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Abstract
In this paper, with a continuous lattice L as the truth valued table, we first prove that the
non-topological category L-AlgSys of L-algebraic systems can be embedded into the topo-
logical category of variety-based (A,L)-fuzzy algebraic closure spaces. Subsequently, we
demonstrate that the Sierpinski L-algebraic system (L, S, |=S) is an injective object in the
category L-AlgSys0 of S0-L-algebraic systems. Furthermore, we prove that L-AlgSys0 is
epireflective in L-AlgSys, while the category L-SobAlgSys of sober L-algebraic systems
is reflective in L-AlgSys. Finally, we consider the relationships between the category of
L-algebraic closure spaces and that of strong L-algebraic systems, and between the cate-
gory of continuous lattices and that of sober L-algebraic systems.
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1. Introduction
For emphasizing the relevant characteristics of program semantics, Vickers[20] intro-

duced the notion of topological systems using the concept of satisfaction relation. It
is well known that the category TopSys of topological systems, has ground category
Set×Loc, where Loc is the category of locales (i.e., the opposite category of the category
of frames). Crucially, TopSys exhibits significant differences compared to the category
Top of topological spaces. Specifically, Top is topological over Set, whereas TopSys fails
to be topological over its ground category Set × Loc. Consequently, TopSys lacks initial
and final structures in general[4]. In the context of domain theory, topological concepts
are employed to analyze program semantics. While one might naturally expect TopSys
to exhibit topological behavior relative to its ground category, this intuition is invalid.
However, Denniston et al. in [4, 5] demonstrated that TopSys can be embedded into the
topological category Loc-Top of variable-basis topological spaces. This embedding sug-
gests that Loc-Top may be regarded as a “topological completion" of TopSys. Further-
more, since TopSys is essentially algebraic over Set × Loc, a continuous map in TopSys
is a homeomorphism if and only if it is an isomorphism in the ground Set × Loc[17, 18].
This property parallels the behavior of classical algebraic categories such as the category
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of compact Hausdorff topological spaces, where categorical isomorphisms coincide with
topological homeomorphisms.

In recent years, Noor and Srivastava in [8] introduced a Sierpinski topological system
and characterized injective objects in the category TopSys0 of T0-topological systems.
Additionally, they proved that both TopSys0 and the category SobTopSys of sober
topological systems, are reflective subcategories of TopSys. Following the foundational
work introduced by Zadeh in [23], numerous mathematical structures have been generalized
within the framework of fuzzy set theory. Building on this development, Denniston et al.
in [5] investigated lattice-valued topological systems, analyzing their algebraic properties
and relationships to both point-set and point-free topology.

It is well-known that alongside topological closure spaces, algebraic closure spaces (also
termed convex spaces [19]) constitute another fundamental class of closure spaces. There
are great differences between topological closure spaces and algebraic closure spaces, for
example, the way to generate these closure spaces via subbases. Furthermore, algebraic
closure spaces are deeply connected to continuous lattices and algebraic lattices. In [14],
an adjunction between the category of algebraic closure spaces and that of continuous
lattices is established. In [22], Yao and Zhou demonstrated a dual equivalence between
the category of sober fuzzy algebraic closure spaces and that of fuzzy algebraic lattices.
Building on these results, the following questions arise:

• Can a notion analogous to topological systems be defined for algebraic closure
spaces (termed algebraic systems)? If so, is the category of algebraic systems
topological?

• What are the injective objects in the category of algebraic systems? How can
reflectivity properties (e.g., reflective subcategories) be characterized?

• What categorical relationships exist among algebraic systems, algebraic closure
spaces, and continuous lattices?

This paper addresses the aforementioned questions within the framework of many-
valued logic. The contexts are organized as follows. Section 2 recalls some basic concepts
about categories, L-algebraic closure spaces and L-algebraic systems. Section 3 demon-
strates that the category of L-algebraic systems fails to be topological, yet admits an
embedding into a topological category. Section 4 introduces the Sierpinski L-algebraic
system (L, S, |=S), and proves that (L, S, |=S) is an injective object in the category of S0-L-
algebraic systems. Section 5 establishes the reflectivity of the categories of S0-L-algebraic
systems and of sober L-algebraic systems. Section 6 establishes the relationships between
the categories of L-algebraic closure spaces and strong L-algebraic systems, and between
the categories of continuous lattices and sober L-algebraic systems.

