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FOURIER METHOD FOR INVERSE COEFFICIENT
EULER-BERNOULLI BEAM EQUATION

IREM BAGLAN

ABSTRACT. In this study, we find the inverse coefficient in the Euler-Bernoulli
beam equation with over determination conditions. We show the existence,
stability of the solution by iteration method.

1. INTRODUCTION

Mathematical modeling of sound wave distribution problems and also the vibra-
tion, buckling and dynamic behavior of various building elements widely used in
nanotechnology are formulated with following Euler-Bernoulli beam equations
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Due to the new and exceptionally its electronic and mechanical properties, carbon
nanotubes are considered to be one of the most useful material in future. Nowa-
days, nanotubes are used as atomic force microscopy, nanofillers for nanomotors,
nanobearings and nanosprings [I, [2, [B]. These elements are tackled by different
boundary conditions depending on different loading conditions. Therefore, investi-
gation used in the mathematical modeling of the structural components of nano-
materials continues to be a focus of interest amongst mathematicians.

In mathematics, the classical statement of Euler-Bernoulli beam equation
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is used for beam vibration equation.

As well as the homogeneous equation, quasilinear and non-linear equations can be
handled in this case. Various problems for equations of this type were investigated
and many results have been obtained in different ways. The practical advantages
of remote sensing are what make the inverse problems important in [4, [6 TT].The
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investigation of various problems concerning 4 th order homogeneous, linear and
quasi-linear equations has been one of the most attractive areas for mathematicians
and engineers due to their importance in the solution of several engineering prob-
lems. The reader is refereed to [9] [10, 2] for some relevant previous work on linear
and quasi-linear equations, applications.

The periodic boundary conditions are used many area [5]. Periodic boundary
conditions are used in molecular dynamics simulations to avoid problems with
boundary effects caused by finite size, and make the system more like an infinite
one, at the cost of possible periodicity effects,heat transfer, life sciences,on lunar
theory. A liquid, in the thermodynamic limit, would occupy an infinite volume.
It is common experience that one can perfectly well obtain the thermodynamic
properties of a material from a more modest sample. However, even a droplet
has more atoms or molecules than one can possibly hope to introduce into ones
computer simulation. Thus to simulate a bulk sample of liquid it is common practice
to use a trick known as periodic boundary conditions [7} [§].

Let T > 0 be fixed number and denote by I' := {0 <z <m, 0<t<T}. Let
{g(t),u(z,t)} satisfying the following equations

2 u
i)? + % —g(tu = f(z,t,u), (z,t)e T (1)
w(0,t) = w(m t),us(0,t) = ux(m,t) (2)
Upz(0,8) = Upe(T,1), Upra (0,8) = Upaw (7, t),te [0, T
u(z,0) = o), (3)
Ut(xa 0) = T/J(x) , L€ [07 ”T}

H(t) = /u(x,t)dm,te [0,T] (4)
0

Here:={0 <z <m 0<t<T}, p(z)e[0,n] and f(z,t,u)e T x (—o0,00).

Definition 1. {g(t),u(z,t)} € C[0,T] x (C*' ()N C™(T)) is called the classical
solution .

Definition 2. w(z,t) € C(T') is referred test function that gives the following
conditions:

w(T,z) = w(T,
Wi (T, 1), Weia (0, 1)

) = 0, w(0,t) = w(mt), we(0,8) = we(m,t), we(0,¢) =
w.’rmfc(7r7t)a te [O?T] .

8

Definition 3. u(z,t) € C(T) is named generalized solution that gives the following
equation:
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2. SOLUTION OF EULER BERNOULLI BEAM EQUATION
(C1): H(t) € C0,T);
(C72T)= p(z) € C?0,m], p(0) = ¢(7), ¥ (0) = ¢ (7), ¢ (0) = ¢ (), H(0)

O™ f(x,t,u) B oM f(x,t,7)
ox™ oxn

<b(z,t)|u—1a| ,n=0,1,2,

where b(x,t) € Lo(T) is Fourier coefficient (b(z,t) > 0),
(2) f(z t,u) € C30,7], te[0,T],
B) flzt,u)l,mg = f(@tu)lyr s fo (0, 8,0)] 0 = folm, t,u)|,—r
fmr(oatau) =0 fzat(ﬂ_at,u)h;:ﬂ— .

