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Abstract- The network traffic prediction has to be reliable for better resource allocation and congestion management in present-

day telecommunications. In this paper, a novel hybrid Time2Vec-enhanced LSTM method is presented for somewhat more 

accurate traffic volume forecasting. The model exploits both historical traffic behavior and temporal features enriched by 

Time2Vec, such as hour and day, to represent the linear or periodic dependencies embedded in cellular traffic. Unlike traditional 

static time encodings or raw time features, the learnable Time2Vec embeddings enable the model to better capture daily and 

hourly fluctuations in network traffic. The study carried out experiments with a real-world dataset that had been collected from 

an LTE base station located in Kandahar Province of Afghanistan, with hourly uplink, downlink, and total traffic volumes 

recorded for 30 days. Performance was measured in terms of the Root Mean Square Error (RMSE) and coefficient of 

determination (R2). The results show that the proposed Time2Vec-enhanced LSTM consistently outperforms Deep Learning 

(DL), statistical, and Machine Learning (ML) models across all traffic types. The learnable temporal embeddings are useful as 

they allow greater accuracy and better capture of trends. Ablation studies have supported that forecasting is far better with 

adaptive Time2Vec encoding than with models without or with a fixed-time feature, suggesting that learnable temporal features 

are essential for precise and robust cellular traffic prediction. 
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1. Introduction 

The rapid growth of internet and mobile technologies, 

along with the increasing use of smartphones and other 

connected devices, has brought about a new era of big data. 

This has led to a sharp rise in global mobile data usage, which 

is expected to reach 403 exabytes (EB) per month by 2029 

[1]. The growing number of users, applications, and services 

is putting pressure on communication networks. By the end of 

2023, mobile data traffic, excluding fixed wireless access, 

was estimated at 130 EB per month, with forecasts suggesting 

this could climb to 563 EB per month by 2029 when fixed 

wireless is included. At the same time, 5G networks were 

predicted to carry 25% of this traffic by the end of 2023, 

increasing significantly to 76% by 2029 [2], [3]. These trends 

highlight the urgent need for accurate forecasting methods to 

support better planning, traffic control, and efficient use of 

resources, while also improving the quality of service for users. 

As mobile data usage continues to increase, managing 

network capacity effectively becomes more difficult. One key 

solution is accurate prediction of cellular network traffic, which 

supports better network operations. Being able to anticipate 
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traffic patterns can help avoid congestion, improve security, 

and guide the efficient distribution of bandwidth. It also plays 

a central role in long-term planning by allowing network 

providers to prepare for future demands. With reliable 

forecasting, service providers can make more informed 

decisions and optimize their infrastructure to deliver a 

smoother and more secure user experience [4]. 

Cellular traffic prediction is generally divided into 

temporal and spatiotemporal approaches. Temporal prediction 

focuses on forecasting traffic at a single location using only 

its historical data, typically modeled as a univariate time 

series. In contrast, spatiotemporal prediction captures both 

temporal patterns and spatial dependencies across network 

elements, for example base stations, which are influenced by 

factors such as user mobility and handovers. Based on the 

number of predicted variables, traffic forecasting can be 

classified as univariate or multivariate. Univariate methods 

predict a single variable, such as traffic volume, while 

multivariate methods forecast multiple related indicators, 

such as traffic volume and the number of connected users, 

which often influence one another. Forecasting is also 

categorized by duration, with short-term prediction typically 

covering 5 to 60 minutes and medium-to-long-term prediction 

extending beyond 60 minutes, depending on the data’s time 

granularity. Additionally, predictions may be single-step, 

focusing on the next time point, or multi-step, predicting 

traffic over several future intervals [5], [6]. 

However, despite advances in Machine Learning (ML) 

and Deep Learning (DL), many existing models still rely on 

static or hand-engineered time features, which limits their 

ability to adapt to the complex, variant nature of cellular 

traffic. To address this limitation, we explore the use of 

learnable temporal embeddings as a more flexible and data-

driven alternative to traditional time encodings. 