2. Preliminaries
In this section, we will review some basic concepts and results.
Let L be a complete lattice. The greatest element and the least element of L are denoted

by > and ⊥, respectively. For any S ⊆ L, write
∨
S and

∧
S for the least upper bound

(or the supremum) and the greatest lower bound (or the infimum) of S, respectively. In
particular,

∨
∅ = ⊥ and

∧
∅ = >. An L-subset on a set X is a map from X to L, and the

family of all L-subsets on X will be denoted by LX or PLX, called the L-power set of X.
We do not distinguish the element a ∈ L and the constant map such that a(x) = a for
each x ∈ X. All algebraic operations on L can be extended to LX in the pointwise way.
That is, for each u, v ∈ LX , a ∈ L and x ∈ X,

(1) (u ∨ v)(x) = u(x) ∨ v(x);
(2) (u ∧ v)(x) = u(x) ∧ v(x) and (a ∧ u)(x) = a ∧ u(x);
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For a map f : X → Y , we can define f→L : LX → LY and f←L : LY −→ LX by
f→L (u)(y) =

∨
f(x)=y u(x) and f←L (v)(x) = v(f(x)), respectively. Then f→L is the left

adjoint of f←L .
For each a, b ∈ L, a is called way below b, which is denoted by a � b, if for each directed

subsetD ⊆ L, b ≤
∨
D implies there exists d ∈ D such that a ≤ d. A continuous lattice L is

a complete lattice such that a =
∨

⇓a for each a ∈ L, where ⇓a = {b ∈ L | b � a}. A map
f : L −→ M between two continuous lattices is called a continuous lattice homomorphism
if it preserves arbitrary infima and directed suprema and satisfies that f(⊥) = ⊥.

More details about the order theory can be found in [3, 6]. In this paper, if there is no
further statement, L is always a continuous lattice.

2.1. Categories
From now on, we shall give some requisite definitions and results of the category the-

ory[1, 2, 12]. We hope that the readers are familiar with the basic concepts, such as the
dual categories, the products of categories and so on.

Let F : A −→ B and G : B −→ A be functors between categories. We say that F is
the left adjoint to G (or G is the right adjoint to F ), and write F a G, if for each A-object
A and B-object B, there is a bijection

ϕA,B : B(F (A), B) −→ A(A,G(B))

that is natural in A and B. A functor F : A −→ B is said to be an equivalence of
categories if there is a functor G : B −→ A such that G ◦ F is naturally isomorphic to
idA and F ◦G is naturally isomorphic to idB. A category A is said to be equivalent to B
if there exists an equivalence functor F : A −→ B. F : A −→ B is called an embedding if
F is injective on morphisms (hence on objects).

Throughout the following section, without other statements, (A, U) denotes a con-
crete category over X, and S denotes a subcategory of A which is always assumed to be
isomorphism-closed.

Let H denote some class of A-morphisms, then an A-object A is called H-injective if
for each morphism e : Y −→ Z in H and each A-morphism f : Y −→ X, there exists an
A-morphism g : Z −→ X such that g ◦ e = f . A family {fi : X −→ Yi | i ∈ I} of A-
morphisms is said to be initial if for each A-object Z and each X-morphism g : |Z| −→ |X|,
g : Z −→ X is an A-morphism if fi ◦g : Z −→ Yi is an A-morphism for each i ∈ I. An A-
object S is called a Sierpinski object if for each A-object X, the family of all A-morphisms
from X to S is initial. A is called topological over X w.r.t. the functor U if every U -
structured source has a unique initial U -lift in A.

An A-morphism f : X −→ Y is called an epimorphism if for each A-object Z and
A-morphisms g, h : Y −→ Z, g ◦ f = h ◦ f implies g = h. S is a reflective (epireflective)
subcategory of A provided that for each A-object Y , there exist an S-object XY and an A-
morphism (A-epimorphism) r : Y −→ XY such that for each S-object Z and A-morphism
f : Y −→ Z, there exists a unique S-morphism f∗ : XY −→ Z with f∗ ◦ r = f .

2.2. L-algebraic systems
At the end of this section, we will introduce a generalization of L-algebraic closure

space, which is called L-algebraic system.

Definition 2.1 ([7, 13]). A subset C of LX is called an L-closure structure on X if it
satisfies the following conditions:

(CS1) ⊥,> ∈ C;
(CS2) For each {ui | i ∈ I} ⊆ C,

∧
i∈I ui ∈ C.

