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Abstract- The network traffic prediction has to be reliable for better resource allocation and congestion management in present-
day telecommunications. In this paper, a novel hybrid Time2Vec-enhanced LSTM method is presented for somewhat more
accurate traffic volume forecasting. The model exploits both historical traffic behavior and temporal features enriched by
Time2Vec, such as hour and day, to represent the linear or periodic dependencies embedded in cellular traffic. Unlike traditional
static time encodings or raw time features, the learnable Time2Vec embeddings enable the model to better capture daily and
hourly fluctuations in network traffic. The study carried out experiments with a real-world dataset that had been collected from
an LTE base station located in Kandahar Province of Afghanistan, with hourly uplink, downlink, and total traffic volumes
recorded for 30 days. Performance was measured in terms of the Root Mean Square Error (RMSE) and coefficient of
determination (R?). The results show that the proposed Time2Vec-enhanced LSTM consistently outperforms Deep Learning
(DL), statistical, and Machine Learning (ML) models across all traffic types. The learnable temporal embeddings are useful as
they allow greater accuracy and better capture of trends. Ablation studies have supported that forecasting is far better with
adaptive Time2Vec encoding than with models without or with a fixed-time feature, suggesting that learnable temporal features
are essential for precise and robust cellular traffic prediction.

Keywords- Cellular traffic prediction, Deep learning (DL), LSTM, Machine learning (ML), Real-word dataset, Time2Vec.

was estimated at 130 EB per month, with forecasts suggesting
this could climb to 563 EB per month by 2029 when fixed
1. Introduction wireless is included. At the same time, 5G networks were
predicted to carry 25% of this traffic by the end of 2023,

The rapid growth of internet and mobile technologies, increasing significantly to 76% by 2029 [2], [3]. These trends
along with the increasing use of smartphones and other highlight the urgent need for accurate forecasting methods to
connected devices, has brought about a new era of big data. Support better planning, traffic control, and efficient use of
This has led to a sharp rise in global mobile data usage, which resources, while also improving the quality of service for users.
is expected to reach 403 exabytes (EB) per month by 2029 As mobile data usage continues to increase, managing
[1]. The growing number of users, applications, and services network capacity effectively becomes more difficult. One key
is putting pressure on communication networks. By the end of solution is accurate prediction of cellular network traffic, which
2023, mobile data traffic, excluding fixed wireless access, SUPPOrts better network operations. Being able to anticipate
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traffic patterns can help avoid congestion, improve security,
and guide the efficient distribution of bandwidth. It also plays
a central role in long-term planning by allowing network
providers to prepare for future demands. With reliable
forecasting, service providers can make more informed
decisions and optimize their infrastructure to deliver a
smoother and more secure user experience [4].

Cellular traffic prediction is generally divided into
temporal and spatiotemporal approaches. Temporal prediction
focuses on forecasting traffic at a single location using only
its historical data, typically modeled as a univariate time
series. In contrast, spatiotemporal prediction captures both
temporal patterns and spatial dependencies across network
elements, for example base stations, which are influenced by
factors such as user mobility and handovers. Based on the
number of predicted variables, traffic forecasting can be
classified as univariate or multivariate. Univariate methods
predict a single variable, such as traffic volume, while
multivariate methods forecast multiple related indicators,
such as traffic volume and the number of connected users,
which often influence one another. Forecasting is also
categorized by duration, with short-term prediction typically
covering 5 to 60 minutes and medium-to-long-term prediction
extending beyond 60 minutes, depending on the data’s time
granularity. Additionally, predictions may be single-step,
focusing on the next time point, or multi-step, predicting
traffic over several future intervals [5], [6].

However, despite advances in Machine Learning (ML)
and Deep Learning (DL), many existing models still rely on
static or hand-engineered time features, which limits their
ability to adapt to the complex, variant nature of cellular
traffic. To address this limitation, we explore the use of
learnable temporal embeddings as a more flexible and data-
driven alternative to traditional time encodings.

The aim of the study is to incorporate the Time2Vec
mechanism within an LSTM-based architecture for cellular
traffic forecasting. Time2Vec is a learnable temporal
embedding that represents time as a vector with linear and
periodic components. Unlike static encodings, Time2Vec
allows the model to automatically discover and adapt to
recurring and drifting temporal patterns within the data. To
the best of our knowledge, this is the first study to apply
Time2Vec in the context of cellular traffic prediction.

