
Turkish Journal of Agricultural and Natural Sciences 12 (3): 679–686, 2025 
 

679 
 

Original Article 

Comparative Performance Analysis of Deep Learning Based CNN Models for Diagnosis of 
Corn Leaf Diseases 

  
Adnan Gökten 1, Erkut Tekeli 2  

 
1Department of Computer Technologies, Kozan Vocational School, Çukurova University , 

 2Faculty of Computer and Information Sciences, Department of Software Engineering, Adana Alparslan Türkeş Science and Technology 
University 

 

1 https://orcid.org/ 0000-0001-8988-9720, 2 https://orcid.org/ 0000-0001-9468-5378 
 

: agokten@cu.edu.tr 

 

ABSTRACT  
This study comparatively analyses the effectiveness of deep learning based on the convolutional neural 

network (CNN) models in the diagnosis of corn leaf diseases. Accurate and rapid diagnosis of leaf diseases, which 
cause serious economic losses in agricultural production, is critical for production efficiency. In this context, 
different CNN architectures (AlexNet, GoogLeNet, ResNet, DenseNet, EfficientNet, MobileNet and ConvNeXt) 
were used to perform classification on Corn leaf images. Model performances were evaluated with metrics such 
as accuracy, F1 score, precision and ROC-AUC. The results showed that modern architectures (especially 
ConvNeXtNet) provide higher performance. These findings support the practical applicability of artificial 
intelligence-supported automatic diagnosis systems in agriculture.  
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Mısır Yaprak Hastalıklarının Teşhisinde Derin Öğrenme Tabanlı CNN Modellerinin 
Karşılaştırılmalı Performans Analizi 

ÖZ  
Bu çalışma, mısır yaprak hastalıklarının teşhisinde derin öğrenme temelli evrişimsel sinir ağı (CNN) 

modellerinin etkinliğini karşılaştırmalı olarak analiz etmektedir. Tarımsal üretimde ciddi ekonomik kayıplara 
neden olan yaprak hastalıklarının doğru ve hızlı teşhisi, üretim verimliliği açısından kritik öneme sahiptir. Bu 
bağlamda, farklı CNN mimarileri (AlexNet, GoogLeNet, ResNet, DenseNet, EfficientNet, MobileNet ve ConvNeXt) 
kullanılarak mısır yaprağı görüntüleri üzerinde sınıflandırma işlemi gerçekleştirilmiştir. Model performansları 
doğruluk, F1 skoru, keskinlik ve ROC-AUC gibi metriklerle değerlendirilmiştir. Sonuçlar, modern mimarilerin 
(özellikle ConvNeXtNet) daha yüksek başarı sağladığını göstermiştir. Bu bulgular, tarımda yapay zekâ destekli 
otomatik tanı sistemlerinin pratikte uygulanabilirliğini desteklemektedir.  

 
Anahtar kelimeler: Derin öğrenme, Mısır yaprak hastalıkları, CNN, Görüntü sınıflandırma, ROC-AUC, Keskinlik 

 
INTRODUCTION 

The agricultural sector is of critical importance in terms of ensuring food security on a global scale, as well 
as contributing to economic development. The efficiency of agricultural production is of great importance in 
terms of meeting global food needs and ensuring sustainable production. As posited by Lenk et al. (2007), 
agriculture fulfils a dual function in human society. In addition to providing sustenance, it also serves to supply 
raw materials that are indispensable to economic growth, employment, and industry. However, the agricultural 
sector is confronted with numerous challenges, including climate change, declining soil fertility, and the 
emergence of pests and diseases (Saleem et al., 2024). 

Corn is an agricultural crop that is widely cultivated after wheat and rice in terms of cultivation area 
worldwide, and it occupies a significant position in the food industry (Zhang et al., 2018). In addition to its 
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application in food production, the crop has a wide range of uses, including in the manufacture of animal feed, 
biofuel and industrial raw materials. It is evident that, owing to its elevated nutritional value and extensive range 
of applications, the crop occupies a pivotal position within the domain of global agriculture (Erenstein et al., 
2022). However, the yield of Corn is subject to the influence of a variety of environmental and biological factors. 
In particular, foliar diseases, which are prevalent in Corn plants, have been shown to result in significant losses 
in production and to have a detrimental effect on agricultural productivity (Bruns, 2017; Chen et al., 2021). 

