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Abstract: Aboveground biomass (AGB) is a key parameter in assessing forest carbon stocks, ecosystem productivity, and the global 

carbon cycle. This study aims to model the annual AGB change between 2019 and 2024 in Alanya, Türkiye, using remote sensing (RS) 

technologies and open-source datasets. Sentinel-2 surface reflectance data, slope data derived from the Copernicus GLO-30 Digital 

Elevation Model (DEM), and GEDI L4A biomass data were utilized. As GEDI point data cannot be directly used for mapping, it was 

employed as a reference for model training. Spectral bands and vegetation indices from Sentinel-2 imagery were modeled using the 

Random Forest algorithm. Model performance was evaluated using the coefficient of determination (R²) and root mean square error 

(RMSE). The highest total AGB was observed during the 2022–2023 period, while the lowest occurred between 2019–2020. The 

findings indicate that biomass dynamics in the region are influenced not only by climatic conditions but also significantly by 

anthropogenic activities. The study presents a remote sensing-based approach to support carbon-neutral strategies through accurate 

biomass monitoring. 
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1. Introduction 
Although there are many definitions of biomass, it 

generally refers to the mass of plant organisms that grow 

and develop by photosynthesis per unit area. Biomass, 

which is formed as a result of plants storing solar energy 

by converting it into chemical energy through 

photosynthesis, is also considered as organic carbon for 

this reason (Kim et al., 2004). 

Forest biomass is an important raw material for building 

materials, pulp and paper production and energy 

production as fuel. However, forests are also recognised 

as an important regulator of the world's climate because 

they capture and store large amounts of carbon in their 

woody biomass (De et al., 2025). 

Forest ecosystems provide many goods and services to 

society when planned and managed sustainably. Forests 

have many economic functions as well as important 

ecological and environmental functions such as climate 

regulation, water conservation, soil conservation and 

biodiversity conservation. Recently, high consumption of 

fossil fuels, deforestation and changes in land use and 

land cover have caused serious changes in the 

atmosphere resulting in climate change and global 

warming all over the world. Forest ecosystems store CO2 

in their biomass and in the soil for a longer period of time 

in the context of mitigating global climate change 

(Evrendilek et al., 2004). Forest ecosystems are an 

important component of the global carbon budget in 

terrestrial ecosystems and there is a need to accurately 

determine the amount of carbon they store (Sharma et 

al., 2008). Biomass estimation is crucial for determining 

carbon budgets (Güverçin, 2022). For this purpose, many 

methods are used to determine the biomass in a spesific 

area (Ravindranath and Ostwald, 2007). 

Originating from the United Nations Framework 

Convention on Climate Change (UNFCCC), the Kyoto 

Protocol sets legally binding targets for industrialized 

countries to reduce their greenhouse gas emissions or 

remove them from the atmosphere. The Protocol was 

adopted in 1997 and finally entered into force in 

February 2005. The protocol aimed to reduce overall 

greenhouse gas emissions by at least 5 per cent below 

current 1990 levels during the commitment period from 

2008 to 2012. To achieve this, industrialized member 

states have set different binding targets ranging from -

8% to +10% of 1990 emissions. The EU has set a ‘bubble’ 
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target of -8 per cent by 2010 and -20 per cent by 2020, 

redistributed based on the EU agreement (UNFCCC). The 

UK's reduction target is set at 20 per cent below 1990 

levels by 2010, with a further legally binding reduction 

target of 26-32 per cent below 1990 levels for 2020. In 

the face of growing concerns that national CO2 emission 

reduction targets cannot be met by emission reduction 

strategies alone, industrialised countries are keen to find 

alternative ways to reduce atmospheric CO2 

concentrations. 

An important mechanism for removing CO2 from the 

atmosphere is carbon sequestration in growing 

vegetation. The Clean Development Mechanism (CDM) 

initiative under the Kyoto Protocol, among other things, 

envisages forestry projects for carbon sequestration. This 

allows industrialized countries to offset atmospheric 

carbon emissions by financing such projects in 

developing countries.  

However, the viability of carbon sequestration 

programmers relies on both a scientific understanding of 

how CO2 is captured and stored as vegetative biomass 

and the development of operational techniques to 

measure standing biomass globally. 