Our Time2Vec-enhanced LSTM architecture, by
embedding temporal information in a manner that can be
learned simultaneously with traffic patterns, will thus provide
better temporal awareness and more accurate predictions. We
in turn validate this model on actual LTE traffic data
collected from a live cellular network, demonstrating that it
consistently outperforms a diverse range of methods
including DL approaches such as LSTM and GRU, traditional
time series model such as Auto-Regressive Integrated
Moving Average (ARIMA), and classical ML techniques
such as Support Vector Regression (SVR) and Random
Forest (RF). This highlights the potential of combining
sequence modeling with a powerful temporal embedding to
improve the robustness and accuracy of cellular traffic
forecasting.

The key contributions of this work are as listed below:

e We propose a hybrid Time2Vec-enhanced LSTM model

where learnable temporal embeddings are incorporated for
sequential modeling to gain higher accuracy in cellular
traffic forecasting.

e We introduce Time2Vec into the telecom traffic prediction
field, demonstrating that it offers superior performance
compared to traditional static time encodings or raw time
features, particularly for modeling daily and hourly
fluctuations in network traffic.

o We validate the model on actual LTE traffic data collected
from a base station in Afghanistan, featuring uplink,
downlink, and total traffic volume, all recorded hourly over
30 days.

e We conduct comprehensive empirical comparisons with DL
models (LSTM and GRU), traditional statistical (ARIMA),
and ML models (SVR and RF), demonstrating that our
proposed model consistently achieves lower Root Mean
Square Error (RMSE) and higher coefficient of
determination (R2) across all traffic types.

The remainder of the paper is organized as follows: Section
2, Section 3 describes the Materials and Methods, including the
dataset, LSTM architecture, and Time2Vec embedding. Section
3.3 presents the Proposed Model. Section 4 discusses the Results
and Analysis, and finally, Section concludes the paper.

2. Related Work

The task of forecasting traffic in cellular networks has
traditionally been addressed using statistical time-series models
such as ARIMA [7] and Seasonal ARIMA (SARIMA) [8]. These
models are valued for their mathematical simplicity and
effectiveness in environments with stable and predictable
patterns. In particular, they tend to perform reasonably well in
short-term forecasting scenarios. However, their inherent
limitations become evident when applied to the highly dynamic
and complex nature of modern cellular networks. Real-world
traffic patterns are often nonlinear, influenced by diverse user
behaviors, mobility patterns, and spatial interdependencies
between network nodes. Linear models, by design, are not well
suited to represent such complexity. Their reliance on
assumptions of stable statistical properties over time and their
limited capacity to model long-range or spatial correlations result
in reduced predictive accuracy and reliability, particularly in
long-term forecasting tasks. Consequently, while these methods
remain useful in controlled settings, their applicability to large-
scale, real-world networks is significantly constrained.

The continuous growth of network traffic, along with recent
developments in ML, has led to increased interest in data-driven
approaches for cellular traffic prediction. These methods are
viewed as promising alternatives to traditional statistical models,
particularly in handling the complexity and variability of modern
network environments. However, simpler ML algorithms such as
linear regression and support vector regression, often fall short.
Their limited capacity to capture nonlinear and high-dimensional
patterns makes them less suitable for accurate forecasting in real-
world scenarios.

To overcome these limitations, researchers have increasingly
adopted advanced DL architectures such as Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU), which are
specifically designed to handle long-term dependencies. These
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models have been widely used for cellular traffic prediction
due to their ability to learn from large volumes of sequential
data [9], [10], [11]. For example, an LSTM-based traffic
prediction model utilizing real-world call data is proposed in
[12], demonstrating its ability to learn meaningful patterns in
practical scenarios. Similarly, in [13], an LSTM model is
used to predict a retainability Key Performance Indicator
(KPI) from Ericsson’s Long-Term Evolution (LTE) network
in Algeria. On the other hand, GRUs, which offer a more
computationally efficient alternative to LSTMs, have also
been explored for similar applications [14]. Additionally, [15]
proposes a GRU-based neural network model that predicts
base station traffic by capturing the periodicity and
fluctuating characteristics inherent in base station traffic data.
Moreover, hybrid models that integrate LSTM or GRU with
Convolutional Neural Networks (CNNs) have shown
potential for improved feature extraction, though they come
with added complexity and computational overhead [16],
[17].