The aim of the study is to incorporate the Time2Vec 

mechanism within an LSTM-based architecture for cellular 

traffic forecasting. Time2Vec is a learnable temporal 

embedding that represents time as a vector with linear and 

periodic components. Unlike static encodings, Time2Vec 

allows the model to automatically discover and adapt to 

recurring and drifting temporal patterns within the data. To 

the best of our knowledge, this is the first study to apply 

Time2Vec in the context of cellular traffic prediction. 

Our Time2Vec-enhanced LSTM architecture, by 

embedding temporal information in a manner that can be 

learned simultaneously with traffic patterns, will thus provide 

better temporal awareness and more accurate predictions. We 

in turn validate this model on actual LTE traffic data 

collected from a live cellular network, demonstrating that it 

consistently outperforms a diverse range of methods 

including DL approaches such as LSTM and GRU, traditional 

time series model such as Auto-Regressive Integrated 

Moving Average (ARIMA), and classical ML techniques 

such as Support Vector Regression (SVR) and Random 

Forest (RF). This highlights the potential of combining 

sequence modeling with a powerful temporal embedding to 

improve the robustness and accuracy of cellular traffic 

forecasting. 

The key contributions of this work are as listed below: 

 We propose a hybrid Time2Vec-enhanced LSTM model 

where learnable temporal embeddings are incorporated for 

sequential modeling to gain higher accuracy in cellular 

traffic forecasting. 

 We introduce Time2Vec into the telecom traffic prediction 

field, demonstrating that it offers superior performance 

compared to traditional static time encodings or raw time 

features, particularly for modeling daily and hourly 

fluctuations in network traffic. 

 We validate the model on actual LTE traffic data collected 

from a base station in Afghanistan, featuring uplink, 

downlink, and total traffic volume, all recorded hourly over 

30 days.  

 We conduct comprehensive empirical comparisons with DL 

models (LSTM and GRU), traditional statistical (ARIMA), 

and ML models (SVR and RF), demonstrating that our 

proposed model consistently achieves lower Root Mean 

Square Error (RMSE) and higher coefficient of 

determination (R2) across all traffic types. 

The remainder of the paper is organized as follows: Section 

2, Section 3 describes the Materials and Methods, including the 

dataset, LSTM architecture, and Time2Vec embedding. Section 

3.3 presents the Proposed Model. Section 4 discusses the Results 

and Analysis, and finally, Section  concludes the paper. 

2. Related Work  

The task of forecasting traffic in cellular networks has 

traditionally been addressed using statistical time-series models 

such as ARIMA [7] and Seasonal ARIMA (SARIMA) [8]. These 

models are valued for their mathematical simplicity and 

effectiveness in environments with stable and predictable 

patterns. In particular, they tend to perform reasonably well in 

short-term forecasting scenarios. However, their inherent 

limitations become evident when applied to the highly dynamic 

and complex nature of modern cellular networks. Real-world 

traffic patterns are often nonlinear, influenced by diverse user 

behaviors, mobility patterns, and spatial interdependencies 

between network nodes. Linear models, by design, are not well 

suited to represent such complexity. Their reliance on 

assumptions of stable statistical properties over time and their 

limited capacity to model long-range or spatial correlations result 

in reduced predictive accuracy and reliability, particularly in 

long-term forecasting tasks. Consequently, while these methods 

remain useful in controlled settings, their applicability to large-

scale, real-world networks is significantly constrained. 

The continuous growth of network traffic, along with recent 

developments in ML, has led to increased interest in data-driven 

approaches for cellular traffic prediction. These methods are 

viewed as promising alternatives to traditional statistical models, 

particularly in handling the complexity and variability of modern 

network environments. However, simpler ML algorithms such as 

linear regression and support vector regression, often fall short. 

Their limited capacity to capture nonlinear and high-dimensional 

patterns makes them less suitable for accurate forecasting in real-

world scenarios. 