The largest impact on the global carbon cycle comes from 

human activities through the burning of biomass and 

fossil fuels and extraction of vegetation, especially forests 

(Watson et al., 2000). It is estimated that about 75% of 

CO2 emissions to the atmosphere are from combustion, 

with the remainder contributed by land use change 

through the removal of carbon sinks (Prentice et al., 

2001). It is therefore regrettable that the CDM currently 

excludes tropical forest conservation projects. Ongoing 

discussions culminated at the UN Climate Change 

Conference in Bali (COP 13 December 2007) with a call 

for the future inclusion of Reduced Emissions from 

Deforestation in Developing Countries (REDD), now 

commonly referred to as Reduced Emissions from 

Deforestation and Degradation. Therefore, in addition to 

estimating global forest biomass, forest monitoring is 

needed by quantifying deforestation and other potential 

sources of atmospheric CO2 emissions, such as fire 

damage from forest areas. Earth observation techniques 

are ideal for such mapping and monitoring activities as 

they offer the ability to repeat data capture frequently 

and cover large areas that may be difficult to reach for 

field measurements. 

With the increasing importance of forestry-based carbon 

sequestration initiatives and global forest monitoring, 

there is a need for accurate information at regional and 

national scales on the spatial extent, condition, biomass 

and growth potential of forests and woodlands with 

canopy cover as low as 10 per cent. Earth observation 

(EO) techniques are more suitable for biomass 

estimation than traditional in situ methods. The latter 

involves laborious fieldwork, often based on destructive 

sampling (Gilreath et al., 1994). While regional biomass 

estimates based on in situ methods are unlikely to 

accurately depict the heterogeneity of the landscape, 

those based on EO data produce updatable biomass 

estimates that more accurately represent the spatial 

heterogeneity of the landscape. Depending on spatial and 

temporal resolution, EO can detect differences in the 

spatial distribution of biomass density, such as the 

occurrence of forest gaps and land cover changes and 

provides systematic observations at scales ranging from 

local to global while improving monitoring of 

inaccessible areas (Aaslyng et al., 2003). 

Accurate land cover mapping from EO data combined 

with known biomass estimates for each land cover class 

is a relatively simple use of EO for biomass estimation. 

RadarRI methods such as Synthetic Aperture Radar 

(SAR) interferometry (InSAR) used for canopy height 

retrieval in closed canopy forests can be used in 

combination with allometric equations to estimate AG 

biomass (Askne et al., 1997). In addition, SAR 

backscattering has been statistically correlated with 

forest biomass up to a certain level depending on the 

radar wavelength (Le et al., 1992). 

The most accurate and reliable methods for estimating 

above-ground biomass are terrestrial measurements. The 

above-ground biomass is accurately estimated using 

allometric equations obtained with the help of terrestrial 

data. This method is time consuming, labour intensive 

and difficult to implement. It is especially difficult to do in 

large areas (Lu et al., 2005). Biomass estimation with GIS 

is not a widely used method because it requires a large, 

accurate, reliable database and quality relationships 

between these data. Remote sensing method is preferred 

for estimating above-ground biomass especially in hard-

to-reach areas due to the ease of data collection, rapid 

data evaluation, high correlations between band 

brightness values, vegetation indices and texture values 

(Nelson et al., 1988; Sader et al., 1989; Franklin and 

Hiernaux, 1991; Steininger, 2000; Foody et al., 2001; 

Santos et al., 2003; Zheng et al., 2004). 

The above-ground forest biomass potential (carbon 

stock) is classically calculated on the basis of values 

obtained from field measurements. An alternative 

method to this labour-intensive and time-consuming 

method should be estimated with the support of 

Geographic Information Systems (GIS) and Remote 

Sensing (RS) techniques, which provide a new and 

efficient approach. RS is based on the qualitative and 

quantitative evaluation of electromagnetic radiation 

emitted or reflected from an object without a mechanical 

connection and the remote detection and measurement 

of the properties of the object (Khan et al., 2024). Thanks 

to RS techniques, the earth and earth objects can be 

imaged by means of measuring instruments placed on 

platforms in the atmosphere or space at a certain 

distance from the earth (Al, 2022). 

Developments in the field of RS have opened a new and 

efficient way to estimate forest biomass. Pixel-based and 

object-based (segmentation) image classification 

techniques, which are performed to interpret the images 

produced by RS techniques and to obtain information 
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from these images, provide faster and more practical 

results than approaches such as field measurement. The 

increase in image resolution in RS gives more importance 

to segmentation methods together with pixel-based 

classification techniques. 