In general, recurrent models such as LSTM and GRU are
considered excellent choices when it comes to modeling
sequential patterns in cellular traffic data; however, their way
of representing and leveraging any time-related information is
limited. Standard approaches make use of static features for
time representation, such as hour-of-day or cyclical encodings
of time-not nearly sufficient to capture the richness of
temporal patterns, such as long-term seasonal trends or the
subtle finesse of daily and weekly cycles or demand surges at
certain hours. The absence of a trainable expressive time
representation renders a model incapable of adapting to non-
stationary and multi-scale traffic dynamics.

3. Methodology

This section outlines the components of the proposed
Time2Vec-enhanced LSTM model, including the Time2Vec
encoding technique, the LSTM architecture, integration of
Time2Vec, and the model’s input-output structure, along with
the training approach.

3.1. Time2Vec Embedding

Time2Vec is a time-encoding method that effectively
incorporates temporal data into ML models. Rather than
requiring manual construction of time-based features,
Time2Vec learns a representation that includes long-term
trends and recurring patterns in time-series data [18], [19].
Such an approach is very helpful in traffic prediction tasks,
where time-dependent behaviors are either periodic (daily,
weekly, etc.) or changing across time. For every scalar input
t, Time2Vec produces a vector of size k + 1, where the first
component defines a linear transformation of time (modeling
aperiodic trends), whereas the remaining k components
model periodic variations in time using sinusoidal functions
with trainable parameters for frequency and phase. This
empowers Time2Vec to learn some of the complex time-
related dynamics that are necessary in various real
applications.

The Time2Vec function is mathematically expressed as

Eq. (2):

Cl)o't+b0 lfi=0
sin(w; " t+b;) forl<i<k

Time2Vec = { 1)

where w; and b; are trainable weights and biases. The linear
component w, -t + by captures long-term, non-periodic trends,
while the sinusoidal components sin(w; - t + b;) model periodic
behaviors such as daily or weekly cycles.

3.2. LSTM Architecture Overview

LSTM is a type of Recurrent Neural Network (RNN) aimed
at addressing the limits of traditional RNNs in modeling long-
range dependencies within sequential data. This enables LSTM
to excel in time series forecasting by retaining memory for long
time intervals and avoiding issues such as vanishing gradients.
The LSTM architecture consists mainly of four key components:
the memory cell, the forget gate, the input gate, and the output
gate, as illustrated in Fig. 1. The memory cell is a unit
maintaining information and allows information to be
continuously fed into following time steps, while the gates
regulate what to allow in or out of the memory cell and what
should be forgotten.

Ct-1 > A T - Ct
tanh
2 fi gt M gl O
© = ©
Tg g tanh ;: hi
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e +t t 4
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Fig. 1: LSTM cell structure showing the forget, input, and output
gates, and the update of cell and hidden states

The forget gate is defined as Eq. (2):

fe= U(‘Uf [he—1, %] + bf) 2)
where o (+) is the sigmoid function, x; and h,_ are the input and
previous hidden state, and w, and by denote weight and bias

parameters.

The activation output of Eq. (2) is bounded within the
interval [0,1], with boundary values serving as binary gating
signals. A null output (0) induces complete suppression of the
preceding information, whereas unit output (1) facilitates perfect
propagation through the temporal pathway. Subsequent to this
gating operation, the system computes the state modification
terms through two parallel transformations: (i) a sigmoidal
regulatory layer (denoted as the input gate) that performs
multiplicative modulation of the input stream, and (ii) a
hyperbolic tangent transformation layer that generates a
complementary candidate state wvector. These components
collectively implement the adaptive state update mechanism
characteristic of LSTM architectures.