The pair (X,C) is called an L-closure space.
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Definition 2.2 ([7,13]). An L-algebraic closure structure C on X is an L-closure structure
that satisfies the following condition:

(CS3) For each directed family {vi | i ∈ I} ⊆d C,
∨

i∈I vi ∈ C.
The pair (X,C) is said to be an L-algebraic closure space. An L-algebraic closure space

is also called an L-convex space in [9, 10,15,21].

Let (X,CX) and (Y,CY ) be two L-algebraic closure spaces and f : X −→ Y be a map,
then f is called L-continuous provided that f←L (v) ∈ CX for each v ∈ CY . Let L-Alg
denote the category of L-algebraic closure spaces and L-continuous maps.

Definition 2.3. Let X be a set and A be a continuous lattice. An L-relation |=A :
X ×A −→ L is called an L-satisfaction relation on (X,A) if |=A satisfies:

(SR1) For each x ∈ X, |=A(x,⊥) = ⊥;
(SR2) For each x ∈ X and {ai | i ∈ I} ⊆ A, |=A(x,

∧
i∈I ai) =

∧
i∈I |=A(x, ai);

(SR3) For each x ∈ X and directed {di | i ∈ I} ⊆d A, |=A(x,
∨

i∈I di) =
∨

i∈I |=A(x, di).

Remark 2.4. If |=A is an L-satisfaction relation on (X,A), then it holds that |=A(x,>) =
> for every x ∈ X.

Definition 2.5. An L-algebraic system is an ordered triple (X,A, |=), where (X,A) ∈
|Set×Cntop|, Cnt is the category of continuous lattices and continuous lattice homomor-
phisms, and |=A is an L-satisfaction relation on (X,A).

Given L-algebraic systems (X,A, |=A) and (Y,B, |=B), the morphism (f, ϕ) : (X,A, |=A)
−→ (Y,B, |=B) in Set×Cntop is called an L-algebraic map provided that |=A(x, ϕop(b)) =
|=B(f(x), b) for each x ∈ X and b ∈ B. Let L-AlgSys denote the category of L-algebraic
systems and L-algebraic maps.

An L-algebraic map (f, ϕ) : (X,A, |=A) −→ (Y,B, |=B) between two L-algebraic systems
is called an embedding provided that f is injective and ϕop is surjective, and it is called a
homeomorphism provided that f is bijective and ϕop is a continuous lattice isomorphism
(i.e., bijective continuous lattice homomorphism). It is routine to check that if (f, ϕ) :
(X,A, |=A) −→ (Y,B, |=B) is a homeomorphism, then (f−1, ϕ−1) is an L-algebraic map.
An L-algebraic system (X,A, |=A) is called S0-separated provided that for each x, y ∈ X
with x 6= y, there exists a ∈ A such that |=A(x, a) 6= |=A(y, a). Let L-AlgSys0 denote
the full subcategory of L-AlgSys, whose objects are S0-L-algebraic systems. If the L-
satisfaction relation |=A is understood, we may suppress the subscripts.

Example 2.6. Let (X,C) be an L-algebraic closure space, then it is routine to check that
C is a continuous lattice. Define |=C : X × C −→ L by |=C(x, u) = u(x) for each u ∈ C and
x ∈ X, then (X,C, |=C) is an L-algebraic system.

3. Embedding L-AlgSys into a topological category
In this section, we analyze the categorical behavior of L-AlgSys. Specifically, we

demonstrate that it is not topological over its ground category Set × Cntop. However, it
can be embedded into the topological category Cntop-FAlg.

Let U : L-AlgSys −→ Set × Cntop be the forgetful functor. We want to show that
there exists a U -structured source that does not have an initial U -lift. Let X = {·} be a
single-point set, and let A = {⊥,>}, and B = {⊥, b,>} with the order ⊥ < b < >, then
A and B are continuous lattices. Define ϕ : A −→ B by

ϕop(⊥) = ϕop(b) = ⊥, ϕop(>) = >,

then ϕop is a continuous lattice homomorphism. Define |=B : X ×B −→ L by

|=B(·,⊥) = ⊥, |=B(·, b) = |=B(·,>) = >,
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then (X,B, |=B) is an L-algebraic system. Thus, ((X,A), (idX , ϕ) : (X,A) −→ U(X,B, |=B))
is a U -structured source. Suppose it has an initial U -lift |=A, then (idX , ϕ) : (X,A, |=A) −→
(X,B, |=B) is an L-algebraic map. However, this leads to the contradiction

⊥ = |=A(·,⊥) = |=A(·, ϕop(b)) = |=B(idX(·), b) = >.