Recently, studies have been carried out to estimate 

above-ground biomass in large forested areas using 

remote sensing data (Houghton et al., 2009; Gallaun et al., 

2010). In particular, Landsat satellite images, the first 

natural resource satellite, are used both in small areas 

and in large forested areas. However, there are many 

studies in the literature on estimating aboveground 

biomass using different satellite images (Muukkonen and 

Heiskanen, 2005; Eckert et al., 2012). Moreover, studies 

have also been carried out on the estimation of AGB using 

radar and lidar data, and it is stated that the model 

estimation results obtained from these studies give 

better results than the model estimation results obtained 

from optical satellite images (Lu et al., 2005; Houghton et 

al., 2009). 

Lidar and radar satellite data have been used to estimate 

AGB in different forest ecosystems (Zhao et al., 2016; 

Keleş et al., 2024). It has been stated that especially long 

wavelength radar data can be used to estimate AGB in 

mixed forest ecosystems (Zimble et al., 2003). 

A preliminary research study was carried out using the 

bibliometric analysis technique based on quantitative 

data and numerical measurement indicators of previous 

studies on the subject of biomass and Earth Observation 

technology including remote sensing and GIS technology. 

After searching for “earth observation” and “biomass” on 

Web of Science, Martin Herold was detected as the most 

cited author with 592 citations, Ian Mccallum with 527 

citations, and A. Uwe Schneider with 510 citations. 

When countries are considered in terms of the criteria of 

publishing at least 1 work and receiving 1 citation, the 

countries with the most citations are the USA (7513 

citations), the UK (6590 citations) and Germany (5017 

citations). In terms of total connectivity, two of these 

three countries are in the top three. The other country in 

the top three in terms of connectivity and in third place is 

Canada. In terms of the number of works, the ranking is 

England (151 publications), America (126 publications) 

and China (122 publications). These results are shown in 

the Figure 1. Citation Links of Countries below 
 

 
 

Figure 1. Citation links of countries. 

Institutional structures make the most important 

contributions to biomass and Earth observation studies. 

In order to examine the work of institutions in the field 

and to identify institutions that are intensively active, the 

criteria of at least 1 work being published and 1 citation 

being received were examined. While the Chinese 

Academy of Sciences (45 works), Plymouth Marine 

Laboratory (33 works), and University of Leicester (28 

works) were represented by works, the institutions 

addressing the most cited publications were the Chinese 

Academy of Sciences (1211 citations), the National 

Oceanic and Atmospheric Administration (1194 

citations), and Plymouth Marine Laboratory (1081 

citations). This institutional citation link relationship is 

shown in Figure 2. Citation Links of Institutions. 
 

 
 

Figure 2. Citation links of institutions. 

 

When we look at the most frequently used keywords in 

biomass and Earth observation publications, the most 

frequently used expressions are remote sensing (ground 

tracking) with 60 repetitions, lidar (sensor) with 35 

repetitions, sentinel-2 (satellite) with 32 repetitions, 

modus (a type of radiometer developed by NASA) with 

23 repetitions and phytoplankton (photo-plankton) with 

20 repetitions. This keyword link information is shown in 

Figure 3. Most Frequently Used Keyword links below. 
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Figure 3. Most Frequently Used Keyword Links  

 

In biomass studies, total Aboveground Biomass (AGB) 

data are primarily derived from GEDI observations. 

Utilizing laser technology, GEDI maps vegetation in the 

vertical dimension, enabling three-dimensional modeling 

of biomass distribution, particularly in tropical and 

temperate forest ecosystems (Duncanson et al., 2022). 

The mission has been instrumental in tracking annual 

forest carbon changes at a spatial resolution of 1 km 

(Potapov et al., 2021). In the Amazon Basin, combining 

GEDI data with Sentinel-2 satellite imagery has achieved 

high biomass estimation accuracy, reaching up to 82%. 

This accuracy has been further enhanced in steep and 

densely forested areas (Silveira et al., 2023). Similarly, 

GEDI-based validation studies in western U.S. forests 

have yielded strong correlation coefficients (R² = 0.90) 

and low error rates (RMSE = 32.62 Mg/ha) (Cao et al., 

2023). Comparable results have also been reported in 

boreal forests in Norway. 