The input gate activation and the candidate value generation
are defined as Eg. (3) and Eq. (4):
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iy = o(w;[he—q, x¢] + b;)

Ce = fe*Croq + i * Gy

where i, denotes the activation of the input gate and ¢, refers
to the vector of the new candidate values. By integrating
these components, the updated cell state c, is derived through
the combination of Eqg. (3) and Eqg. (4), as expressed in Eq.

(5):

Ce=fr*C1tHigxC;

The final step involves generating the output. A sigmoid
activation is first applied to determine which components of
the cell state should influence the hidden state. The updated
cell state is then transformed using a hyperbolic tangent
function to constrain its values within the range [—1, 1], and
this result is scaled by the output gate’s activation to produce
the final hidden state.

Eqg. (6) and Eq. (7) formalize this process, where Eq. (6)
computes the output gate activation, and Eq. (7) derives the
updated hidden state based on the modulated cell state.

o = o(wy[he—q, x¢] + by) (6)

h; = o, * tanh(c;) (7
where o, denotes the output gate activation obtained from the
sigmoid function, and h, represents the resulting hidden state.
This hidden state is subsequently passed to the next time step
or network layer, enabling the model to maintain temporal
context across sequences.

3.3. Proposed Time2Vec-Enhanced LSTM Model
To effectively capture complex temporal dependencies in

mobile traffic data, we integrate the Time2Vec mechanism
with an LSTM architecture as illustrated in Fig. 2.

Dataset

Time Features raffic Data

Output

)
LSTM Layer —
iV

Fig. 2: The proposed hybrid Time2Vec-enhanced LSTM
model

Concatenate

J— L

Layer

Time2Vec
Layer

Traditional time encoding methods, such as one-hot or
cyclical features, often fail to capture subtle periodic patterns,
particularly when dealing with multiscale temporal trends.
Time2Vec, a trainable time encoding function, addresses this
limitation by learning both linear and periodic components of
time explicitly, thereby improving the temporal awareness of
the model.

(5)custom Time2Vec

3.3.1. Temporal Feature Extraction

®3)

In our architecture, raw temporal features such as hour of the
day and day of the month, are first extracted from the timestamp.

(4)These temporal features are represented as a vector:

(8)

where T is a vector containing the extracted temporal features for
each time step t, and d, represents the dimensionality of the
temporal feature vector.

T = [Hour(t),Day(t)] € R%

These raw temporal features are then passed through a
layer, which transforms them into a
continuous vector representation. The Time2Vec layer outputs a
concatenation of a linear transformation and several sine
activations, allowing the model to capture both long-term linear
trends and periodic cycles.

At each time step 7, the Time2Vec layer produces an
embedding by combining a linear component and multiple
periodic components as Eq. (9) below:

wo'TT+b0 ifi=0

9
sin(w; T, +b;) for1 <i<k ©

Time2Vec(T,) = {

where w, and b, are learnable scalar weights for the linear term,
w; and b; € R% are learnable parameters for the i periodic
function, with 1 < i < k, and T, is the temporal feature vector at
time step 7. This allows the model to learn both short-term cycles
(e.g., hourly and daily) and long-term trends (e.g., variations
over multiple days).

3.3.2. Feature Normalization

To ensure that all input features contribute proportionally to
model training, we apply z-score normalization to both the traffic
volume and temporal features before sequence modeling. This
standardization process transforms each feature by subtracting
the mean and dividing by the standard deviation, as defined in
Eg. (10). It centers the data around zero with unit variance,
which helps stabilize training and accelerates convergence of the
LSTM model.

(10)

where x is the raw feature value, u is the mean, and ¢ is the
standard deviation of the feature.

3.3.3. Model Input Structure

Let the normalized historical traffic features at time step = be
represented as Eq. (11) below:
x; = [u A2, €R® (11)
where u;, A;, and X, denote the uplink, downlink, and total

traffic volumes, respectively. Let T, € R3 denote the temporal
feature vector at time step t, which includes hour and day.

To incorporate recurring temporal patterns, we apply the
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Time2Vec embedding ¢(T,) € R¥*1 as defined in Eq. (9).
We then concatenate the traffic vector x, with the temporal
embedding to form the combined input defined as Eq. (12)
below:

Zr = [x‘r I ¢(Tr)] € R3*k+1

Over a sliding window of length L, we construct the
input sequence as Eq. (13):

Z = [ZT—L+1' ""Z‘L'] € R3+k+1

This sequence is then passed into an LSTM layer, which
models temporal dependencies in both traffic and time-aware
patterns and is defined as Eq. (14):
h = LSTM(Z) (14)

The LSTM output h is finally used to predict the traffic
volumes at the next time step through a fully connected layer.