To overcome these limitations, researchers have increasingly 

adopted advanced DL architectures such as Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit (GRU), which are 

specifically designed to handle long-term dependencies. These 
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models have been widely used for cellular traffic prediction 

due to their ability to learn from large volumes of sequential 

data [9], [10], [11]. For example, an LSTM-based traffic 

prediction model utilizing real-world call data is proposed in 

[12], demonstrating its ability to learn meaningful patterns in 

practical scenarios. Similarly, in [13], an LSTM model is 

used to predict a retainability Key Performance Indicator 

(KPI) from Ericsson’s Long-Term Evolution (LTE) network 

in Algeria. On the other hand, GRUs, which offer a more 

computationally efficient alternative to LSTMs, have also 

been explored for similar applications [14]. Additionally, [15] 

proposes a GRU-based neural network model that predicts 

base station traffic by capturing the periodicity and 

fluctuating characteristics inherent in base station traffic data. 

Moreover, hybrid models that integrate LSTM or GRU with 

Convolutional Neural Networks (CNNs) have shown 

potential for improved feature extraction, though they come 

with added complexity and computational overhead [16], 

[17]. 

In general, recurrent models such as LSTM and GRU are 

considered excellent choices when it comes to modeling 

sequential patterns in cellular traffic data; however, their way 

of representing and leveraging any time-related information is 

limited. Standard approaches make use of static features for 

time representation, such as hour-of-day or cyclical encodings 

of time-not nearly sufficient to capture the richness of 

temporal patterns, such as long-term seasonal trends or the 

subtle finesse of daily and weekly cycles or demand surges at 

certain hours. The absence of a trainable expressive time 

representation renders a model incapable of adapting to non-

stationary and multi-scale traffic dynamics. 

3. Methodology 

This section outlines the components of the proposed 

Time2Vec-enhanced LSTM model, including the Time2Vec 

encoding technique, the LSTM architecture, integration of 

Time2Vec, and the model’s input-output structure, along with 

the training approach. 

3.1. Time2Vec Embedding 

Time2Vec is a time-encoding method that effectively 

incorporates temporal data into ML models. Rather than 

requiring manual construction of time-based features, 

Time2Vec learns a representation that includes long-term 

trends and recurring patterns in time-series data [18], [19]. 

Such an approach is very helpful in traffic prediction tasks, 

where time-dependent behaviors are either periodic (daily, 

weekly, etc.) or changing across time. For every scalar input 

𝑡, Time2Vec produces a vector of size 𝑘 + 1, where the first 

component defines a linear transformation of time (modeling 

aperiodic trends), whereas the remaining 𝑘 components 

model periodic variations in time using sinusoidal functions 

with trainable parameters for frequency and phase. This 

empowers Time2Vec to learn some of the complex time-

related dynamics that are necessary in various real 

applications. 

The Time2Vec function is mathematically expressed as 

Eq. (1): 

𝑇𝑖𝑚𝑒2𝑉𝑒𝑐 = {
𝜔0 ∙ 𝑡 + 𝑏0           if 𝑖 = 0            
sin(𝜔𝑖 ∙ 𝑡 + 𝑏𝑖)   for 1 ≤ 𝑖 ≤ 𝑘

 (1) 

where 𝜔𝑖 and 𝑏𝑖 are trainable weights and biases. The linear 

component 𝜔0 ∙ 𝑡 + 𝑏0 captures long-term, non-periodic trends, 

while the sinusoidal components sin(𝜔𝑖 ∙ 𝑡 + 𝑏𝑖) model periodic 

behaviors such as daily or weekly cycles. 

3.2. LSTM Architecture Overview 

LSTM is a type of Recurrent Neural Network (RNN) aimed 

at addressing the limits of traditional RNNs in modeling long-

range dependencies within sequential data. This enables LSTM 

to excel in time series forecasting by retaining memory for long 

time intervals and avoiding issues such as vanishing gradients. 

The LSTM architecture consists mainly of four key components: 

the memory cell, the forget gate, the input gate, and the output 

gate, as illustrated in Fig. 1. The memory cell is a unit 

maintaining information and allows information to be 

continuously fed into following time steps, while the gates 

regulate what to allow in or out of the memory cell and what 

should be forgotten. 