This study proposes a high-accuracy biomass estimation 

methodology based on remote sensing and open-access 

datasets. The integration of image processing techniques 

and index-based models allows for rapid and precise 

analysis over large areas. The use of publicly available 

data not only minimizes operational costs but also 

enhances sustainability by enabling frequent analysis 

and retrospective access to long-term time series 

datasets. These aspects represent major advantages of 

the proposed approach in supporting data-driven forest 

carbon monitoring. 

 

2. Materials and Methods 
Study Area Alanya. 36'30'07‘ and 36'36'31’ north 

latitudes and 31'38'40‘ and 32'32'02’ east longitudes, 

135 km from the city centre within the borders of 

Antalya province on the Mediterranean coast of Türkiye. 

The study area is shown in the following Figure 4. 

 

 
 

Figure 4. Geolocation. 

 

Alanya district, which is the study area, is the district 

with the most fertile soil richness of the region due to its 

location and climate characteristics. District forests 

account for 0.5% of Türkiye's forest size. Afforestation 

works are carried out in the region. An average area of 

750 hectares is afforested annually. 

While the mountainous areas of the region have larch 

and cedar trees, the coastal areas have red pine tree type. 

Due to banana and citrus production, which brings 

significant income to the region, these tree types are 

intensively present (Turgut and Günlü, 2022). These 

trees are generally located in the coastal area. While 

Avacado and Kiwi trees can be observed in every area, 

Quince, Pear and Apple trees are found in mountainous 

areas due to their cold resistance. Recently, as a result of 

the planting of Eucalyptus trees as a method in the marsh 

drying works, these types of trees are found in the region 

for ornamental purposes. As can be seen in the light of 

the above information, the region contains a rich green 

area type due to its different characteristics. The green 

area information of the study area is given in the area 

and percentage information with the Pie Slice Image in 

Figure 5. 
 

 
 

Figure 5. Green area information (Alanya Governorship). 

All procedures carried out in the study were itemized 

and presented in the form of a workflow diagram. The 

flowchart is shown in the following Figure 6. 
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Figure.6. Flowchart. 

Climatically, when the study area is examined, the region 

has arid and hot summers. It has been determined that 

the winters are rainy and mild. The breeze wind coming 

from the sea reduces the heat effect in summer. Table 1 

below, contains information that helps to deduce the 

average climatic characteristics of the province where 

the study area is located between 1930 and 2024. 

17.05.2020 measurement was determined as 41.7 ºC, 

06.06.2000 measurement was determined as 45 ºC, 

01.10.2022 measurement was determined as 41.2 ºC and 

06.06.2024 measurement was determined as 45 ºC. For 

the generation of climate data, 30-year data of 220 

stations were used. 

 

 
 

 

Table.1. Average climatic characteristics between 1930 and 2023 

Month AT AHT AMT AST ANRD MTRA 

1930 - 2023 

*HT (°C) *LT (°C) 

1 10 14.9 6 5.1 12.5 234.5 23.9 -4.3 

2 10.7 15.6 6.4 5.8 10.45 150.2 26.7 -4.6 

3 12.9 18 8.1 6.7 8.63 92.1 28.6 -1.6 

4 16.4 21.4 11.3 8 6.51 49 36.4 1.4 

5 20.6 25.7 15.3 9.8 5.22 34.3 41.7 6.7 

6 25.3 30.7 19.7 11.4 2.56 11 44.8 11.1 

7 28.6 34.2 22.8 11.8 0.53 4.4 45 14.8 

8 28.4 34.1 22.8 11.3 0.55 4.3 44.6 13.6 

9 25.3 31.2 19.5 9.8 1.71 16.9 42.5 10.3 

10 20.6 26.6 15.3 7.9 5.45 70.9 41.2 4.9 

11 15.5 21.3 10.9 6.3 7.49 129.7 33 0 

12 11.7 16.7 7.7 4.9 11.91 256.1 25.4 -1.9 

13 18.8 24.2 13.8 8.2 73.5 1053.4 45 -4.6 

HT=highest temperature; LT=lowest temperature; AT=average temperature; AHT=average highest temperature; AMT=average 

minimum temperature; AST=average sunbathing time (hours); ANDR=average number of rainy days; MTRA=monthly total rainfall 

average (mm). 

