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Abstract: Aboveground biomass (AGB) is a key parameter in assessing forest carbon stocks, ecosystem productivity, and the global
carbon cycle. This study aims to model the annual AGB change between 2019 and 2024 in Alanya, Tirkiye, using remote sensing (RS)
technologies and open-source datasets. Sentinel-2 surface reflectance data, slope data derived from the Copernicus GLO-30 Digital
Elevation Model (DEM), and GEDI L4A biomass data were utilized. As GEDI point data cannot be directly used for mapping, it was
employed as a reference for model training. Spectral bands and vegetation indices from Sentinel-2 imagery were modeled using the
Random Forest algorithm. Model performance was evaluated using the coefficient of determination (R?) and root mean square error
(RMSE). The highest total AGB was observed during the 2022-2023 period, while the lowest occurred between 2019-2020. The
findings indicate that biomass dynamics in the region are influenced not only by climatic conditions but also significantly by
anthropogenic activities. The study presents a remote sensing-based approach to support carbon-neutral strategies through accurate

biomass monitoring.
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1. Introduction

Although there are many definitions of biomass, it
generally refers to the mass of plant organisms that grow
and develop by photosynthesis per unit area. Biomass,
which is formed as a result of plants storing solar energy
by converting it into energy through
photosynthesis, is also considered as organic carbon for
this reason (Kim et al., 2004).

Forest biomass is an important raw material for building
materials, pulp and paper production and energy
production as fuel. However, forests are also recognised
as an important regulator of the world's climate because
they capture and store large amounts of carbon in their
woody biomass (De et al.,, 2025).

Forest ecosystems provide many goods and services to
society when planned and managed sustainably. Forests
have many economic functions as well as important

chemical

ecological and environmental functions such as climate
regulation, water conservation, soil conservation and
biodiversity conservation. Recently, high consumption of
fossil fuels, deforestation and changes in land use and
serious changes in the
atmosphere resulting in climate change and global

land cover have caused

warming all over the world. Forest ecosystems store CO2
in their biomass and in the soil for a longer period of time
in the context of mitigating global climate change
(Evrendilek et al, 2004). Forest ecosystems are an
important component of the global carbon budget in
terrestrial ecosystems and there is a need to accurately
determine the amount of carbon they store (Sharma et
al.,, 2008). Biomass estimation is crucial for determining
carbon budgets (Giivergin, 2022). For this purpose, many
methods are used to determine the biomass in a spesific
area (Ravindranath and Ostwald, 2007).

Originating from the United Nations Framework
Convention on Climate Change (UNFCCC), the Kyoto
Protocol sets legally binding targets for industrialized
countries to reduce their greenhouse gas emissions or
remove them from the atmosphere. The Protocol was
adopted in 1997 and finally entered into force in
February 2005. The protocol aimed to reduce overall
greenhouse gas emissions by at least 5 per cent below
current 1990 levels during the commitment period from
2008 to 2012. To achieve this, industrialized member
states have set different binding targets ranging from -
8% to +10% of 1990 emissions. The EU has set a ‘bubble’

BSJ Eng Sci / Erciiment AKSOY

1429

This work is licensed (CC BY-NC 4.0) under Creative Commons Attribution 4.0 International License



Black Sea Journal of Engineering and Science

target of -8 per cent by 2010 and -20 per cent by 2020,
redistributed based on the EU agreement (UNFCCC). The
UK's reduction target is set at 20 per cent below 1990
levels by 2010, with a further legally binding reduction
target of 26-32 per cent below 1990 levels for 2020. In
the face of growing concerns that national CO2 emission
reduction targets cannot be met by emission reduction
strategies alone, industrialised countries are keen to find
alternative  ways to atmospheric  CO2
concentrations.

reduce

An important mechanism for removing CO2 from the
atmosphere is sequestration in growing
vegetation. The Clean Development Mechanism (CDM)
initiative under the Kyoto Protocol, among other things,
envisages forestry projects for carbon sequestration. This
allows industrialized countries to offset atmospheric
carbon emissions by financing such projects in

carbon

developing countries.