 
Fig. 1: LSTM cell structure showing the forget, input, and output 

gates, and the update of cell and hidden states 

The forget gate is defined as Eq. (2): 

𝑓𝑡 = 𝜎(𝜔𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (2) 

where 𝜎(∙) is the sigmoid function, 𝑥𝑡 and ℎ𝑡−1 are the input and 

previous hidden state, and 𝜔𝑓 and 𝑏𝑓 denote weight and bias 

parameters. 

The activation output of Eq. (2) is bounded within the 

interval [0,1], with boundary values serving as binary gating 

signals. A null output (0) induces complete suppression of the 

preceding information, whereas unit output (1) facilitates perfect 

propagation through the temporal pathway. Subsequent to this 

gating operation, the system computes the state modification 

terms through two parallel transformations: (i) a sigmoidal 

regulatory layer (denoted as the input gate) that performs 

multiplicative modulation of the input stream, and (ii) a 

hyperbolic tangent transformation layer that generates a 

complementary candidate state vector. These components 

collectively implement the adaptive state update mechanism 

characteristic of LSTM architectures. 

The input gate activation and the candidate value generation 

are defined as Eq. (3) and Eq. (4): 
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𝑖𝑡 = 𝜎(𝜔𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3) 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐̃𝑡 (4) 

where 𝑖𝑡 denotes the activation of the input gate and 𝑐̃𝑡 refers 

to the vector of the new candidate values. By integrating 

these components, the updated cell state 𝑐𝑡 is derived through 

the combination of Eq. (3) and Eq. (4), as expressed in Eq. 

(5): 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐̃𝑡 (5) 

The final step involves generating the output. A sigmoid 

activation is first applied to determine which components of 

the cell state should influence the hidden state. The updated 

cell state is then transformed using a hyperbolic tangent 

function to constrain its values within the range [−1, 1], and 

this result is scaled by the output gate’s activation to produce 

the final hidden state. 

Eq. (6) and Eq. (7) formalize this process, where Eq. (6) 

computes the output gate activation, and Eq. (7) derives the 

updated hidden state based on the modulated cell state. 

𝑜𝑡 = 𝜎(𝜔𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (6) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝑐𝑡) (7) 

where 𝑜𝑡 denotes the output gate activation obtained from the 

sigmoid function, and ℎ𝑡 represents the resulting hidden state. 

This hidden state is subsequently passed to the next time step 

or network layer, enabling the model to maintain temporal 

context across sequences. 

3.3. Proposed Time2Vec-Enhanced LSTM Model 

To effectively capture complex temporal dependencies in 

mobile traffic data, we integrate the Time2Vec mechanism 

with an LSTM architecture as illustrated in Fig. 2. 

 
Fig. 2: The proposed hybrid Time2Vec-enhanced LSTM 

model 

   Traditional time encoding methods, such as one-hot or 

cyclical features, often fail to capture subtle periodic patterns, 

particularly when dealing with multiscale temporal trends. 

Time2Vec, a trainable time encoding function, addresses this 

limitation by learning both linear and periodic components of 

time explicitly, thereby improving the temporal awareness of 

the model. 

3.3.1. Temporal Feature Extraction 

In our architecture, raw temporal features such as hour of the 

day and day of the month, are first extracted from the timestamp. 

These temporal features are represented as a vector: 

𝑇 = [𝐻𝑜𝑢𝑟(𝑡), 𝐷𝑎𝑦(𝑡)] ∈ ℝ𝑑𝑡  (8) 

where 𝑇 is a vector containing the extracted temporal features for 

each time step 𝑡, and 𝑑𝑡 represents the dimensionality of the 

temporal feature vector.  

These raw temporal features are then passed through a 

custom Time2Vec layer, which transforms them into a 

continuous vector representation. The Time2Vec layer outputs a 

concatenation of a linear transformation and several sine 

activations, allowing the model to capture both long-term linear 

trends and periodic cycles. 

