traffic. Integrating domain-
informed feature selection or dimensionality 
reduction methods (such as autoencoders) into 
deep learning can enhance model explainability 
and computation efficiency. Evaluating the 
performance of the model in real-time or 
streaming scenarios, such as hardware-
accelerated environments, is also essential, along 
with investigating how latency and throughput 
constraints affect the efficacy of intrusion 
detection. Adding adversarial robustness testing, 
including evasion or poisoning attacks, and 
exploring unsupervised or anomaly-based 
approaches to detect novel intrusions, is another 
promising direction. Applying interpretability 
methods, such as attention visualization, to 
identify which features or time patterns have the 
highest contribution to model predictions can 
improve analysts' comprehension and 
interpretation of IDS decisions. Further advances 
in intrusion detection will rely on synergizing 
strong deep learning models with available, 
representative datasets and careful 
preprocessing approaches. These considerations 
in combination create a strong pipeline for the 
development of effective cybersecurity defenses. 
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