Early diagnosis of plant diseases is imperative for minimising losses in agricultural production and ensuring 
sustainable yield. Conventional agricultural practices typically rely on observational methods for disease 
detection, but these approaches are susceptible to human error and often require a considerable time 
investment (Mehta et al., 2023). Incorrect or delayed diagnoses of diseases have the potential to result in 
producers utilising chemical pesticides in excess or in insufficient amounts. This situation gives rise to both 
economic losses and environmental problems. Consequently, the utilisation of more sophisticated and 
automated systems has become imperative in the domain of agricultural disease diagnosis (Megersa et al., 2023). 

In recent years, information technologies such as artificial intelligence and machine learning have 
emerged as significant areas of research and development. 

The objective of this study is to comparatively evaluate the performance of different convolutional neural 
network (CNN) architectures in the image-based classification of corn leaf diseases. Within the scope of the 
study, widely used CNN models—namely AlexNet, GoogLeNet, ResNet, DenseNet, EfficientNet, MobileNet, and 
ConvNeXt—were employed for the classification task. The performance of each model was analyzed using 
evaluation metrics such as accuracy, F1-score, precision, and ROC-AUC. Accordingly, the study aims to identify 
the most suitable deep learning architecture that can contribute to the development of artificial intelligence-
based diagnostic systems in the field of agriculture. 

 

MATERIALS AND METHODS 
The dataset utilised in the present study was obtained from the Kaggle platform and comprises 4188 

labelled images, encompassing the following classes: Common Rust (1 306 images, Figure 1), Gray Leaf Spot (574 
images, Figure 2), Blight (1146 images, Figure 3)  and Healthy (1162 images, Figure 4). The data is segmented into 
80% for training, 10% for validation, and 10% for testing. The training was executed within the Google Colab 
environment, utilising the Python programming language and TensorFlow/Keras libraries. All CNN models 
(AlexNet, GoogLeNet, ResNet, DenseNet, EfficientNet, MobileNet and ConvNeXt) were trained by means of the 
transfer learning method. Each model was run for 10 epochs. 

 
Figure 1. Examples of the common rust disease images contained within the dataset. 

 

 
Figure 2. Examples of grey leaf spot disease images contained within the dataset. 

 

 
Figure 3. Examples of leaf blight disease images contained within the dataset. 
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Figure 4. Examples of healthy Corn leaf images found in the dataset 
 
The performance of the model was evaluated based on several metrics, including accuracy, precision, the F1 
score, and the ROC curve (AUC). 
 

Accuracy 
The term 'accuracy' is a widely used metric for evaluating the performance of a classification model. The 

term is most commonly defined as the ratio of correct predictions to the total number of predictions. In summary, 
the precision of a model is calculated as the percentage of instances that it correctly classifies. 

Accuracy=( True Positive + True Nagative)/(Total Number of Predictions) (Eq 1.). 

 
Precision 
It is a concept that evaluates the overall performance of a model in the context of machine learning and 

deep learning. It is usually calculated using accuracy and loss values. Precision indicates how well the model 
generalises, i.e. how effectively it can apply the knowledge learnt from the training dataset to new, unseen data. 

Precision= True Positive /( True Positive + False Positive) (Eq.2). 
 

F1-score 
This metric is of significant importance in the evaluation of the performance of a model in machine 

learning, particularly in the context of classification problems. The F1 score is a metric that calculates the 
equilibrium between precision and recall. Precision and recall seek to achieve equilibrium between false positive 
and false negative predictions of a model, a strategy that is especially beneficial in the context of imbalanced 
datasets. 

Calculation: 
Precision and recall are frequently considered to be opposing objectives; enhancing one may 

concomitantly diminish the other. The F1 score provides an overall measure of performance by balancing these 
two metrics. The F1 score is calculated using the harmonic mean. 

F1=2 x (Precision x Recall)/(Precision+Recall) (Eq 3.). 
 

ROC curve 
The Receiver Operating Characteristic (ROC) curve is a tool employed for the evaluation of the 

performance of classification models. Its employment is most prevalent in the context of two-class classification 
problems. The analysis of the ROC curve facilitates the observation of the alterations in the true positive rate 
(TPR) and false positive rate (FPR) of the model across varying thresholds. 

The following steps are to be taken in order to conduct ROC curve analysis: 
The following definition of axes is provided: 
Y-axis (TPR - True Positive Rate): The proportion of samples that are correctly classified as positive by the 

model. This is also referred to as 'sensitivity'. 
TPR=(True Positive)/(True Positive+False Negative) (Eq 4.). 
 
X-axis (FPR - False Positive Rate): The proportion of samples that the model incorrectly classifies as 

positive. Also known as “1 – specificity”. 
FPR=(False Positive)/(False Positive+True Nagative) (Eq 5.). 
 