At each time step 𝜏, the Time2Vec layer produces an 

embedding by combining a linear component and multiple 

periodic components as Eq. (9) below: 

𝑇𝑖𝑚𝑒2𝑉𝑒𝑐(𝑇𝜏) = {
𝜔0 ∙ 𝑇𝜏 + 𝑏0           if 𝑖 = 0            
sin(𝜔𝑖 ∙ 𝑇𝜏 + 𝑏𝑖)   for 1 ≤ 𝑖 ≤ 𝑘

 (9) 

where 𝜔0 and 𝑏0 are learnable scalar weights for the linear term, 

𝜔𝑖 and 𝑏𝑖 ∈ ℝ𝑑𝑡 are learnable parameters for the ith periodic 

function, with 1 ≤ 𝑖 ≤ 𝑘, and 𝑇𝜏 is the temporal feature vector at 

time step 𝜏. This allows the model to learn both short-term cycles 

(e.g., hourly and daily) and long-term trends (e.g., variations 

over multiple days). 

3.3.2. Feature Normalization 

To ensure that all input features contribute proportionally to 

model training, we apply z-score normalization to both the traffic 

volume and temporal features before sequence modeling. This 

standardization process transforms each feature by subtracting 

the mean and dividing by the standard deviation, as defined in 

Eq. (10). It centers the data around zero with unit variance, 

which helps stabilize training and accelerates convergence of the 

LSTM model. 

𝑧 =
𝑥 − 𝜇

𝜎
 (10) 

where 𝑥 is the raw feature value, 𝜇 is the mean, and 𝜎 is the 

standard deviation of the feature. 

3.3.3. Model Input Structure 

Let the normalized historical traffic features at time step 𝜏 be 

represented as Eq. (11) below: 

𝑥𝜏 = [𝑢𝜏,Δ𝜏,Σ𝜏] ∈ ℝ3 (11) 

where 𝑢𝜏, Δ𝜏 , and Σ𝜏 denote the uplink, downlink, and total 

traffic volumes, respectively. Let 𝑇𝜏 ∈ ℝ3 denote the temporal 

feature vector at time step 𝜏, which includes hour and day. 

To incorporate recurring temporal patterns, we apply the 
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Time2Vec embedding 𝜙(𝑇𝜏) ∈ ℝ𝑘+1 as defined in Eq. (9). 

We then concatenate the traffic vector 𝑥𝜏 with the temporal 

embedding to form the combined input defined as Eq. (12) 

below: 

𝑧𝜏 = [𝑥𝜏 ∥ 𝜙(𝑇𝜏)] ∈ ℝ3+𝑘+1 (12) 

  Over a sliding window of length 𝐿, we construct the 

input sequence as Eq. (13): 

𝑍 = [𝑧𝜏−𝐿+1, … , 𝑧𝜏] ∈ ℝ3+𝑘+1 (13) 

This sequence is then passed into an LSTM layer, which 

models temporal dependencies in both traffic and time-aware 

patterns and is defined as Eq. (14): 

ℎ = 𝐿𝑆𝑇𝑀(𝑍) (14) 

The LSTM output ℎ is finally used to predict the traffic 

volumes at the next time step through a fully connected layer. 

3.3.4. Output and Training Strategy 

The final hidden state output from the LSTM, denoted as 

ℎ ∈ ℝ𝑑, is passed through a fully connected (dense) layer to 

generate the predicted traffic volumes at the next time step: 

𝑦̂𝜏+1 = 𝑊𝑜𝑢𝑡 ∙ ℎ + 𝑏𝑜𝑢𝑡 (15) 

where 𝑊𝑜𝑢𝑡 ∈ ℝ3×𝑑 is the learnable weight matrix projecting 

the LSTM hidden state ℎ ∈ ℝ𝑑 to the output space, and 

𝑏𝑜𝑢𝑡 ∈ ℝ3 is the learnable bias vector. The resulting 

prediction 𝑦̂𝜏+1 = [𝑢̂𝜏,Δ̂𝜏,Σ̂𝜏] corresponds to the uplink, 

downlink, and total traffic volumes at the next time step. 