However, the viability of carbon sequestration
programmers relies on both a scientific understanding of
how COZ is captured and stored as vegetative biomass
and the development of operational techniques to
measure standing biomass globally.

The largest impact on the global carbon cycle comes from
human activities through the burning of biomass and
fossil fuels and extraction of vegetation, especially forests
(Watson et al.,, 2000). It is estimated that about 75% of
COZ emissions to the atmosphere are from combustion,
with the remainder contributed by land use change
through the removal of carbon sinks (Prentice et al.,
2001). It is therefore regrettable that the CDM currently
excludes tropical forest conservation projects. Ongoing
discussions culminated at the UN Climate Change
Conference in Bali (COP 13 December 2007) with a call
for the future inclusion of Reduced Emissions from
Deforestation in Developing Countries (REDD), now
commonly referred to as Reduced Emissions from
Deforestation and Degradation. Therefore, in addition to
estimating global forest biomass, forest monitoring is
needed by quantifying deforestation and other potential
sources of atmospheric CO2 emissions, such as fire
damage from forest areas. Earth observation techniques
are ideal for such mapping and monitoring activities as
they offer the ability to repeat data capture frequently
and cover large areas that may be difficult to reach for
field measurements.

With the increasing importance of forestry-based carbon
sequestration initiatives and global forest monitoring,
there is a need for accurate information at regional and
national scales on the spatial extent, condition, biomass
and growth potential of forests and woodlands with
canopy cover as low as 10 per cent. Earth observation
(EO) techniques are more suitable for biomass
estimation than traditional in situ methods. The latter
involves laborious fieldwork, often based on destructive
sampling (Gilreath et al,, 1994). While regional biomass
estimates based on in situ methods are unlikely to
accurately depict the heterogeneity of the landscape,

those based on EO data produce updatable biomass
estimates that more accurately represent the spatial
heterogeneity of the landscape. Depending on spatial and
temporal resolution, EO can detect differences in the
spatial distribution of biomass density, such as the
occurrence of forest gaps and land cover changes and
provides systematic observations at scales ranging from
global improving monitoring of
inaccessible areas (Aaslyng et al., 2003).

local to while
Accurate land cover mapping from EO data combined
with known biomass estimates for each land cover class
is a relatively simple use of EO for biomass estimation.
RadarRI methods such as Synthetic Aperture Radar
(SAR) interferometry (InSAR) used for canopy height
retrieval in closed canopy forests can be used in
combination with allometric equations to estimate AG
(Askne et al, 1997). In addition, SAR
backscattering has been statistically correlated with
forest biomass up to a certain level depending on the
radar wavelength (Le et al., 1992).

The most accurate and reliable methods for estimating

biomass

above-ground biomass are terrestrial measurements. The
above-ground biomass is accurately estimated using
allometric equations obtained with the help of terrestrial
data. This method is time consuming, labour intensive
and difficult to implement. It is especially difficult to do in
large areas (Lu et al, 2005). Biomass estimation with GIS
is not a widely used method because it requires a large,
accurate, reliable database and quality relationships
between these data. Remote sensing method is preferred
for estimating above-ground biomass especially in hard-
to-reach areas due to the ease of data collection, rapid
data evaluation, high correlations between band
brightness values, vegetation indices and texture values
(Nelson et al, 1988; Sader et al, 1989; Franklin and
Hiernaux, 1991; Steininger, 2000; Foody et al, 2001;
Santos et al., 2003; Zheng et al.,, 2004).

The above-ground forest biomass potential (carbon
stock) is classically calculated on the basis of values
obtained from field measurements. An alternative
method to this labour-intensive and time-consuming
method should be estimated with the support of
Geographic Information Systems (GIS) and Remote
Sensing (RS) techniques, which provide a new and
efficient approach. RS is based on the qualitative and
quantitative evaluation of electromagnetic radiation
emitted or reflected from an object without a mechanical
connection and the remote detection and measurement
of the properties of the object (Khan et al., 2024). Thanks
to RS techniques, the earth and earth objects can be
imaged by means of measuring instruments placed on
platforms in the atmosphere or space at a certain
distance from the earth (Al, 2022).