That is to say this U -structured source lacks initial U -lift. Therefore, L-AlgSys is not a
topological category over Set × Cntop with respect to the forgetful functor U .

Next, we construct a topological category by (A,L)-fuzzy algebraic closure spaces (or
(A,L)-fuzzy convex spaces) in the sense of [11,16].

Definition 3.1. The category Cntop-FAlg has ground category Set × Cntop and it is
defined as follows:

• Objects: An object is an (A,L)-fuzzy algebraic closure space (X,A,C), i.e., (X,A) ∈
|Set × Cntop|, and the map C : AX −→ L satisfies:
(1) C(⊥) = C(>) = >;
(2)

∧
i∈I C(ui) ≤ C(

∧
i∈I ui) for each family {ui | i ∈ I} ⊆ AX ;

(3)
∧

i∈I C(vi) ≤ C(
∨

i∈I vi) for each directed family {vi | i ∈ I} ⊆ AX .
In this case, C is called an (A,L)-fuzzy algebraic closure structure.

• Morphisms: An morphism is an L-fuzzy continuous map (f, ϕ) : (X,A,CX) −→
(Y,B,CY ), i.e., (f, ϕ) is a Set × Cntop-morphism, and CY ≤ CX ◦ (f, ϕ)←L , where
(f, ϕ)←L : BY −→ AX is defined by (f, ϕ)←L (v) = ϕop ◦ v ◦ f for each v ∈ BY .

• Composition, identities: As in Set × Cntop.

Let S : AX −→ L be a map. The (A,L)-fuzzy algebraic closure structure C : AX −→ L
generated by S is defined by

∀u ∈ AX , C(u) =
∧

{D(u) | S ≤ D ∈ ϱ},

where ϱ denotes the set of all the (A,L)-fuzzy algebraic closure spaces. Then S is called
a subbase[16] of C.

Proposition 3.2. Cntop-FAlg is topological over Set×Cntop with respect to the forgetful
functor V : Cntop-FAlg −→ Set × Cntop.

Proof of Proposition 3.2. Suppose ((X,A), (fi, ϕi) : (X,A) −→ V (Xi, Ai,Ci)) is a V -
structure source. Define S : AX −→ L by

S (u) =


∨
i∈I

∨
(fi,ϕi)←L (v)=u

Ci(v) ∃i ∈ I, ((fi, ϕi)←L )←({u}) 6= ∅

⊥ otherwise

for each u ∈ AX . Let C be the (A,L)-fuzzy algebraic closure space generated by the
subbase S . For each w ∈ AXi

i , we have

C((fi, ϕi)←L (w)) ≥ S ((fi, ϕi)←L (w)) =
∨
j∈I

∨
(fj ,ϕj)←L (v)=(fi,ϕi)←L (w)

Cj(v) ≥ Ci(w).

This implies that (fi, ϕi) : (X,A,C) −→ (Xi, Ai,Ci) is L-fuzzy continuous. That is to say
C is a V -lift.

Furthermore, to prove the initiality, let (gi, ψi) : (Y,B, δ) −→ (Xi, Ai,Ci) be L-fuzzy
continuous maps, and (h, ψ) be a Set × Cntop-morphism with (gi, ψi) = (fi, ϕi) ◦ (h, ψ).
For each u ∈ AX , if ((fi, ϕi)←L )←({u}) = ∅ for any i ∈ I, then we have S (u) = ⊥ ≤
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δ((h, ψ)←L (u)). If there exists i ∈ I such that ((fi, ϕi)←L )←({u}) 6= ∅, it holds that

S (u) =
∨
i∈I

∨
(fi,ϕi)←L (v)=u

Ci(v)

≤
∨
i∈I

∨
(fi,ϕi)←L (v)=u

δ((gi, ψi)←L (v))

=
∨
i∈I

∨
(fi,ϕi)←L (v)=u

δ((h, ψ)←L ((fi, ϕi)←L (v)))

= δ((h, ψ)←L (u)).

Thus, we have S ≤ δ ◦ (h, ψ)←L for each u ∈ AX . Since it is routine to check δ ◦ (h, ψ)←L is
an (A,L)-fuzzy algebraic closure space, we obtain C ≤ δ ◦ (h, ψ)←L from the definition of C.
Therefore, (h, ψ) : (Y,B, δ) −→ (X,A,C) is L-fuzzy continuous, and the V -lift is initial.
Moreover, the uniqueness of the initial V -lift is obvious. This completes the proof. □

Given an L-algebraic system (X,A, |=). Define C|= : AX −→ L by

C|=(u) =


∧

x∈X

|=(x, u(x)) u 6= ⊥

> u = ⊥
for each u ∈ AX . It can be verified that (X,A,C|=) is an (A,L)-fuzzy algebraic closure
space.