4. Dataset and Experimental Setup 

4.1. Dataset Description 

The dataset used in this study was collected from a 

telecom service provider operating in Kandahar Province, 

Afghanistan, and contains traffic data for an LTE base station 

with three cells. The data spans the entire month of 

November 2024, from November 1 to November 30, with 

continuous recording for 24 hours each day. 

The dataset includes parameters such as Date and Time, 

Cell ID (which specifies one of the three cells), Uplink 

Traffic Volume (a measurement of data uploaded by users 

within a cell), Downlink Traffic Volume (a measurement of 

data downloaded by users within a cell), and Total Traffic 

Volume (the sum of uplink and downlink traffic, representing 

overall data consumption within each cell).  

 
Fig. 3: Traffic volume analysis: (a) Daily Download Traffic 

Volume per cell, (b) Daily Upload Traffic Volume per cell, and 

(c) Hourly Total Traffic Volume per cell (November 15, 2024). 

The dataset comprises a total of 2,160 samples, 

corresponding to hourly measurements collected across all three 

cells over the 30-day period. Different views of the dataset are 

shown in Fig. 3, and a summary of the descriptive statistics for 

these traffic parameters is provided in Table 1. 

Table 1. Summary statistics of the dataset 

Traffic 

Type 

Minimum 

(MB) 

Maximum 

(MB) 

Mean 

(MB) 

Standard 

Deviation 

(MB) 

Uplink 11.39 800.50 177.09 132.81 

Downlink 153.84 5,120.32 1,408.95 937.84 

Total 173.9 5,920.82 1,586.04 1,037.09 

4.2. Data Preprocessing 

4.2.1. Train-Test Split 

The dataset was split randomly into training and testing 

portions to enable the validation of the actual performance of the 

model and its ability to generalize over unseen data, as shown in 

Table 2. Special consideration was made to set aside 20% of the 

records as a test set, so that the model could be trained with 80% 

of the data. This kind of division is employed in real applications 

where a model is trained on historical data, then deployed to 

predict on future or unseen data. This random partition confines 

the elements present in both partitions to similar distributions 

and hence opposes the possibility of overfitting, giving a strong 

validation of the model. 
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Table 2. Train-test split of total traffic data 

Feature Total 

Samples 

Training Set 

(80%) 

Testing Set 

(20%) 

Uplink 

Traffic 

2160 1728 432 

Downlink 

Traffic 

2160 1728 432 

Total Traffic 2160 1728 432 

4.2.2. Feature Selection 

From the raw dataset, we select two groups of features 

for modeling: 

 Traffic-related features: uplink traffic volume, downlink 

traffic volume, and total traffic volume per hour.  

 Temporal context features: hour of the day and day of 

the month, derived from the timestamp. 

Traffic characteristics indicate the system’s load level at 

each time, whereas temporal features provide the contextual 

setting for recurring patterns. The temporal features are fed 

into a Time2Vec embedding layer (discussed in Section 3) to 

encode linear as well as periodic time trends. 

To ensure that all features contribute proportionally to 

the learning process, they are normalized using z-score 

standardization, as discussed in Section 3.3.2. We chose z-

score over alternatives like min-max [20], as it better 

preserves variability and handles outliers, providing more 

stable inputs for the proposed model. 

4.3. Evaluation Metrics 

To evaluate the performance of the proposed Time2Vec-

enhanced LSTM model for cellular traffic prediction, two 

commonly used evaluation metrics, namely RMSE and R2, 

are employed. RMSE measures the average magnitude of the 

prediction error, while the R2 describes exactly how much of 

the variance in the true data is explained by the model. Both 

predictive accuracy and explanatory power are incorporated 

into our evaluation using these metrics. 

4.3.1. Root Mean Square Error (RMSE) 

The RMSE represents the square root of the mean of 

squared deviation between forecasted traffic volume and 

actual observed traffic volume as described in Eq. (16). It is 

expressed with the same units as those of the observed traffic 

values (MB). So, the lower the RMSE values, the higher are 

the accuracies of the predicted values. 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑(𝑦̂𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

 (16) 

where 𝑦 represents actual target value, 𝑦̂ denotes the 

predicted value, and 𝑛 is the total number of observations. 