Developments in the field of RS have opened a new and
efficient way to estimate forest biomass. Pixel-based and
object-based  (segmentation) image
techniques, which are performed to interpret the images

classification

produced by RS techniques and to obtain information
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from these images, provide faster and more practical
results than approaches such as field measurement. The
increase in image resolution in RS gives more importance
to segmentation methods together with pixel-based
classification techniques.

Recently, studies have been carried out to estimate
above-ground biomass in large forested areas using
remote sensing data (Houghton et al., 2009; Gallaun et al,,
2010). In particular, Landsat satellite images, the first
natural resource satellite, are used both in small areas
and in large forested areas. However, there are many
studies in the literature on estimating aboveground
biomass using different satellite images (Muukkonen and
Heiskanen, 2005; Eckert et al,, 2012). Moreover, studies
have also been carried out on the estimation of AGB using
radar and lidar data, and it is stated that the model
estimation results obtained from these studies give
better results than the model estimation results obtained
from optical satellite images (Lu et al,, 2005; Houghton et
al, 2009).

Lidar and radar satellite data have been used to estimate
AGB in different forest ecosystems (Zhao et al., 2016;
Keles et al., 2024). It has been stated that especially long
wavelength radar data can be used to estimate AGB in
mixed forest ecosystems (Zimble et al., 2003).

A preliminary research study was carried out using the
bibliometric analysis technique based on quantitative
data and numerical measurement indicators of previous
studies on the subject of biomass and Earth Observation
technology including remote sensing and GIS technology.
After searching for “earth observation” and “biomass” on
Web of Science, Martin Herold was detected as the most
cited author with 592 citations, lan Mccallum with 527
citations, and A. Uwe Schneider with 510 citations.

When countries are considered in terms of the criteria of
publishing at least 1 work and receiving 1 citation, the
countries with the most citations are the USA (7513
citations), the UK (6590 citations) and Germany (5017
citations). In terms of total connectivity, two of these
three countries are in the top three. The other country in
the top three in terms of connectivity and in third place is
Canada. In terms of the number of works, the ranking is
England (151 publications), America (126 publications)
and China (122 publications). These results are shown in
the Figure 1. Citation Links of Countries below
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Figure 1. Citation links of countries.
Institutional structures make the most important
contributions to biomass and Earth observation studies.
In order to examine the work of institutions in the field
and to identify institutions that are intensively active, the
criteria of at least 1 work being published and 1 citation
being received were examined. While the Chinese
Academy of Sciences (45 works), Plymouth Marine
Laboratory (33 works), and University of Leicester (28
works) were represented by works, the institutions
addressing the most cited publications were the Chinese
Academy of Sciences (1211 citations), the National
and Atmospheric (1194
citations), and Plymouth Marine Laboratory (1081
citations). This institutional citation link relationship is
shown in Figure 2. Citation Links of Institutions.
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Figure 2. Citation links of institutions.

When we look at the most frequently used keywords in
biomass and Earth observation publications, the most
frequently used expressions are remote sensing (ground
tracking) with 60 repetitions, lidar (sensor) with 35
repetitions, sentinel-2 (satellite) with 32 repetitions,
modus (a type of radiometer developed by NASA) with
23 repetitions and phytoplankton (photo-plankton) with
20 repetitions. This keyword link information is shown in
Figure 3. Most Frequently Used Keyword links below.
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Figure 3. Most Frequently Used Keyword Links

In biomass studies, total Aboveground Biomass (AGB)
data are primarily derived from GEDI observations.
Utilizing laser technology, GEDI maps vegetation in the
vertical dimension, enabling three-dimensional modeling
of biomass distribution, particularly in tropical and
temperate forest ecosystems (Duncanson et al, 2022).
The mission has been instrumental in tracking annual
forest carbon changes at a spatial resolution of 1 km
(Potapov et al,, 2021). In the Amazon Basin, combining
GEDI data with Sentinel-2 satellite imagery has achieved
high biomass estimation accuracy, reaching up to 82%.
This accuracy has been further enhanced in steep and
densely forested areas (Silveira et al, 2023). Similarly,
GEDI-based validation studies in western U.S. forests
have yielded strong correlation coefficients (R* = 0.90)
and low error rates (RMSE = 32.62 Mg/ha) (Cao et al,
2023). Comparable results have also been reported in
boreal forests in Norway.