Proposition 3.3. Let (f, ϕ) : (X,A, |=A) −→ (Y,B, |=B) be an L-algebraic map in L-
AlgSys. Then (f, ϕ) : (X,A,C|=A

) −→ (Y,B,C|=B
) is an L-fuzzy continuous map in

Cntop-FAlg.

Proof of Proposition 3.3. For each v ∈ BY , if (f, ϕ)←L (v) = ⊥, then C|=A
((f, ϕ)←L (v)) =

> ≥ C|=B
(v). If (f, ϕ)←L (v) 6= ⊥, then v 6= ⊥. We derive

C|=B
(v) =

∧
y∈Y

|=B(y, v(y))

≤
∧

x∈X

|=B(f(x), v(f(x)))

=
∧

x∈X

|=A(x, ϕop(v(f(x))))

=
∧

x∈X

|=A(x, (f, ϕ)←L (v)(x))

= C|=A
((f, ϕ)←L (v)).

Therefore, C|=B
≤ C|=A

◦ (f, ϕ)←L , proving that (f, ϕ) is an L-fuzzy continuous map. □
From Proposition 3.3, we obtain a functor F|= : L-AlgSys −→ Cntop-FAlg defined

explicitly as:

F|= :


L-AlgSys −→ Cntop-FAlg
(X,A, |=) 7−→ (X,A,C|=)

(f, ϕ) 7−→ (f, ϕ)

Theorem 3.4. L-AlgSys can be embedded into the topological category Cntop-FAlg w.r.t.
the functor F|=.

Proof of Theorem 3.4. Let (X,A) ∈ |Set × Cntop|. We only show that C|=A
6= C ˆ|=A

when the L-satisfaction relations |=A and ˆ|=A on (X,A) are different here. Since |=A 6= ˆ|=A,
there exist x0 ∈ X and a0 ∈ A such that |=A(x0, a0) 6= ˆ|=A(x0, a0). Put u ∈ AX by
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u(x) =
{
a0 x = x0

> x 6= x0

for each x ∈ X. Then we have

C|=A
(u) =

∧
x∈X

|=A(x, u(x)) = |=A(x0, a0) ∧ (
∧

x 6=x0

|=A(x,>)) = |=A(x0, a0).

Similarly, C ˆ|=A
(u) = ˆ|=A(x0, a0). Thus, C|=A

6= C ˆ|=A
. □

4. The Sierpinski L-algebraic system
Consider the continuous lattice S = {⊥S, α,>S} with the partial order on S as ⊥S <

α < >S. Define an L-relation |=S : L× S −→ L as follows: for each t ∈ L, |=S(t,⊥S) = ⊥,
|=S(t, α) = t, |=S(t,>S) = >, then it is easy to proof that |=S is an L-satisfaction relation on
(L, S). Thus, (L, S, |=S) is an L-algebraic system. We call the L-algebraic system (L, S, |=S)
an Sierpinski L-algebraic system. Furthermore, since |=S(a, α) = a 6= b = |=S(b, α) for
each a, b ∈ L with a 6= b, it follows that the Sierpinski L-algebraic system (L, S, |=S) is
S0-separated.

Proposition 4.1. Given an L-algebraic system (X,A, |=). For each a ∈ A, define fa :
X −→ L by fa(x) = |=(x, a), and define ϕop

a : S −→ A as follows: ϕop
a (⊥S) = ⊥, ϕop

a (α) =
a, ϕop

a (>S) = >, then
(1) (fa, ϕa) : (X,A, |=) −→ (L, S, |=S) is an L-algebraic map;
(2) For each L-algebraic map (g, ψ) : (X,A, |=) −→ (L, S, |=S), there exists a ∈ ψop(α)

such that (g, ψ) = (fa, ϕa).