4.3.2. Coefficient of Determination (R2) 

R2 evaluates how well the variations existing in the actual 

traffic data are explained by the model. R2 does possess values 

close to 1 when the model is able to capture the temporal patterns 

well, and the values approach 0 when the explanatory power is 

limited. R2 is expressed in Eq. (17) as shown below: 

𝑅2 =  1 −
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅𝑖)
2𝑛

𝑖=1

 (17) 

where 𝑦̅ represents the mean of actual target values. 

5. Results and Discussion 

To evaluate the effectiveness of the proposed Time2Vec-

enhanced LSTM model, experiments were conducted on a 

dataset comprising hourly cellular traffic data collected over a 

30-day period as discussed in Section 4.1. The model was 

designed to forecast three target variables: uplink, downlink, and 

total traffic volumes, using both historical traffic patterns and 

temporal contextual features. 

The Time2Vec layer was applied to the two available time-

related features, hour and day, before concatenation with the 

traffic volume sequences. This temporal embedding captures 

both linear and periodic dependencies, which are crucial for 

modeling daily patterns and hourly fluctuations commonly 

observed in network traffic data. 

5.1. Overall Performance Comparison 

The predicted and actual traffic values for all three targets 

are visually compared in Fig. 4. The plots indicate that the 

predicted values closely follow the overall trends and periodic 

fluctuations of the true values, particularly for total traffic, where 

the model captures both sharp peaks and troughs effectively. 

Although some discrepancies are visible, the alignment between 

actual and predicted patterns supports the suitability of 

Time2Vec for encoding periodic temporal signals. 

 
Fig. 4: Comparison of actual and predicted traffic volumes for 

(a) Uplink, (b) Downlink, and (c) Total Traffic over 175 time 

steps 

Among the considered methods, the DL approaches (LSTM 

and GRU) demonstrated better performance than the traditional 

statistical and ML models, ARIMA and SVR, respectively, 
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particularly in terms of R2 scores for downlink and total 

traffic. However, both LSTM and GRU still fell short of the 

performance achieved by the proposed model, which 

achieved the highest R2 across all traffic types. 

Table 3. Performance comparison of different models 

Model Traffic Type RMSE (MB) R2 Score 

Time2Vec-

enhanced LSTM 

Uplink 73.48 0.5991 

Downlink 468.52 0.6254 

Total 498.53 0.6531 

LSTM Uplink 92.25 0.3686 

Downlink 501.35 0.5711 

Total 539.62 0.5936 

GRU Uplink 94.78 0.3335 

Downlink 524.96 0.5298 

Total 547.22 0.5820 

ARIMA Uplink 103.10 0.3800 

Downlink 576.54 0.5333 

Total 604.65 0.5820  

SVR Uplink 108.81 0.1216 

Downlink 737.66 0.0308 

Total 828.70 0.0415 

RF Uplink 95.53 0.3228 

Downlink 533.93 0.5136 

Total 541.50 0.5907 

 

The performance of the proposed Time2Vec-enahanced 

LSTM model was evaluated using RMSE and R2 metrics and 

benchmarked against a diverse set of models, including 

LSTM, GRU, ARIMA, SVR, and RF. As illustrated in Table 

3, the proposed model showed the best prediction accuracy 

with the least RMSE and maximum R2, for all traffic types 

(uplink, downlink, and total), thus convincingly speaking for 

a better capturing of the temporal dynamics from cellular 

traffic data. 

While ARIMA showed slightly better R2 than GRU in 

the uplink case, its overall RMSE values remained higher. 

SVR performed the poorest across all metrics, with the 

highest RMSE and the lowest R2 scores. The RF, meanwhile, 

produced mixed results. Its RMSE values were higher than 

those of LSTM and only marginally better than GRU for total 

traffic. Its R2 scores generally lagged behind LSTM and 

GRU, however, for total traffic, its R2 was slightly better than 

that of GRU. Despite having better performance comparing to 

ARIMA and SVR, it still showed slightly worse R2 than 

ARIMA in the uplink and downlink cases. This indicates that 

although RF sometimes reduced average prediction error 

slightly compared to the weaker models, it struggled to 

capture the temporal patterns and variability in the data, often 

regressing toward the mean and failing under conditions of 

high fluctuation. 