3.3.4. Output and Training Strategy

The final hidden state output from the LSTM, denoted as
h € R4, is passed through a fully connected (dense) layer to
generate the predicted traffic volumes at the next time step:
Vo1 = Wour * h+ boys (15)
where W,,,, € R3*4 is the learnable weight matrix projecting
the LSTM hidden state h € R% to the output space, and
bou: € R® is the learnable bias wvector. The resulting
prediction $,,, = [@,A, ;] corresponds to the uplink,
downlink, and total traffic volumes at the next time step.

4. Dataset and Experimental Setup
4.1. Dataset Description

The dataset used in this study was collected from a
telecom service provider operating in Kandahar Province,
Afghanistan, and contains traffic data for an LTE base station
with three cells. The data spans the entire month of
November 2024, from November 1 to November 30, with
continuous recording for 24 hours each day.

The dataset includes parameters such as Date and Time,
Cell ID (which specifies one of the three cells), Uplink
Traffic Volume (a measurement of data uploaded by users
within a cell), Downlink Traffic Volume (a measurement of
data downloaded by users within a cell), and Total Traffic
Volume (the sum of uplink and downlink traffic, representing
overall data consumption within each cell).

(13)

Fig. 3: Traffic volume analysis: (a) Daily Download Traffic
Volume per cell, (b) Daily Upload Traffic Volume per cell, and
(c) Hourly Total Traffic Volume per cell (November 15, 2024).

The dataset comprises a total of 2,160 samples,
corresponding to hourly measurements collected across all three
cells over the 30-day period. Different views of the dataset are
shown in Fig. 3, and a summary of the descriptive statistics for
these traffic parameters is provided in Table 1.

Table 1. Summary statistics of the dataset

Traffic Minimum | Maximum | Mean Standard
Type (MB) (MB) (MB) Deviation
(MB)
Uplink 11.39 800.50 177.09 132.81
Downlink | 153.84 5,120.32 1,408.95 | 937.84
Total 173.9 5,920.82 1,586.04 | 1,037.09

4.2. Data Preprocessing
4.2.1. Train-Test Split

The dataset was split randomly into training and testing
portions to enable the validation of the actual performance of the
model and its ability to generalize over unseen data, as shown in
Table 2. Special consideration was made to set aside 20% of the
records as a test set, so that the model could be trained with 80%
of the data. This kind of division is employed in real applications
where a model is trained on historical data, then deployed to
predict on future or unseen data. This random partition confines
the elements present in both partitions to similar distributions
and hence opposes the possibility of overfitting, giving a strong
validation of the model.
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Table 2. Train-test split of total traffic data

Feature Total Training Set | Testing Set
Samples (80%) (20%)
Uplink 2160 1728 432
Traffic
Downlink 2160 1728 432
Traffic
Total Traffic 2160 1728 432

4.2.2. Feature Selection

From the raw dataset, we select two groups of features
for modeling:
o Traffic-related features: uplink traffic volume, downlink
traffic volume, and total traffic volume per hour.
e Temporal context features: hour of the day and day of
the month, derived from the timestamp.

Traffic characteristics indicate the system’s load level at
each time, whereas temporal features provide the contextual
setting for recurring patterns. The temporal features are fed
into a Time2Vec embedding layer (discussed in Section 3) to
encode linear as well as periodic time trends.

To ensure that all features contribute proportionally to
the learning process, they are normalized using z-score
standardization, as discussed in Section 3.3.2. We chose z-
score over alternatives like min-max [20], as it better
preserves variability and handles outliers, providing more
stable inputs for the proposed model.

4.3. Evaluation Metrics

To evaluate the performance of the proposed Time2Vec-
enhanced LSTM model for cellular traffic prediction, two
commonly used evaluation metrics, namely RMSE and R?,
are employed. RMSE measures the average magnitude of the
prediction error, while the R? describes exactly how much of
the variance in the true data is explained by the model. Both
predictive accuracy and explanatory power are incorporated
into our evaluation using these metrics.