Proof of Proposition 4.1. (1) It is easy to see that ϕop
a is a continuous lattice homo-

morphism. Moreover, it holds that

|=(x, ϕop
a (α)) = |=(x, a) = fa(x) = |=S(fa(x), α)

for each x ∈ X. Similarly, we have |=(x, ϕop
a (⊥S)) = |=S(fa(x),⊥S), |=(x, ϕop

a (>S)) =
|=S(fa(x),>S).
(2) For each L-algebraic map (g, ψ) : (X,A, |=) −→ (L, S|=S) and a = ψop(α), we have
ψop = ϕop

a . For each x ∈ X, since

f(x) = |=(x, a) = |=(x, ψop(α)) = |=S(g(x), α) = g(x),

it follows that g = fa. □

Proposition 4.2. (L, S, |=S) is a Sierpinski object in the category L-AlgSys0.

Proof of Proposition 4.2. Let (X,A, |=A) and (Y,B, |=B) be two L-algebraic systems,
and (g, ψ) : (Y,B) −→ (X,A) be a map. Let A = {(f, ϕ) | (f, ϕ) : (X,A, |=A) −→
(L, S, |=S) is an L-algebraic map}, then it suffices to check that A is an initial family.
Suppose (g, ψ) ◦ (f, ϕ) : (Y,B, |=B) −→ (L, S, |=S) is an L-algebraic map. Obverse that

|=A(g(y), a) = |=A(g(y), ϕop
a (α))

= |=S(fa(g(y)), α)
= |=B(y, (ϕa ◦ ψ)op(α))
= |=B(y, ψop(ϕop

a (α)))
= |=B(y, ψop(a))

for each y ∈ Y and a ∈ A, we obtain that (g, ψ) : (Y,B, |=B) −→ (X,A, |=A) is an
L-algebraic map. □
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Proposition 4.3. Let (f, ϕ) and (g, ψ) be two L-algebraic maps between S0-L-algebraic
systems (X,A, |=A) and (Y,B, |=B) with (f, ϕ) 6= (g, ψ), then there exists an L-algebraic
map (h, θ) : (Y,B, |=B) −→ (L, S, |=S) such that h ◦ f 6= h ◦ g.

Proof of Proposition 4.3. Since f 6= g, then there exists x ∈ X such that f(x) 6= g(x).
As (Y,B, |=B) is S0-separated, it follows that there exists b ∈ B such that |=B(f(x), b) 6=
|=B(g(x), b). Define L-algebraic map (hb, θb) as Proposition 4.1, then

(hb ◦ f)(x) = |=B(f(x), b) 6= |=B(g(x), b) = (hB ◦ g)(x).
That is to say there exists an L-algebraic map (hb, θb) such that hb ◦ f 6= hb ◦ g. □

In the following, let H be the class of all embeddings in the category L-AlgSys0, and
we write injective in place of H-injective.

Theorem 4.4. (L, S, |=S) is an injective object in the category L-AlgSys0.

Proof of Theorem 4.4. Let (X,A, |=A) and (Y,B, |=B) be two S0-L-algebraic systems,
and (f, ϕ) : (Y,B, |=B) −→ (X,A, |=A) be an embedding. For each L-algebraic map
(g, ψ) : (Y,B, |=B) −→ (L, S, |=S), observe that ψop(α) = b ∈ B and ϕop : A −→ B is
a surjection, we obtain that there exists a ∈ A such that ϕop(a) = b. Then (fa, ϕa) :
(X,A, |=A) −→ (L, S, |=S) defined as Proposition 4.1 is an L-algebraic map.

Furthermore, since
fa ◦ f(y) = |=A(f(y), a)

= |=B(y, ϕop(a))
= |=B(y, b)
= |=B(y, ψop(α))
= |=S(g(y), α)
= g(y)

for each y ∈ Y , and
ϕop ◦ ϕop

a (α) = ϕop(a) = b = ψop(α),
it holds that (fa, ϕa) ◦ (f, ϕ) = (g, ψ). □

5. The reflectivity of the L-algebraic systems
Given an L-algebraic system (X,A, |=), define a binary relation ∼ on X as follows:

x ∼ y ⇐⇒ |=(x, a) = |=(y, a)(∀a ∈ A).
Then ∼ is an equivalence relation on X. Let X̃ = X/ ∼, and define the L-relation
|̃= : X̃ × A −→ L by |̃=(x̃, a) = |=(x, a) for each x̃ ∈ X̃ and a ∈ A. For each x̃ 6= ỹ, we
have x 6∼ y, then there exists a ∈ A such that |=(x, a) 6= |=(y, a), thus |̃=(x̃, a) 6= |̃=(ỹ, a).
That is to say that (X̃, A, |̃=) is an S0-L-algebraic system.

Theorem 5.1. The category L-AlgSys0 is an epireflective subcategory of the category
L-AlgSys.