 

First, Preparation of Data Sets was performed., upland 

biomass density modelling was performed using 

Sentinel-2 (S2) and GEDI L4A data. In addition, GLO-30 

Digital Elevation Model (DEM) data was also used for 

slope calculations. In the study, time series from 2019 to 

2024, which is the temporal data intersection time of the 

layers, were used. In the study, the time series from 2019 

to 2024, which is the temporal data intersection time of 

the layers, was used.  

The datasets used in the study and their corresponding 

characteristics are presented in the Table.2 below. The 

process steps are as follows: Sentinel-2 data were filtered 

to the region and time interval specified for the year 

2022. Then, various quality controls and band scaling 

operations were performed on the images. Besides, 

various vegetation and surface indices such as NDVI, 

MNDWI, NDBI, EVI and BSI have been added. GEDI L4A 

data was used for biomass density estimations and 

improved with filters such as data quality and slope. 

Areas sloping more than 30 degrees were masked. 

Elevation and slope bands were calculated using DEM 

data and these data were added to the system as 

additional variables to be used in biomass estimation. 

As the second step, Data Processing and Filtering process 

was performed. Quality control filters were applied on 

Sentinel-2 and GEDI data. For Sentinel-2 data, images 

with low cloudiness values were selected using ‘Cloud 

Score Plus’ and the spatial resolution of the images was 

scaled to 10 metres. GEDI data Quality was controlled 

with ‘l4_quality_flag’ and ‘degrade_flag’ variables and 

masked with variables such as slope and error rate. As 

the third step, Model Training process was performed. 
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Sentinel-2 and DEM data were used to model the biomass 

density to be estimated: 

Random Forest regression algorithm was preferred for 

modelling biomass density. The model was trained to 

estimate the aboveground biomass density (AGBD) for 

each pixel. The training data was limited to 1000 samples 

and these samples were determined by stratified 

sampling method. In the training process, Sentinel-2 

image bands and DEM bands were used as ‘predictors’ 

and GEDI data was included in the model as ‘predicted’ 

values. 

As the fourth step, Model Evaluation process was 

performed. The performance of the model was evaluated 

using the root mean square error (RMSE). Furthermore, a 

scatter plot visualising the relationship between the 

predicted biomass density values and the observed 

values was created. In the graph, the predicted and 

observed biomass values are compared and a linear 

trend line is added on the graph. As a result of this 

analysis, biomass density was estimated and Total AGB 

(Mg), which is the total amount of biomass in the 

identified land classes, was extracted. Graphs, results and 

explanations are given under the heading of findings 

below. 

As the fifth step, Findings process was performed. In 

order to examine the relationship between the biomass 

density values estimated on an annual basis in the time 

interval between 2019 and 2023 and the observed 

values, each year is considered separately. Figure 7. 

below shows a certain slope in the Regression line graph 

between Observed and Aboveground Biomass Density 

between 2019-2020. A linear relationship was found 

between the predicted Aboveground Biomass Density 

values (y-axis) and the Observed values (x-axis). 

 

Table 2. Data sets 

SENTINEL-2  

Resolution Detail 

Spectral 
13 bands (443–2190 nm), covering visible, NIR, red 

edge, and SWIR regions. 

Radiometric 
12-bit resolution, reflectance range 0–4095, enabling 

high sensitivity. 

Spatial 

10 m:B2–B4 (Vis),B8 (NIR);20 m: B5–

B8A(RedEdge),B11–12(SWIR);60 m: B1, B9–B10 

(Atmospheric). 

Temporal Revisit time ~5 days, varies by weather and location. 

GEDI L4A employs an active LiDAR system operating in a 

single near-infrared wavelength band. 
 

Spectral GEDI L4A uses active LiDAR in a single NIR band. 

Radiometric 
16-bit resolution captures backscatter with high 

accuracy for detailed vertical structure. 

Spatial Footprint: ~25 m; spacing: 60 m nadir, ~600 m globally. 

Temporal 
45-day revisit (ISS-dependent); limited global coverage 

due to orbit. 

GLO-30 Digital Elevation Model-DEM  

Spectral LiDAR wavelength: 1064 nm (NIR). 

Radiometric 
16-bit precision ensures accurate LiDAR backscatter 

measurement. 

Spatial Footprint: ~25 m; spacing: 60 m nadir, ~600 m globally. 

Temporal 
45-day revisit (ISS-dependent); coverage limited to 

orbital track 

 

 
 

Figure 7. 2019-2020 regression graph. 