This study proposes a high-accuracy biomass estimation
methodology based on remote sensing and open-access
datasets. The integration of image processing techniques
and index-based models allows for rapid and precise
analysis over large areas. The use of publicly available
data not only minimizes operational costs but also
enhances sustainability by enabling frequent analysis
and retrospective access to long-term time series
datasets. These aspects represent major advantages of
the proposed approach in supporting data-driven forest
carbon monitoring.

2. Materials and Methods

Study Area Alanya. 36'30'07° and 36'36'31’ north
latitudes and 31'38'40° and 32'32'02’ east longitudes,
135 km from the city centre within the borders of
Antalya province on the Mediterranean coast of Tiirkiye.
The study area is shown in the following Figure 4.

Figure 4. Geolocation.

Alanya district, which is the study area, is the district

with the most fertile soil richness of the region due to its

location and climate characteristics. District forests

account for 0.5% of Tiirkiye's forest size. Afforestation

works are carried out in the region. An average area of

750 hectares is afforested annually.

While the mountainous areas of the region have larch
and cedar trees, the coastal areas have red pine tree type.
Due to banana and citrus production, which brings
significant income to the region, these tree types are
intensively present (Turgut and Giinlii, 2022). These
trees are generally located in the coastal area. While
Avacado and Kiwi trees can be observed in every area,
Quince, Pear and Apple trees are found in mountainous
areas due to their cold resistance. Recently, as a result of
the planting of Eucalyptus trees as a method in the marsh
drying works, these types of trees are found in the region
for ornamental purposes. As can be seen in the light of
the above information, the region contains a rich green
area type due to its different characteristics. The green
area information of the study area is given in the area
and percentage information with the Pie Slice Image in
Figure 5.

205860, 28880, B Agriculture
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Figure 5. Green area information (Alanya Governorship).
All procedures carried out in the study were itemized
and presented in the form of a workflow diagram. The
flowchart is shown in the following Figure 6.
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Figure.6. Flowchart.

Climatically, when the study area is examined, the region
has arid and hot summers. It has been determined that
the winters are rainy and mild. The breeze wind coming
from the sea reduces the heat effect in summer. Table 1
below, contains information that helps to deduce the
average climatic characteristics of the province where
the study area is located between 1930 and 2024.
17.05.2020 measurement was determined as 41.7 °C,
06.06.2000 measurement was determined as 45 °C,
01.10.2022 measurement was determined as 41.2 2C and
06.06.2024 measurement was determined as 45 °C. For
the generation of climate data, 30-year data of 220
stations were used.

Table.1. Average climatic characteristics between 1930 and 2023

1930 - 2023

Month AT AHT AMT AST ANRD MTRA

*HT (°C) *LT (°C)
1 10 14.9 6 5.1 12,5 234.5 23.9 -4.3
2 10.7 15.6 6.4 5.8 10.45 150.2 26.7 -4.6
3 12.9 18 8.1 6.7 8.63 92.1 28.6 -1.6
4 16.4 214 113 8 6.51 49 36.4 1.4
5 20.6 25.7 15.3 9.8 5.22 34.3 41.7 6.7
6 25.3 30.7 19.7 11.4 2.56 11 448 11.1
7 28.6 34.2 22.8 11.8 0.53 44 45 14.8
8 28.4 34.1 22.8 113 0.55 43 44.6 13.6
9 25.3 31.2 19.5 9.8 1.71 16.9 425 10.3
10 20.6 26.6 15.3 7.9 5.45 70.9 412 49
11 15.5 21.3 10.9 6.3 7.49 129.7 33 0
12 11.7 16.7 7.7 49 11.91 256.1 25.4 -1.9
13 18.8 24.2 13.8 8.2 73.5 1053.4 45 -4.6

HT=highest temperature; LT=lowest temperature; AT=average temperature; AHT=average highest temperature; AMT=average
minimum temperature; AST=average sunbathing time (hours); ANDR=average number of rainy days; MTRA=monthly total rainfall

average (mm).