This set of results justifies the integration of learning 

temporal embeddings through Time2Vec into LSTM for 

further spatiotemporal modeling of cellular traffic. To provide a 

clearer comparison of performance, Fig. 5 visualizes the R2 

scores across all models for each traffic type, highlighting the 

consistent superiority of the proposed Time2Vec-enhanced 

LSTM model. It presents a grouped bar chart of R2 values, with 

separate bars for uplink, downlink, and total traffic types across 

all evaluated models. 

 
Fig. 5: R2 scores of all considered models across traffic types 

5.2. Ablation Study on Temporal Encoding 

To better understand the impact of temporal feature 

encoding on model performance, an ablation study was 

conducted by comparing four LSTM-based architectures: 

1) LSTM model using only traffic data (no time features),  

2) LSTM with raw time inputs (hour and day),  

3) LSTM with fixed cyclical encodings (sin/cos 

transformations),  

4) the proposed Time2Vec-enhanced LSTM. 

The performance differences among these models are 

illustrated in Fig. 6.  

 

Fig. 6: Ablation study comparing (a) RMSE and (b) R2 score 

across four LSTM-based models for uplink, downlink, and total 

traffic prediction 
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As shown in Fig. 6 (a) and (b), the inclusion and design 

of time features significantly affect the predictive 

performance. The LSTM with no time feature was found to 

have only moderate predictive capacity and is particularly 

limited in its ability to capture temporal dependencies 

inherent in the data. The inclusion of cyclical time encodings 

resulted in slightly reduced RMSE values for downlink and 

total traffic in comparison to the LSTM with no time feature, 

while it tended to have reduced R² scores for all traffic types. 

This would indicate that fixed periodic encodings do not 

properly capture the temporal variability in the data. On the 

other hand, LSTM with the raw hour and day features was 

better in some cases than the basic LSTM and its cyclical 

variants, indicating that whatever the model can glean from 

raw temporal inputs is worthwhile. 

In contrast, the Time2Vec-enhanced LSTM consistently 

achieved the lowest RMSE and highest R2 scores across all 

traffic types, clearly outperforming all other variants. These 

results confirm that learnable temporal embeddings from 

Time2Vec provide a more expressive and adaptive 

representation of time, enabling the model to better capture 

both short-term patterns and long-term periodic trends in the 

traffic data. 

6. Conclusions 

In this study, a hybrid Time2Vec-enahanced LSTM 

model was proposed for traffic volume prediction in cellular 

networks. The model simultaneously integrates periodic 

temporal features with historical traffic data so that 

independences of short-term changes and long-term cyclic 

patterns can be learned. 

Experiments indicated that the proposed Time2Vec-

enhanced LSTM model is dominant compared to considered 

DL, time series, and ML methods for uplink, downlink, and 

total traffic volume prediction. The model achieved lower 

RMSE and higher R2 scores across all traffic types, 

consistently outperforming all the models. Additionally, the 

ablation study confirmed that the Time2Vec-based temporal 

encoding was the key factor driving this superior 

performance, as models without time features or using only 

raw or cyclical time inputs consistently showed higher errors 

and lower R2 scores. Its strong performance is attributed to 

the inclusion of learnable periodic transformations via 

Time2Vec, which significantly enhanced the LSTM’s 

capacity to recognize cyclical patterns in the data. 

Summing up, the findings corroborate the importance of 

temporal embeddings in DL-based traffic prediction. The 

proposed Time2Vec-enhanced LSTM architecture appears to 

be a potential candidate for intelligent network traffic 

prediction. 

In the future, research may be undertaken to extend the 

model to multi-cell scenarios and to experiment with more 

time features such as weekends, holidays, and special events, 

while hyperparameter tuning could be applied to achieve 

improved prediction accuracy and performance. 
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