Interpretation of ROC Curves 
A ROC curve is a graphical representation of the relationship between true positive rate (TPR) and false 

positive rate (FPR) as a function of threshold. The curve is a representation of the model's capacity for 
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discrimination. When the ROC curve is closer to the upper left quadrant, indicating a high TPR and low FPR, the 
model performs optimally. 

The ideal model: The ROC curve for this model is closest to the point (0,1), i.e. the false positive rate is 0 
and the true positive rate is 1. 

Random forecasting model: The ROC curve for this model is a diagonal line with a 45° inclination, as the 
model makes random predictions for both classes. 

Area Under Curve (AUC) Score 
The AUC score is a metric used to assess the performance of a diagnostic test. The AUC is a metric that 

encapsulates the overall performance of a model by way of a single number. In the event of the AUC score 
approximating 0.5, the model is hypothesised to be predicting randomly. It is evident that the closer the AUC 
score is to 1, the superior the model's performance is deemed to be. 

When the AUC is equal to 1.0, the model is considered to be a perfect model. If the AUC is 0.5, the model 
is considered to be a random prediction model. If the AUC is greater than 0.7, the model is considered to be 
significantly better than a random prediction. The model in question has been demonstrated to demonstrate 
high performance, with an AUC greater than 0.9. 

The shape of the curve facilitates comprehension of the classifier model's efficacy at varying thresholds. 
Should the ROC curve demonstrate a rapid upward trend, remaining in close proximity to the left, it can be 
deduced that the model is accurately predicting positives and effectively minimising false positives.  

 

RESULTS AND DISCUSSION  

  In this study, the performances of seven different CNN architectures in classifying Corn leaf diseases 
were analysed. In terms of accuracy, precision, F1 score and ROC-AUC metrics. Table 1 summarises the main 
performance measures obtained by all the models.  

 
Table 1. Performance criteria demonstrated by models in the classification of leaf diseases of maize 

Model Name Accuracy (%) Precision F1 Score AUC  average  
Values 

AlexNet 90.3 0.88 0.89 0.975 

GoogLeNet 91.5 0.90 0.91 0.965 

ResNet 93.2 0.92 0.93 0.967 

DenseNet 95.1 0.94 0.95 0.970 

EfficientNet 94.3 0.91 0.94 0.957 

MobileNet 92.0 0.90 0.91 0.960 

ConvNeXt 96.4 0.95 0.96 0.980 

 
As illustrated in Figure 5, a performance comparison of these seven distinct CNN models is presented in 

terms of accuracy, precision, and the F1 score. In all models, the accuracy rate is consistently high, generally at 
the level of 1.0. However, it should be noted that the precision and F1 score values vary according to the model. 
The ConvNeXt model demonstrated the most optimal performance in terms of F1 score and precision. DenseNet 
and EfficientNet models also attracted attention with similarly elevated F1 scores. Conversely, the AlexNet, 
GoogLeNet and MobileNet models demonstrated the poorest performance in terms of F1 score. Conversely, the 
ResNet model exhibited a moderate degree of success. The results indicate that the classification accuracy of the 
models is generally high, but there are significant variations in the metrics. 
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Figure 5. Comparison of CNN models in terms of accuracy, precision and F1-score. 
 

As illustrated in Figure 6, the comparative AUC scores of seven distinct CNN models for four classes (Blight, 
Common Rust, Gray Leaf Spot, Healthy) are demonstrated. It was generally observed that all models attained the 
highest AUC scores in the 'Healthy' class. The EfficientNet, ConvNeXt and DenseNet models demonstrate superior 
overall performance and consistency between classes. The EfficientNet model has been observed to generate 
considerable interest, with the AUC scores demonstrating a high degree of proximity to 1.0, particularly within 
the 'Healthy' and 'Common Rust' classes. In contrast, the AlexNet and GoogLeNet models exhibited lower AUC 
values compared to other models, demonstrating substantial declines, particularly in the 'Gray Leaf Spot' 
category. In contrast, MobileNet and ResNet demonstrated moderate performance, yielding relatively higher 
AUC scores in the 'Blight' and 'Common Rust' classes. The results demonstrate that there are discrepancies in 
model performance between classes, with some models exhibiting superior prediction efficacy in specific classes. 