4.3.1. Root Mean Square Error (RMSE)

The RMSE represents the square root of the mean of
squared deviation between forecasted traffic volume and
actual observed traffic volume as described in Eq. (16). It is
expressed with the same units as those of the observed traffic
values (MB). So, the lower the RMSE values, the higher are
the accuracies of the predicted values.

n
12( 5
"y Vi —y)
=1

where y represents actual target value, ¥ denotes the
predicted value, and n is the total number of observations.

RMSE = (16)

4.3.2. Coefficient of Determination (R?)

R? evaluates how well the variations existing in the actual
traffic data are explained by the model. R? does possess values
close to 1 when the model is able to capture the temporal patterns
well, and the values approach 0 when the explanatory power is
limited. R? is expressed in Eq. (17) as shown below:

3 S = 92
Y —yi)?

where ¥ represents the mean of actual target values.

RZ=1 (7)

5. Results and Discussion

To evaluate the effectiveness of the proposed Time2Vec-
enhanced LSTM model, experiments were conducted on a
dataset comprising hourly cellular traffic data collected over a
30-day period as discussed in Section 4.1. The model was
designed to forecast three target variables: uplink, downlink, and
total traffic volumes, using both historical traffic patterns and
temporal contextual features.

The Time2Vec layer was applied to the two available time-
related features, hour and day, before concatenation with the
traffic volume sequences. This temporal embedding captures
both linear and periodic dependencies, which are crucial for
modeling daily patterns and hourly fluctuations commonly
observed in network traffic data.

5.1. Overall Performance Comparison

The predicted and actual traffic values for all three targets
are visually compared in Fig. 4. The plots indicate that the
predicted values closely follow the overall trends and periodic
fluctuations of the true values, particularly for total traffic, where
the model captures both sharp peaks and troughs effectively.
Although some discrepancies are visible, the alignment between
actual and predicted patterns supports the suitability of
Time2Vec for encoding periodic temporal signals.

Fig. 4: Comparison of actual and predicted traffic volumes for
(a) Uplink, (b) Downlink, and (c) Total Traffic over 175 time
steps

Among the considered methods, the DL approaches (LSTM
and GRU) demonstrated better performance than the traditional
statistical and ML models, ARIMA and SVR, respectively,
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particularly in terms of R? scores for downlink and total
traffic. However, both LSTM and GRU still fell short of the

performance achieved by the proposed model, which
achieved the highest R? across all traffic types.
Table 3. Performance comparison of different models
Model Traffic Type | RMSE (MB) | R?Score
Time2Vec- Uplink 73.48 0.5991
enhanced LSTM 5 unlink 46852 0.6254
Total 498.53 0.6531
LSTM Uplink 92.25 0.3686
Downlink 501.35 0.5711
Total 539.62 0.5936
GRU Uplink 94.78 0.3335
Downlink 524.96 0.5298
Total 547.22 0.5820
ARIMA Uplink 103.10 0.3800
Downlink 576.54 0.5333
Total 604.65 0.5820
SVR Uplink 108.81 0.1216
Downlink 737.66 0.0308
Total 828.70 0.0415
RF Uplink 95.53 0.3228
Downlink 533.93 0.5136
Total 541.50 0.5907

The performance of the proposed Time2Vec-enahanced
LSTM model was evaluated using RMSE and R? metrics and
benchmarked against a diverse set of models, including
LSTM, GRU, ARIMA, SVR, and RF. As illustrated in Table
3, the proposed model showed the best prediction accuracy
with the least RMSE and maximum R?, for all traffic types
(uplink, downlink, and total), thus convincingly speaking for
a better capturing of the temporal dynamics from cellular
traffic data.