By Fourier method,

t m
2
U = 9004’7;!)0154’;//(t*’r)F(f’T,g’u)dde
00
Uk = P c0s(2k)%t + (;/}Iz])cz sin(2k) 2t
9 t m
. 2,
T reR? / / F(& 7,9, u)sin(2k)"(t — 7) cos 2kEdEdT
00
Uk = P c08(2k)%t + Vst sin(2k)%t
s sk (2k)2

t m
+@//F(577797“) sin(2k)?(t — 7) sin 2k&dédr.
00
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Let F(z,t,g,u) = g(t)u(z,t) + f(x,t,u).

U($,t) = %00+¢0t+ //t_T 6) )+f(§77-7u)>d§d7-]
+ Z cos 2kx {gpck cos(2k)?t + (12/)]6) sin(2k)? } (5)
k=1
00 t m
+Z7T 2// +f(£’7—u>)
k=1 0
x sin(2k)?(t — 7) cos 2k& cos 2kxdédT
+ sin 2k [%k cos(2k)%t + (Z’I:’)“Q sin(?k)Qt]
k=1
00 t m
+ 7T 2 // + f(§7 T u) )
k=1 0
x sin(2k)?(t — 7) sin 2k¢ sin 2kxdédT
where

AS)

o

Il
EREN)
\:1

2 / 2 7
o(T)dT, P, = ;/@(7) cos 2ktdr, p = - /cp(T)sin 2krdr,
0 0

2
vy = 7/77/1 VAT, = /1/1 ) cos 2kTdT, )4, = /1/1 ) sin 2kTdT,

T
2

folt,u) = f/f (1, t,u)dr, for(t, u) /f (1,t,u) cos 2kTdr,
™

0

2

fsk(t,u) = */f(T,t,’U,)SH’IQkJTdT,kZ1,2,3,...
T

(=)

Under the condition (C1)-(C3), differentiating (4), we obtain
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From (5) and (6), we have

T FE ) de
o(t) = e (7)
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), usk(t), k =1,...,n} is satisfied that

lwo(®)] | -
max + ’; Jnax |uer ()| + Jnax lusk(t)] ] < oo, by B.

max |uck(t)] + max |ugk(t)]

0<t<T 2 0<t<T 0<t<T ) ’

(@) = max 1005 (

k=1
where B is Banach space.

Theorem 4. Let the assumptions (C1)-(C8) be provided. Then the problem (1)-(4)
has a unique solution.

Proof. Tteration to equation (5), we get
N+1 0
ug™ (1) = g (1)

+2 ; W(t—r) M ()N (€, 7) + f(&,7,u™N) ) dedr
2 [ fens )

t m
0=+ g | / (g, 7) + f(& 7, u™))
0

x sin(2k)?(t — 1) cos 2kédédr,

E N) )u(N &)+ fg,, ul ) sin(2k)?(t — 7) sin 2k€ dédr,
o / / )

+
T
UE)O)(t) = g+ ot,
(1) = o cos(2k)?t + (fk) sin(2k) %t
“i?f)(t) = ¢, cos(2k)*t + (12/}k) sin(2k)%t
.y (& t,uM)) de
g HI(@) -

H{(t)
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From assumptions of the theorem, we have u()(t) € B, t € [0, T].

0= a0+ 2 [ [¢-7) (80000 € + 6. u) dear
0 0

After applying Cauchy inequalities, we have

]ug%)\ < ‘ )4 //t—T 0 (7)) (¢, T))2d§dT

1
2 2

/(th)QdT // € ru®) - fe 0)]2d§d7
0 0

t 2

/fz(ﬁ,T,O)dng
0

=Hl\>
\

(B

O/O/(t —7)2%dr

After applying Lipschitz inequalities and taking the maximum of both sides of the
last inequalities consecutively, we get

AT

—

0

max

o] < \/ ol ol
e [uf ()] < ol + 7 o] +2 9" (1) o

20/ T @ @) bt 0l ) + 2 2 10

u (1) = gt E / / (9@u® € m) + f€ 7 u®) )
0

x sin(2k)2(t — ) cos 2k&EdEdrT

After applying Cauchy inequalities,we have

™ 2

¢
2
ug)c)(t)‘—l—m // (sin(2k)? t—7‘))2d7'
0

/ / ©) (7 0>5T)cos2k§) dédr 7

) <

2
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2
+7T(2/<:)2 b/o/sm 2k (t—1)) 7')
t m i )
x F&7,ul) = f(€,7,0) cos 2k¢ dﬁdT)
/] |
t m %
2
+=(2k)? (sin(2k)?(t — T))QdT)
v
t m
X f2(€,7,0) cos? 2k§d§dr)
/]