R-square (r²), 0.788 was obtained. This value reveals that 

the observed value, which is the independent variable of 

the model, explains the predicted biomass density, which 

is the dependent variable, at a high rate of 78.8%. 

Although the model cannot be called a perfect model, it is 

shown to be compatible with this value. 

In satellite-based biomass estimation studies, numerous 

factors such as atmospheric effects, sensor noise, 

topographic variability, and vegetation diversity directly 

influence model performance. Despite these challenges, a 

high explanatory power of 78.8% (R² = 0.788) 

demonstrates both the statistical reliability and practical 
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applicability of the model. In this regard, the model 

provides a strong and reliable foundation for large-scale 

spatial biomass monitoring, offering a fast, scalable, and 

cost-effective approach. 

The data are mostly distributed close to the regression 

line. This revealed the existence of a linear relationship. 

This graph reveals that the biomass density increases 

with increasing observed value.It has been observed that 

as the observed value increases, the deviations from the 

regression line increase. The 300-400 range is the range 

where this deviation is intense. A deviation from the 

regression line above 300 values was detected on the 

Observed (x-axis). 

This reveals the deviation from the estimate.The reasons 

for this are also analysed and inferences are made. They 

will be explained in detail in the following sections of the 

study.The Regression line graph shows a certain slope in 

the same way as 2020-2021 shown in Figure.8 below.A 

linear relationship was found between the predicted 

Aboveground Biomass Density values (y-axis) and 

Observed values (x-axis) 
 

 
 

Figure 8. 2019-2020 Regression Graph. 

 
R-square (r²), 0.793 was obtained. This value reveals that 

the observed value, which is the independent variable of 

the model, explains the predicted biomass density, which 

is the dependent variable, at a high rate of 79.3%. 

Although the model cannot be called a high accuracy 

model, it is shown to be compatible with this value. The 

data mostly show a distribution close to the regression 

line. It has been revealed that these two variables change 

proportionally and there is a linear relationship. This 

graph reveals that biomass density increases with the 

increase in the observed value. 

It was observed that as the observed value increased, the 

deviations from the regression line increased. While it is 

in harmony up to the range of 300-400, the deviations 

intensifies above 400. It has been determined that there 

are deviations from the model. 

A significant deviation from the regression line was 

detected above 400 values of Observed (x-axis). In the 

observations after 500 values, these deviation values are 

at large rates. After these values, the model does not 

represent the observations well and reveals a bias away 

from the prediction. The reasons for this were also 

analysed and inferences were made. They will be 

explained in detail in the following sections of the study. 

In the analysis for the years 2021-2022 shown in Figure 

9 below, a linear relationship was found between the 

Estimated Above Ground Biomass Density values (y-axis) 

and the Observed (x-axis) values. 
 

 
 

Figure 9. 2021-2022 Regression Graph. 

 

R-square (r²), 0.814 was obtained. This value reveals that 

the observed value, which is the independent variable of 

the model, explains the estimated biomass density, which 

is the dependent variable, at a high rate with a value of 

81.4%. 

The data was mostly close to the regression line. It was 

determined that the increase in biomass occurs when the 

amount of observation increases. While there is a 

distribution close to the regression line between 300-

400, it was determined that the deviations from the 

model starting with the value of 400 and increasing with 

500. 

A linear relationship was found between the estimated 

Aboveground Biomass Density values (y-axis) and 

Observed values (x-axis) for the years 2022-2023 as 

shown in Figure 10 below. 
 

 
 

Figure.10. 2022-2023 Regression Graph. 

 

R-square (r²), 0.711 was obtained. This value reveals that 

the observed value, which is the independent variable of 

the model, explains the predicted biomass density, which 

is the dependent variable, to a high extent with a value of 

71.1%. The data were generally observed close to the 

regression line. It has been determined that The 

observed increase in biomass appears to correlate with 

increased sampling density The observed increase in 
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biomass appears to correlate with increased sampling 

density. Especially after the value of 600, anomalies were 

detected to a great extent. 
R-square (r²), 0.711 was obtained. This value reveals that 

the observed value, which is the independent variable of 

the model, explains the predicted biomass density, which 

is the dependent variable, to a high extent with a value of 

71.1%. The observed increase in biomass appears to 

correlate with increased sampling density. Especially 

after the value of 600, anomalies were detected to a great 

extent. 
In the interpretation of the linear regression analysis 

graph between Observed and Aboveground Biomass 

Density between 2023-2024 shown in Figure 11 below, 

the following conclusions were obtained. A linear 

relationship was found between the predicted 

Aboveground Biomass Density values (y-axis) and the 

Observed values (x-axis). 
 