Proof of Theorem 5.1. Let (X,A, |=A) be an L-algebraic system, (X̃, A, |̃=A) and (Y,B, |=B)
be S0-L-algebraic systems, and (f, ϕ) : (X,A, |=A) −→ (Y,B, |=B) be an L-algebraic map.
Define qX : X −→ X̃ by qX(x) = x̃ for each x ∈ X. Since

|=A(x, idA(a)) = |=A(x, a) = |̃=A(x̃, a) = |̃=A(qX(x), a)

for each x ∈ X and a ∈ A, it follows that (qX , id
op
A ) : (X,A, |=A) −→ (X̃, A, |̃=A) is an

L-algebraic map. Furthermore, it is routine to check that (qX , id
op
A ) is an epimorphism.

Define f∗ : X̃ −→ Y by f∗(x̃) = f(x) and ϕ∗ = ϕ. For each x1 ∼ x2, suppose
that f(x1) 6= f(x2). Since (Y,B, |=B) is S0-separated, there exists b ∈ B such that
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|=B(f(x1), b) 6= |=B(f(x2), b). Thus, we have |=A(x1, ϕ
op(b)) 6= |=A(x2, ϕ

op(b)). This
contradicts with x1 ∼ x2. That is to say that the definition of f∗ is well-defined.

Furthermore, since
|̃=A(x̃, (ϕ∗)op(b)) = |̃=A(x̃, ϕop(b)) = |=A(x, ϕop(b)) = |=B(f(x), b) = |=B(f∗(x̃), b)

and
(f∗, ϕ∗) ◦ (qX , id

op
A )(x, a) = (f∗, ϕ∗)(x̃, a) = (f, ϕ)(x, a)

for each x ∈ X, x̃ ∈ X̃, a ∈ A and b ∈ B, it follows that (f∗, ϕ∗) : (X̃, A, |̃=A) −→
(Y,B, |=B) is an L-algebraic map, and it satisfies (f∗, ϕ∗) ◦ (qX , id

op
A ) = (f, ϕ). The un-

queness of (f∗, ϕ∗) is obvious. □
For each L-algebraic system (X,A, |=), let

pt(A) = {p : A −→ L | p is a continuous lattice homomorphism}.
Define ηX : X −→ pt(A) by

ηX(x)(a) = |=(x, a)
for each x ∈ X and a ∈ A. Then it is routine to check that the definition of ηX is
reasonable.

Definition 5.2. An L-algebraic system (X,A, |=) is called sober provided that ηX : X −→
pt(A) is a bijection.

Let L-SobAlgSys denote the category of sober L-algebraic systems and L-algebraic
maps. It is worth to mention that an L-algebraic system (X,A, |=) is S0 if and only if
ηX : X −→ pt(A) is injective. Thus, a sober L-algebraic system must be an S0-L-algebraic
system. Furthermore, the Sierpinski L-algebraic system (L, S, |=S) is sober.

Proposition 5.3. Let (X,A, |=) be an L-algebraic system. Define |=pt(A) : pt(A)×A −→ L

by |=pt(A)(p, a) = p(a) for each p ∈ pt(A) and a ∈ A, then:
(1) |=pt(A) is an L-satisfaction relation;
(2) (pt(A), A, |=pt(A)) is a sober L-algebraic system;
(3) (ηX , id

op
A ) : (X,A, |=) −→ (pt(A), A, |=pt(A)) is an L-algebraic map;

(4) (X,A, |=) is sober iff (ηX , id
op
A ) : (X,A, |=) −→ (pt(A), A, |=pt(A)) is a homeomor-

phism.

Proof of Proposition 5.3. (1) It suffices to check that |=pt(A) satisfies (SR1)-(SR3).
(SR1) For each p ∈ pt(A), |=pt(A)(p,⊥) = p(⊥) = ⊥.
(SR2) For each p ∈ pt(A) and {ai | i ∈ I} ⊆ A, it holds that

|=pt(A)(p,
∧
i∈I

ai) = p(
∧
i∈I

ai) =
∧
i∈I

p(ai) =
∧
i∈I

|=pt(A)(p, ai).

(SR3) For each p ∈ pt(A) and directed {di | i ∈ I} ⊆d A, it follows that

|=pt(A)(p,
∨
i∈I

di) = p(
∨
i∈I

di) =
∨
i∈I

p(di) =
∨
i∈I

|=pt(A)(p, di).