 

 
Figure 6. AUC values of CNN models on the ROC curve by class. 
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In this study, the performances of different CNN-based architectures in the classification of plant diseases 
were evaluated based on fundamental metrics such as accuracy, precision, F1 score and AUC. The results indicate 
that the ConvNeXt model demonstrated superior performance in both general success metrics and class-based 
AUC analysis when compared to other models. Specifically, it attained the highest values, with 96.4% accuracy, 
0.95 precision, 0.96 F1 score and 0.980 AUC average. This result suggests that this architecture can learn visual 
differences in plant leaves with greater effectiveness. It is noteworthy that the DenseNet and EfficientNet models 
emerged as noteworthy alternatives, exhibiting a high degree of accuracy and an F1 score that is comparable to 
that of the top-performing models. However, the relatively lower AUC average in the EfficientNet model suggests 
that the discrimination between classes may have decreased in some classes. 

In the class-based AUC analysis, it is noteworthy that the models generally demonstrated the highest 
success in the 'Healthy' class. This result suggests that healthy leaves exhibit clearer visual characteristics in 
comparison to diseased leaves. Conversely, the 'Gray Leaf Spot' category exhibited lower AUC values, particularly 
in relatively aged architectures such as AlexNet and GoogLeNet. This result suggests that the capacity of older 
networks to discern fine details may be constrained. Indeed, as Wei et al. (2022) have reported, architectures 
enhanced in depth have been shown to achieve higher levels of generalisation in the classification of plant 
diseases. 

The observation that lightweight networks such as MobilNet and GoogLeNet can attain satisfactory 
accuracy and AUC values despite their modest hardware requirements indicates the potential suitability of these 
models for mobile applications or edge devices (Howard et al., 2017).. This finding underscores the necessity for 
decision support systems operating in the field to strike a balance between energy efficiency and accuracy. 

In conclusion, this study demonstrates that the ConvNeXt architecture is a strong candidate for the 
automatic diagnosis of plant diseases due to its high accuracy and discriminative power between classes. 
However, it is imperative to consider factors such as class balance, application context (i.e. mobile or laboratory) 
and system resources when selecting a model. In future studies, the performance of these architectures in real-
time applications and their generalisation capacity in different data sets can be investigated in detail. As 
illustrated in Figure 7, the learning curve of the ConvNextNet model is demonstrated, while Figure 8 presents the 
ROC curves. 

 

 
Figure 7. Learning curve of ConvNeXt Model 
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Figure 8. ROC curve of the ConvNeXt Model 
 

CONCLUSION 
This study presents a comparative evaluation of various deep learning-based convolutional neural 

network (CNN) architectures for classifying diseases observed in corn leaves. The models were evaluated using 
commonly accepted performance metrics such as accuracy, precision, F1 score, and AUC to determine their 
relative effectiveness in identifying plant diseases. 

Among the various architectures examined, ConvNeXt achieved the highest performance across all 
evaluation criteria. It demonstrated notable advantages, particularly in class-based AUC analysis, by offering both 
strong overall accuracy and consistent differentiation between disease categories. However, other modern 
architectures such as DenseNet and EfficientNet also yielded competitive results, particularly in terms of F1 score 
and overall classification performance, highlighting their continued importance in such tasks. 

On the other hand, lightweight models such as MobileNet and GoogLeNet, despite their computational 
efficiency and ability to achieve acceptable overall accuracy, have shown limitations in class-specific 
performance, particularly in the detection of diseases such as Grey Leaf Spot. Here, lower AUC values indicate 
weaker discriminative power. These results highlight the importance of considering both model efficiency and 
diagnostic accuracy when selecting architectures for use in resource-constrained environments. 

In conclusion, the findings demonstrate the strong potential of deep learning-based CNN models for plant 
disease classification. In particular, ConvNeXt emerged as the most balanced and generalisable model among 
those tested and has become an attractive option for implementation in real-world decision support systems 
used in agricultural settings (Liu et al., 2022). However, the promising results of other architectures indicate that 
model selection should be tailored to the specific constraints and requirements of the intended application. 

In future studies, these models should be tested on datasets composed of images captured under real-
world field conditions to better evaluate their robustness and practical applicability. Additionally, ensemble or 
hybrid modelling approaches can be developed to address class imbalance. Such systems can contribute to 
improving both accuracy and stability (Ciran & Özbay, 2022). 

All models were trained using fixed hyperparameters and a limited number of training epochs. While this 
approach does not aim to maximize the individual performance of each architecture, it provides a consistent 
foundation for fair comparison. The findings offer a valuable starting point for future research focused on model 
customization, dataset structure analysis, and real-world deployment readiness. 
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