 
 

Figure.11. 2023-2024 Regression Graph. 
 

R-square (r²), 0.826 was obtained. This value shows that 

the observed value, which is the independent variable of 

the model, explains the estimated biomass density, which 

is the dependent variable, to a high extent with a value of 

82.6%. The distribution of the data is generally close to 

the regression line. As the amount of observations 

increases, the biomass increases. Especially after the 

value of 300, anomalies were detected to a great extent. 

In the study, Aboveground Biomass Density and the Root 

Mean Square Error RMSE value of the model were 

calculated separately for each year in the time interval 

from 2019 to 2024. The results obtained are shown in 

Table.3 below. 

 

Table.3. Total AGB and RMSE by years 

Time Interval Total AGB(Mg) RMSE 

2019-2020 14043214.68 40.97 

2020-2021 14638570.78 41 

2021-2022 14339747.88 37.04 

2022-2023 15029798.83 60.12 

2023-2024 14658066.64 37.65 

 

The following Figure.8. Annual Total AGB (Mg) graph was 

created by utilising the data in Figure.12 above. The 

lowest Total AGB(Mg) value in the study year range was 

2019-2020 with the value 14043214.68, while the 

highest Total AGB(Mg) value was 2022-2023. A decrease 

was observed between 2023-2024, the last measurement 

interval. 
 

 
 

Figure.12. Total AGB by years. 

 

The processes such as creating a data set for the study 

area, standardisation of the data, creating the data in the 

form of layers in the GIS platform environment, 

modelling the data, obtaining the estimated Total AGB 

(Mg) values were completed and the findings were 

obtained. In the light of these findings, discussion and 

conclusions are explained in detail below. 
Increases in biomass observed over the years can be 

attributed to forest regeneration, insect outbreaks, land 

use changes, a decrease in wildfires, and post-fire forest 

restoration activities during these periods. 

 

3. Results and Discussion 
A negative situation such as climate change, soil 

degradation, soil erosion, urban growth, industrial 

pollution, decrease in water resources, decrease in 

biodiversity and natural disasters threaten the carbon 

sinks on the earth. With the decrease in these areas, 

diseases that threaten human health increase and living 

conditions become more difficult. 

The reduction in forested areas is the most important 

variable that increases this amount. Forests are 

destroyed by harmful activities such as settlement, fires, 

conversion to agricultural land and stubble burning. In 

addition to being an indicator of negativity, forest 

enhancement activities in forests make a significant 

contribution to the increase in biomass in forest 

improvement activities. The study in the upper basin of 

the Göksu River in the Eastern Mediterranean found that 

the total above-ground stand carbon content increased 

by 47.6 thousand tons and this increase was achieved by 
forest improvement works (Günlü et al., 2019). 

It was revealed that there will be a 6.62% decrease in 

plant biomass density in the study area Alanya until the 

end of 2030 in the projection of 2018 data (İşler et al., 

2024). It has been determined that the region is under 

the threat of losing its natural carbon deposits due to 

urbanization pressure as well as climate change. The 



Black Sea Journal of Engineering and Science 

BSJ Eng Sci / Ercüment AKSOY  1437 
 

common point in the studies reveals that urbanization 

pressure is associated with forest fires. The negative 

impact of urban growth pressure on vegetation was 

obtained due to the strong link between EVI and NDBI 

(Sharma et al., 2022; Zhang et al., 2004). 

The transformation of green areas into urban areas, 

which can be characterized as irreversible actions in the 

ecosystem, or the negativities caused by human activities 

in urban areas reduce the biomass storage areas of the 

earth. 