Taking sum of both of side with respect to k (k =1, oo) the last equations, we have

ug;)@)\ +‘2/—f§: klz ( / ] (9 (r)u® . 7) cos2k§)2d§dT)
k=1

2

N

2

1
2

00

+\/77TTZ% (//[f(E,T,u(O))f(g,T,O)COSZkfrdng)
k=1 00

+€;]j (//f (&, 7,0) cos 2k§d£dr)

Applying Holder inequalities,we obtain

Do < Do)+ T (z k)
(i / ] O (7)) (¢, T)CObzkg) dgdr)
k=17 0

M

% o Uo7
+\/T? (Z ;32) (Z// {f(&,r,u(f))) — f(&,7,0) cos?kfrdfdr)
k=1 k=19 o
\/T (00 1>% o L7 ) , 2
o = f2(€,7,0) cos? 2kEdedT
FEH) (2]

[N
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2 2

where (Z k2> =%

Applying Bessel, Lipshitz conditions consecutively, we obtain

oo 2 oo

1 ™

) t)‘ < Z\%k\ + QZWJCH
k=1 k=1

EHU“’)@H o @i

\/>

L) bt + o 7ot 0
and by following the same approaches, we have
> max [uG O] < D lewl+ 55 >l
k=1 k=1 k=1
o ERON ]
C[0,T]
\F
L) 1ol 0y + T 152t O
6 \
1) — 1 ‘
Hu (t)HB o%@XT + Z <Or<nta<XT Ck )‘ + OréltaSXT g (1) >

o]

IN

k=1

8 /T
2+ 60 0], o)
+ 37r+ )| I clo,T]
mf
oy = D w0 )| fota, 0l

+<2\/; ”f> 1t 0 -

From assumptions of the theorem, we have u(*)(¢) € B.

2 o
™
74'2 [Perl + l@srl) + ﬂz [erl + [¥sk])
k=1
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For the step N,

U,
o, = g 0
”u (*) B orélta<XT + Z oglta<XT u t) +OI£%XT g ()
< el 5
k=1 k=1

i+ B0 ], o],
ey =+ 2 )| e Ol

+<2\/? + i> 1@t 0 -

According to u(M)(t) € B and assumptions of the theorem, we get u(N*1(t) € B,
{u(®)} = {uo(t), uek(t), usk(t), k=1,2,..} € B.

- f f (f? ta u(O)) d§

M () = 0

After applying Cauchy inequalities, we have

‘H"(t)( . (Ofdfy (Of([f (&, t,u() —f(ﬁ,t70)])2d£>2
[H(t)] [H (t)]

After applying Lipschitz inequalities and taking the maximum of both sides of the
last inequalities consecutively, we get

‘9(”(15 ‘ <

"

Hg(l) clo.7) = Ij{(it)) |H (e H 1B, Ol )
ufn (o 1,0) -

From assumptions of the theorem, we have ¢ (t) € B.
For the step N,

"

HQ(N+1)(t) clo,7] = I;]‘I(g) |H (N) H ||b(m t)”L )
YTt 0l

[H(t)]
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According to ¢V (t) € B and assumptions of the theorem, we get gV (t) € B.
For N — oo, N+ (t), g¥+1) are converged.
After applying Cauchy, Bessel,Lipschitz, Holder inequalities consecutively,we ob-

tain
\@m@)_wmuwB < @VZ;+ﬂ¢TWM@“WIH¢m“wcwﬂ

mf
+(2\/; H ©)( H 16z, )l 1, ()

+(2\/; mﬁ) 1 (@, ¢,0)l 1, ry -

T 7T
4 = @+ 5 [\ a0
(\/;+ 6 ! cor

3 T
v+ (0) +
+(2\/7 374- G ) Hu (t)HB ||b($at)||L2(F) M).

[PRICEEI0

O et

clor |

oo,

3 VT
< efTerD ol ool o
_(\/3:4- ) || ( 9 g()c[o,T] ®)
Ry v
3 B B
T3 W\F
+(2\/;+ T) u® = u©| NG, )l

Hg(” — W)

Using (10),we obtain

A SRR M

Hu(”(t) - “(O)HB oz, )l Lyry- (10)

C[0,T] - | |

-
C[0,T7]

a5+ ZD ], o -

T3 mf H a <0>H|

+(2 37r

|ba?t||L
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‘ u® (1) — u(l)(t)HB < (2\/;4- W[) |H\(f)1|4D 16(z, )l 1, () -