First, Preparation of Data Sets was performed., upland
biomass density modelling was performed using
Sentinel-2 (S2) and GEDI L4A data. In addition, GLO-30
Digital Elevation Model (DEM) data was also used for
slope calculations. In the study, time series from 2019 to
2024, which is the temporal data intersection time of the
layers, were used. In the study, the time series from 2019
to 2024, which is the temporal data intersection time of
the layers, was used.

The datasets used in the study and their corresponding
characteristics are presented in the Table.2 below. The
process steps are as follows: Sentinel-2 data were filtered
to the region and time interval specified for the year
2022. Then, various quality controls and band scaling
operations were performed on the images. Besides,
various vegetation and surface indices such as NDVI,

MNDWI, NDBI, EVI and BSI have been added. GEDI L4A
data was used for biomass density estimations and
improved with filters such as data quality and slope.
Areas sloping more than 30 degrees were masked.
Elevation and slope bands were calculated using DEM
data and these data were added to the system as
additional variables to be used in biomass estimation.

As the second step, Data Processing and Filtering process
was performed. Quality control filters were applied on
Sentinel-2 and GEDI data. For Sentinel-2 data, images
with low cloudiness values were selected using ‘Cloud
Score Plus’ and the spatial resolution of the images was
scaled to 10 metres. GEDI data Quality was controlled
with ‘14_quality_flag’ and ‘degrade_flag’ variables and
masked with variables such as slope and error rate. As
the third step, Model Training process was performed.
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Sentinel-2 and DEM data were used to model the biomass
density to be estimated:

Random Forest regression algorithm was preferred for
modelling biomass density. The model was trained to
estimate the aboveground biomass density (AGBD) for
each pixel. The training data was limited to 1000 samples
and these samples were determined by stratified
sampling method. In the training process, Sentinel-2
image bands and DEM bands were used as ‘predictors’
and GEDI data was included in the model as ‘predicted’
values.

As the fourth step, Model Evaluation process was
performed. The performance of the model was evaluated
using the root mean square error (RMSE). Furthermore, a
scatter plot visualising the relationship between the
predicted biomass density values and the observed
values was created. In the graph, the predicted and

Table 2. Data sets

observed biomass values are compared and a linear
trend line is added on the graph. As a result of this
analysis, biomass density was estimated and Total AGB
(Mg), which is the total amount of biomass in the
identified land classes, was extracted. Graphs, results and
explanations are given under the heading of findings
below.

As the fifth step, Findings process was performed. In
order to examine the relationship between the biomass
density values estimated on an annual basis in the time
interval between 2019 and 2023 and the observed
values, each year is considered separately. Figure 7.
below shows a certain slope in the Regression line graph
between Observed and Aboveground Biomass Density
between 2019-2020. A linear relationship was found
between the predicted Aboveground Biomass Density
values (y-axis) and the Observed values (x-axis).

SENTINEL-2
Resolution Detail
13 bands (443-2190 nm), covering visible, NIR, red
Spectral )
edge, and SWIR regions.
) . 12-bit resolution, reflectance range 0-4095, enabling

Radiometric . -

high sensitivity.

10 m:B2-B4 (Vis),B8 (NIR);20 m: B5-

Spatial B8A(RedEdge),B11-12(SWIR);60 m: B1, B9-B10

(Atmospheric).
Temporal Revisit time ~5 days, varies by weather and location.

GEDI L4A employs an active LiDAR system operating in a

single near-infrared wavelength band.

Spectral
Radiometric
Spatial

Temporal

GEDI L4A uses active LiDAR in a single NIR band.
16-bit resolution captures backscatter with high
accuracy for detailed vertical structure.
Footprint: ~25 m; spacing: 60 m nadir, ~600 m globally.
45-day revisit (ISS-dependent); limited global coverage
due to orbit.

GLO-30 Digital Elevation Model-DEM

Spectral
Radiometric
Spatial

Temporal

LiDAR wavelength: 1064 nm (NIR).
16-bit precision ensures accurate LiDAR backscatter
measurement.
Footprint: ~25 m; spacing: 60 m nadir, ~600 m globally.
45-day revisit (ISS-dependent); coverage limited to
orbital track

Aeagrmret By Dy Mgl

{m1erea

Figure 7.2019-2020 regression graph.