Tourism is an important economic income sector among 

human activities for the study area. Although this 

situation creates opportunities to increase economic 

income, it causes uncontrolled and unplanned 

urbanization and the reduction of natural land covers 

and natural landscape areas. 
With this study, the change in Biomass Density in Alanya 

has been addressed in the year time interval. Forest 

above ground biomass (AGB) calculation with forecasting 

methodology was modelled with a dataset covering the 

time interval between 2019 and 2023 in order to guide 

local managers and planners. Spectral indices and bands 

data (Sentinel-2 Surface Reflectance) used as data set 

independent variable, cloudlessness mask data 

(CloudScore+) due to the consideration of cloud factor to 

improve the quality of the data, Digital Elevation Model 

data (Copernicus GLO-30 DEM) containing Slope and 

Elevation information used as independent variables of 

the model, and Real-time Aboveground Biomass Density 

(GEDI L4A Raster Aboveground Biomass Density) data 

which is Raster data were included in the model in the 

study. This methodology demonstrates the applicability 

of AGBD estimation at both temporal and spatial scales 

using earth observation technology. 

Global Ecosystem Dynamics Investigation (GEDI), 

produces Light Detection and Ranging (LIDAR) data with 

60 m range and 30 m spatial resolution. The data obtains 

three-dimensional positional data of plants in the vertical 

direction. A solution was developed using the regression 

model, which is a machine learning method, as an 

indirect solution technique for converting point-based 

data into spatial data. In general, compared to other 

years, the 2023–2024 period experienced fewer wildfires 

and higher rainfall amounts. Therefore, the observed 

increase in aboveground biomass during this period can 

be attributed to these favorable environmental 

conditions. 

In the application of the model over the years, the lowest 

Total AGB(Mg) value was 14043214.68 in the 2019-2020 

time period and the highest Total AGB(Mg) value was 

15029798.83 in the 2022-2023 time period. Here, the 

highest time interval was determined as the 2022–2023-

time interval with the highest error value of RMSE value 

60.12. For this reason, it was determined that additional 

variables should be included in the model in future 

studies. 

In the modeling process, the Random Forest algorithm 

was used to capture nonlinear relationships between 

variables. Its ability to reduce overfitting and provide 

high generalization performance makes it a prominent 

method. In comparison, Linear Regression is more 

effective for identifying linear relationships, while 

Support Vector Regression (SVR) can be less efficient on 

large datasets and is sensitive to parameter tuning. 

Random Forest was preferred in this study due to its 

flexibility, robustness, and ability to produce accurate 

results with minimal parameter configuration. 

In this study, the hyperparameters of the Random Forest 

algorithm were selected manually. Instead of a 

systematic optimization approach, parameters were 

chosen using a trial-and-error-based method. This 

represents one of the key areas for improvement in 

future work. 

With the model presented in this study, a feasible model 

with low image processing load but high accuracy has 

been presented. 
In future studies to strengthen the model, it is suggested 

that adding new variables to the model by dividing it into 

subgroups such as humidity rate, soil type, plant species 

will reduce the amount of outline values in the model and 

increase the accuracy of the model. In the future, more 

diverse and rich studies can be produced by trying 

different regression models with linear regression 

models and new variables. There is a possibility that the 

approach of detecting complex relationships will make 

the model more powerful. After the findings that are 

suggestions for further studies, the fact that the model 

accuracy is close to high rates with the least variable 

input clearly reveals the success of the model in the 

study. 
Since climate characteristics cause many effects on 

humans and nature, the subject of the study has emerged 

as an important variable in the decrease and increase of 

biomass. İşler et al. (2023) showed in their study that 

despite the population increase, biomass change is 

positive and the climate characteristics of the region have 

a positive effect on plant health. It has been found that 

the factors causing vegetation change are proportional to 

the relationship between urbanization and climate. It 

shows that climate conditions should be taken into 

consideration in determining positive proactive 

environmental planning and policies. 
Another noteworthy result of the study is the emphasis 

on the critical role of the interaction between climate 

conditions and urbanization in shaping vegetation 

dynamics. In particular, despite higher levels of 

urbanization, Alanya exhibits a more favorable 

vegetation status, indicating the contribution of more 

favorable climatic conditions and positive proactive 

environmental policies. 
Obtaining Total AGB(Mg) indirectly, which is difficult to 

obtain directly using Earth Observation technology, 

offers more practical and accurate solutions. Since it has 

become difficult to find biomass change with high 

accuracy due to economic and technical limitations, this 

methodology has provided decision makers and planners 

https://gedi.umd.edu/
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with a solution-oriented contribution to the process by 

revealing the spatial and temporal biomass change of the 

region. In order to advance and develop the study, 

additional variables should be included in the model and 

studies should be carried out to improve the accuracy 

quality of opensource data. 
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