T
D = 1—(2\/3:+ G )u}(ﬁﬂllb(ﬂHmmH HC[O,T}

—(2\/?; 4 %) (IO

For the step V,we get

Jo 0@ - gy

where

VT (1) — (V-1
| = et Ol

C[0,T] |H |
HU(NH)(t) _ u(N)(t)HB < (2 ?));; W\6/T) |H(t\)/El;4\/m ||b(m’t)||JLVz(F)

uWNTD — y(N) N — o0, then gVt — ¢V N — 0.
Let us show that

lim U(N+1)(t) =u(t), lim g(N+1)(t) =g(t).

N—oo N—o00

o-sie)
< o2 o o o),
ey + S0 [ o )
2y 2 T - a0,
o (B st
ot - a0 < = )l

Let us consider (10) in (11) and applymg Gronwall’s inequality to (11), we yield

CHESRES IOl F)] (12

X exp2(2 J: +i i (RO )2.

- <

2
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uNHD S, gD g N — 0.

For the uniqueness, let (u,g), (v,h) are two solution of (1)-(4). After apply-
ing Cauchy, Bessel,Lipschitz, Holder inequalities consecutively to |u(t) — v(¢)| and
lg(t) — h(t)|, we obtain

Ju() = v®ll5 < W; + 2 g0y~ 10, 1O

vy T T / [#Entum - o dar )|
0 0

OO ;& leu(t) = o)l 6. Dl

/ / B(E7) fulr) — o(r)Pdedr | . (13)
0 0

If (13) inequalities is applied Gronwall, then we get u(t) = v(t) .Hence we have
g(t) = h(t). The proof is completed. O

S

[u(t) —o@)p < (2

+
3

3. STABILITY OF THE SOLUTION (g,u)

Theorem 5. Let the assumptions (C1)-(C8) be provided, the solution (g,u) of the
problem (1)-(4) depends continuously upon the data o, H.

Proof. Suppose VU = {p, H, f} , ¥ = {p, H, f} and positive constants M;,
i = 1,2 such that

1 Hll 007 < Moy [H rpg oy < My lellgngon < Mo, [@llcsgon < M.

[0,77]

Let [0 = (1|1 .y + lellesgo.n + |l caory)- Let (g, ) and (g, @) are solution.

U—T = (¢0_%)+(¢ — 1) t

2 2

+ Zcos 2kx (@ — Por) cos(2k)*t
k=1

+ Z sin 2kx (g, — Par) sin(2k)%t

2 / / (t ) (9(r) ~ 90 u(r)dedr
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3w

(t =) (u(r) = ul®)) p(r)dedr

3w

(t - T) [f(£7 T, u(§7 T)) - f(§> Tvﬂ<§7 T))] dng

S O —
St~ “T—

/ (g(T) - WT)) u(7) sin(2k)?(t — 1) cos 2kEdédT

[ [rterutemn - st ]|
0

x sin(2k)?(t — ) cos 2kédEdr

+ i (22k)2 // (p(T) - ﬁ) u(7) sin(2k)?(t — 7) sin 2k&dédT
0 0

Jo%s) t
+ Z 77(22@2 // (U(T) - U(T)> p(7) sin(2k)?(t — 7) sin 2k&dedr
k=1 00
%) 9 t ) | 2
Jrz m(2k)2 // [f&,mul, 1)) — f(&7,u(&, 7))]sin(2k)*(t — 7) cos 2k&dEdT,
k=1 00
ju—a> < 2ME|v - ¥’ (14)
t m
x exp 2M} ( bQ(S,T)dng) )
/]
For U — W then u — u. Hence g — §. -

4. CONCLUSION

The inverse problem regarding the simultaneously identification of the time-
dependent coefficient and the temperature distribution in Euler-Bernoulli beam
equations with periodic boundary and integral overdetermination conditions has
been considered. In the article, the conditions for the existence, uniqueness and
continuous dependence upon the data of this inverse problem have been established.
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This provides the insight the modeling of problems with periodic boundary condi-
tions. Periodic boundary conditions are more difficult than local boundary condi-
tions for the inverse coefficient problems. This work advances our understanding
of the use of the Fourier method of separation of variables in the investigation of
inverse problems for Euler-Bernoulli beam equations. The author plan to consider
various inverse problems in future studies, since the method discussed has a wide
range of applications.
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sentation of this paper.
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