R-square (r?), 0.788 was obtained. This value reveals that
the observed value, which is the independent variable of
the model, explains the predicted biomass density, which
is the dependent variable, at a high rate of 78.8%.
Although the model cannot be called a perfect model, it is
shown to be compatible with this value.

In satellite-based biomass estimation studies, numerous
factors such as atmospheric effects, sensor noise,
topographic variability, and vegetation diversity directly
influence model performance. Despite these challenges, a
high explanatory power of 78.8% (R*> = 0.788)
demonstrates both the statistical reliability and practical
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applicability of the model. In this regard, the model
provides a strong and reliable foundation for large-scale
spatial biomass monitoring, offering a fast, scalable, and
cost-effective approach.

The data are mostly distributed close to the regression
line. This revealed the existence of a linear relationship.
This graph reveals that the biomass density increases
with increasing observed value.It has been observed that
as the observed value increases, the deviations from the
regression line increase. The 300-400 range is the range
where this deviation is intense. A deviation from the
regression line above 300 values was detected on the
Observed (x-axis).

This reveals the deviation from the estimate.The reasons
for this are also analysed and inferences are made. They
will be explained in detail in the following sections of the
study.The Regression line graph shows a certain slope in
the same way as 2020-2021 shown in Figure.8 below.A
linear relationship was found between the predicted
Aboveground Biomass Density values (y-axis) and
Observed values (x-axis)

Whnrrwip o] Bk . Baa Fy [y M|

iy

Caasndd

Figure 8.2019-2020 Regression Graph.

R-square (r?), 0.793 was obtained. This value reveals that
the observed value, which is the independent variable of
the model, explains the predicted biomass density, which
is the dependent variable, at a high rate of 79.3%.
Although the model cannot be called a high accuracy
model, it is shown to be compatible with this value. The
data mostly show a distribution close to the regression
line. It has been revealed that these two variables change
proportionally and there is a linear relationship. This
graph reveals that biomass density increases with the
increase in the observed value.

It was observed that as the observed value increased, the
deviations from the regression line increased. While it is
in harmony up to the range of 300-400, the deviations
intensifies above 400. It has been determined that there
are deviations from the model.

A significant deviation from the regression line was
detected above 400 values of Observed (x-axis). In the
observations after 500 values, these deviation values are
at large rates. After these values, the model does not
represent the observations well and reveals a bias away
from the prediction. The reasons for this were also

analysed and inferences were made. They will be
explained in detail in the following sections of the study.
In the analysis for the years 2021-2022 shown in Figure
9 below, a linear relationship was found between the
Estimated Above Ground Biomass Density values (y-axis)
and the Observed (x-axis) values.

ey grmred Sawmgary Qmyty (Mg as)

Figure 9. 2021-2022 Regression Graph.

R-square (r?), 0.814 was obtained. This value reveals that
the observed value, which is the independent variable of
the model, explains the estimated biomass density, which
is the dependent variable, at a high rate with a value of
81.4%.

The data was mostly close to the regression line. It was
determined that the increase in biomass occurs when the
amount of observation increases. While there is a
distribution close to the regression line between 300-
400, it was determined that the deviations from the
model starting with the value of 400 and increasing with
500.

A linear relationship was found between the estimated
Aboveground Biomass Density values (y-axis) and
Observed values (x-axis) for the years 2022-2023 as
shown in Figure 10 below.

b Beman Dam iy (lhg'as!

Porla Bl

SRirwd

Figure.10. 2022-2023 Regression Graph.

R-square (r?), 0.711 was obtained. This value reveals that
the observed value, which is the independent variable of
the model, explains the predicted biomass density, which
is the dependent variable, to a high extent with a value of
71.1%. The data were generally observed close to the
regression line. It has been determined that The
observed increase in biomass appears to correlate with
increased sampling density The observed increase in
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biomass appears to correlate with increased sampling
density. Especially after the value of 600, anomalies were
detected to a great extent.