While ARIMA showed slightly better R? than GRU in
the uplink case, its overall RMSE values remained higher.
SVR performed the poorest across all metrics, with the
highest RMSE and the lowest R? scores. The RF, meanwhile,
produced mixed results. Its RMSE values were higher than
those of LSTM and only marginally better than GRU for total
traffic. Its R? scores generally lagged behind LSTM and
GRU, however, for total traffic, its R? was slightly better than
that of GRU. Despite having better performance comparing to
ARIMA and SVR, it still showed slightly worse R? than
ARIMA in the uplink and downlink cases. This indicates that
although RF sometimes reduced average prediction error
slightly compared to the weaker models, it struggled to
capture the temporal patterns and variability in the data, often
regressing toward the mean and failing under conditions of
high fluctuation.

This set of results justifies the integration of learning
temporal embeddings through Time2Vec into LSTM for

further spatiotemporal modeling of cellular traffic. To provide a
clearer comparison of performance, Fig. 5 visualizes the R?
scores across all models for each traffic type, highlighting the
consistent superiority of the proposed Time2Vec-enhanced
LSTM model. It presents a grouped bar chart of R? values, with
separate bars for uplink, downlink, and total traffic types across
all evaluated models.

. SVR
m== Random Forest
o6 — ARIMA
 GRU
LSTM
mm Time2Vec-enhanced LSTM

R? Score
o S a

o

00

Total

Downlink
Traffic Type

Uplink

Fig. 5: R? scores of all considered models across traffic types
5.2. Ablation Study on Temporal Encoding

To better understand the impact of temporal feature
encoding on model performance, an ablation study was
conducted by comparing four LSTM-based architectures:

1) LSTM model using only traffic data (no time features),

2) LSTM with raw time inputs (hour and day),

3) LSTM with  fixed cyclical encodings
transformations),

4) the proposed Time2Vec-enhanced LSTM.

(sin/cos

The performance differences among these models are
illustrated in Fig. 6.

Traffic Type
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Fig. 6: Ablation study comparing (a) RMSE and (b) R? score
across four LSTM-based models for uplink, downlink, and total
traffic prediction
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As shown in Fig. 6 (a) and (b), the inclusion and design
of time features significantly affect the predictive
performance. The LSTM with no time feature was found to
have only moderate predictive capacity and is particularly
limited in its ability to capture temporal dependencies
inherent in the data. The inclusion of cyclical time encodings
resulted in slightly reduced RMSE values for downlink and
total traffic in comparison to the LSTM with no time feature,
while it tended to have reduced R? scores for all traffic types.
This would indicate that fixed periodic encodings do not
properly capture the temporal variability in the data. On the
other hand, LSTM with the raw hour and day features was
better in some cases than the basic LSTM and its cyclical
variants, indicating that whatever the model can glean from
raw temporal inputs is worthwhile.

In contrast, the Time2Vec-enhanced LSTM consistently
achieved the lowest RMSE and highest R? scores across all
traffic types, clearly outperforming all other variants. These
results confirm that learnable temporal embeddings from
Time2Vec provide a more expressive and adaptive
representation of time, enabling the model to better capture
both short-term patterns and long-term periodic trends in the
traffic data.

6. Conclusions

In this study, a hybrid Time2Vec-enahanced LSTM
model was proposed for traffic volume prediction in cellular
networks. The model simultaneously integrates periodic
temporal features with historical traffic data so that
independences of short-term changes and long-term cyclic
patterns can be learned.

Experiments indicated that the proposed Time2Vec-
enhanced LSTM model is dominant compared to considered
DL, time series, and ML methods for uplink, downlink, and
total traffic volume prediction. The model achieved lower
RMSE and higher R? scores across all traffic types,
consistently outperforming all the models. Additionally, the
ablation study confirmed that the Time2Vec-based temporal
encoding was the key factor driving this superior
performance, as models without time features or using only
raw or cyclical time inputs consistently showed higher errors
and lower R? scores. Its strong performance is attributed to
the inclusion of learnable periodic transformations via
Time2Vec, which significantly enhanced the LSTM’s
capacity to recognize cyclical patterns in the data.

Summing up, the findings corroborate the importance of
temporal embeddings in DL-based traffic prediction. The
proposed Time2Vec-enhanced LSTM architecture appears to
be a potential candidate for intelligent network traffic
prediction.

In the future, research may be undertaken to extend the
model to multi-cell scenarios and to experiment with more
time features such as weekends, holidays, and special events,
while hyperparameter tuning could be applied to achieve
improved prediction accuracy and performance.
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