R-square (r?), 0.711 was obtained. This value reveals that
the observed value, which is the independent variable of
the model, explains the predicted biomass density, which
is the dependent variable, to a high extent with a value of
71.1%. The observed increase in biomass appears to
correlate with increased sampling density. Especially
after the value of 600, anomalies were detected to a great
extent.

In the interpretation of the linear regression analysis
graph between Observed and Aboveground Biomass
Density between 2023-2024 shown in Figure 11 below,
the following conclusions were obtained. A linear
found between the predicted
Aboveground Biomass Density values (y-axis) and the
Observed values (x-axis).

relationship was

Bhrengma B 1 Gares; kg |

= Lirmm

Figure.11.2023-2024 Regression Graph.

R-square (r?), 0.826 was obtained. This value shows that
the observed value, which is the independent variable of
the model, explains the estimated biomass density, which
is the dependent variable, to a high extent with a value of
82.6%. The distribution of the data is generally close to
the regression line. As the amount of observations
increases, the biomass increases. Especially after the
value of 300, anomalies were detected to a great extent.
In the study, Aboveground Biomass Density and the Root
Mean Square Error RMSE value of the model were
calculated separately for each year in the time interval
from 2019 to 2024. The results obtained are shown in
Table.3 below.

Table.3. Total AGB and RMSE by years

Time Interval Total AGB(Mg) RMSE
2019-2020 14043214.68 40.97
2020-2021 14638570.78 41

2021-2022 14339747.88 37.04
2022-2023 15029798.83 60.12
2023-2024 14658066.64 37.65

The following Figure.8. Annual Total AGB (Mg) graph was
created by utilising the data in Figure.12 above. The
lowest Total AGB(Mg) value in the study year range was

2019-2020 with the value 14043214.68, while the
highest Total AGB(Mg) value was 2022-2023. A decrease
was observed between 2023-2024, the last measurement
interval.

Total AGB(Mg]
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Figure.12. Total AGB by years.

The processes such as creating a data set for the study
area, standardisation of the data, creating the data in the
form of layers in the GIS platform environment,
modelling the data, obtaining the estimated Total AGB
(Mg) values were completed and the findings were
obtained. In the light of these findings, discussion and
conclusions are explained in detail below.

Increases in biomass observed over the years can be
attributed to forest regeneration, insect outbreaks, land
use changes, a decrease in wildfires, and post-fire forest
restoration activities during these periods.

3. Results and Discussion

A negative situation such as climate change, soil
degradation, soil erosion, urban growth, industrial
pollution, decrease in water resources, decrease in
biodiversity and natural disasters threaten the carbon
sinks on the earth. With the decrease in these areas,
diseases that threaten human health increase and living
conditions become more difficult.

The reduction in forested areas is the most important
variable that increases this amount. Forests are
destroyed by harmful activities such as settlement, fires,
conversion to agricultural land and stubble burning. In
addition to being an indicator of negativity, forest
enhancement activities in forests make a significant
contribution to the increase in biomass in forest
improvement activities. The study in the upper basin of
the Goksu River in the Eastern Mediterranean found that
the total above-ground stand carbon content increased
by 47.6 thousand tons and this increase was achieved by
forest improvement works (Giinlii et al., 2019).

It was revealed that there will be a 6.62% decrease in
plant biomass density in the study area Alanya until the
end of 2030 in the projection of 2018 data (isler et al,,
2024). It has been determined that the region is under
the threat of losing its natural carbon deposits due to

urbanization pressure as well as climate change. The
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common point in the studies reveals that urbanization
pressure is associated with forest fires. The negative
impact of urban growth pressure on vegetation was
obtained due to the strong link between EVI and NDBI
(Sharma et al,, 2022; Zhang et al., 2004).

The transformation of green areas into urban areas,
which can be characterized as irreversible actions in the
ecosystem, or the negativities caused by human activities
in urban areas reduce the biomass storage areas of the
earth.

Tourism is an important economic income sector among
human activities for the study area. Although this
situation creates opportunities to increase economic
income, it unplanned
urbanization and the reduction of natural land covers

causes uncontrolled and
and natural landscape areas.

With this study, the change in Biomass Density in Alanya
has been addressed in the year time interval. Forest
above ground biomass (AGB) calculation with forecasting
methodology was modelled with a dataset covering the
time interval between 2019 and 2023 in order to guide
local managers and planners. Spectral indices and bands
data (Sentinel-2 Surface Reflectance) used as data set
independent variable,
(CloudScore+) due to the consideration of cloud factor to

cloudlessness mask data
improve the quality of the data, Digital Elevation Model
data (Copernicus GLO-30 DEM) containing Slope and
Elevation information used as independent variables of
the model, and Real-time Aboveground Biomass Density
(GEDI L4A Raster Aboveground Biomass Density) data
which is Raster data were included in the model in the
study. This methodology demonstrates the applicability
of AGBD estimation at both temporal and spatial scales
using earth observation technology.

Global Ecosystem Dynamics Investigation (GEDI),
produces Light Detection and Ranging (LIDAR) data with
60 m range and 30 m spatial resolution. The data obtains
three-dimensional positional data of plants in the vertical
direction. A solution was developed using the regression
model, which is a machine learning method, as an
indirect solution technique for converting point-based
data into spatial data. In general, compared to other
years, the 2023-2024 period experienced fewer wildfires
and higher rainfall amounts. Therefore, the observed
increase in aboveground biomass during this period can
be attributed to
conditions.

In the application of the model over the years, the lowest
Total AGB(Mg) value was 14043214.68 in the 2019-2020
time period and the highest Total AGB(Mg) value was
15029798.83 in the 2022-2023 time period. Here, the
highest time interval was determined as the 2022-2023-
time interval with the highest error value of RMSE value

these favorable environmental

60.12. For this reason, it was determined that additional
variables should be included in the model in future
studies.

In the modeling process, the Random Forest algorithm
was used to capture nonlinear relationships between

variables. Its ability to reduce overfitting and provide
high generalization performance makes it a prominent
method. In comparison, Linear Regression is more
effective for identifying linear relationships, while
Support Vector Regression (SVR) can be less efficient on
large datasets and is sensitive to parameter tuning.
Random Forest was preferred in this study due to its
flexibility, robustness, and ability to produce accurate
results with minimal parameter configuration.

In this study, the hyperparameters of the Random Forest
algorithm were selected manually.
systematic optimization approach, parameters were
chosen using a trial-and-error-based method. This
represents one of the key areas for improvement in
future work.

Instead of a

With the model presented in this study, a feasible model
with low image processing load but high accuracy has
been presented.

In future studies to strengthen the model, it is suggested
that adding new variables to the model by dividing it into
subgroups such as humidity rate, soil type, plant species
will reduce the amount of outline values in the model and
increase the accuracy of the model. In the future, more
diverse and rich studies can be produced by trying
different regression models with linear regression
models and new variables. There is a possibility that the
approach of detecting complex relationships will make
the model more powerful. After the findings that are
suggestions for further studies, the fact that the model
accuracy is close to high rates with the least variable
input clearly reveals the success of the model in the
study.

Since climate characteristics cause many effects on
humans and nature, the subject of the study has emerged
as an important variable in the decrease and increase of
biomass. Isler et al. (2023) showed in their study that
despite the population increase, biomass change is
positive and the climate characteristics of the region have
a positive effect on plant health. It has been found that
the factors causing vegetation change are proportional to
the relationship between urbanization and climate. It
shows that climate conditions should be taken into
consideration in determining positive
environmental planning and policies.
Another noteworthy result of the study is the emphasis
on the critical role of the interaction between climate
conditions and urbanization in shaping vegetation
dynamics. In particular, despite higher
urbanization, Alanya exhibits a
vegetation status, indicating the contribution of more
favorable climatic conditions and positive proactive
environmental policies.

Obtaining Total AGB(Mg) indirectly, which is difficult to
obtain directly using Earth Observation technology,
offers more practical and accurate solutions. Since it has
become difficult to find biomass change with high
accuracy due to economic and technical limitations, this
methodology has provided decision makers and planners

proactive

levels of

more favorable
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with a solution-oriented contribution to the process by
revealing the spatial and temporal biomass change of the
region. In order to advance and develop the study,
additional variables should be included in the model and
studies should be carried out to improve the accuracy
quality of opensource data.
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