(2) Since ηpt(A)(p)(a) = |=pt(A)(p, a) = p(a) for each p ∈ pt(A) and a ∈ A, we obtain
that ηpt(A) : pt(A) −→ pt(A) is a bijection. Thus, (pt(A), A, |=pt(A)) is sober.

(3) For each x ∈ X and a ∈ A, observe that |=(x, idA(a)) = |=(x, a) = ηX(x)(a) =
|=pt(A)(ηX(x), a), it follows that (ηX , id

op
A ) : (X,A, |=) −→ (pt(A), A, |=pt(A)) is an L-

algebraic map.
(4) It is immediate from the definitions. □

Theorem 5.4. The category L-SobAlgSys is a reflective subcategory of the category
L-AlgSys.
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Proof of Theorem 5.4. Let (X,A, |=A) be an L-algebraic system, and (Y,B, |=B) be
a sober L-algebraic system. For each L-algebraic maps (ηX , id

op
A ) : (X,A, |=A) −→

(pt(A), A, |=pt(A)) and (f, ϕ) : (X,A, |=A) −→ (Y,B, |=B), it suffices to check that there
exists an unique L-algebraic map (f∗, ϕ∗) : (pt(A), A, |=pt(A)) −→ (Y,B, |=B) such that
the following diagram is commutative:

(X,A, |=A)
(ηX ,idop

A )
//

(f,ϕ)
((QQ

QQQ
QQQ

QQQ
QQ

(pt(A), A, |=pt(A))

(f∗,ϕ∗)
��

(Y,B, |=B)

Step 1: Since (Y,B, |=B) is sober and p ◦ ϕop ∈ pt(B) for each p ∈ pt(A), it follows that
there exists an unique y ∈ Y such that ηY (y) = p ◦ ϕop. Define f∗ : pt(A) −→ B by
f∗(p) = y and ϕ∗ = ϕ, then we have

|=pt(A)(p, (ϕ
∗)op(b)) = |=pt(A)(p, ϕ

op(b))
= p(ϕop(b))
= ηY (y)(b)
= ηY (f∗(p))(b)
= |=B(f∗(p), b)

for each b ∈ B. That is to say (f∗, ϕ∗) : (pt(A), A, |=pt(A)) −→ (Y,B, |=B) is an L-algebraic
map.

Step 2: (f∗, ϕ∗) ◦ (ηX , id
op
A ) = (f, ϕ). In fact, since

ηY (f(x)) = |=B(f(x), b)
= |=A(x, ϕop(b))
= ηX(x)(ϕop(b))
= |=pt(A)(ηX(x), ϕop(b))
= |=pt(A)(ηX(x), (ϕ∗)op(b))
= |=B(f∗(ηX(x)), b)
= ηY (f∗(ηX(x)))(b)

for each x ∈ X and b ∈ B, and ηY is a bijection, it holds that f∗(ηX(x)) = f(x) for each
x ∈ X. Furthermore, we have ϕ∗ ◦ idop

A = ϕ.
Step 3: The uniqueness of ϕ∗ is obvious. Suppose that there is an L-algebraic map

(f̂ , ϕ∗) such that (f̂ , ϕ∗)◦(ηX , id
op
A ) = (f, ϕ), and f̂ 6= f∗, then there exists x ∈ X such that

f̂(ηX(x)) 6= f∗(ηX(x)). Since (Y,B, |=B) is an S0-L-algebraic system, there exists b ∈ B

such that |=B(f̂(ηX(x)), b) 6= |=B(f∗(ηX(x)), b). Then we have |=pt(A)(ηX(x), ϕop(b)) 6=
|=pt(A)(ηX(x), ϕop(b)), this is a contradiction. □

6. The relationships between the categories Cnt, L-Alg and L-AlgSys
In this section, we will show that there are natural relationships between the categories

of L-algebraic closure spaces and strong L-algebraic systems, and between the categories
of continuous lattices and sober L-algebraic systems.

Definition 6.1. A strong L-satisfaction relation |= : X × A −→ L on (X,A) is an L-
satisfaction relation that satisfies:

(SR4) For each a, b ∈ A, if |=(x, a) ≤ |=(x, b) holds for any x ∈ X, then a ≤ b.
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Definition 6.2. A strong L-algebraic system is an ordered triple (X,A, |=), where (X,A) ∈
|Set × Cntop| and |= is a strong L-satisfaction relation on (X,A).

Let SL-AlgSys denote the category of strong L-algebraic systems and L-algebraic
maps, which is a full subcategory of L-AlgSys.

Remark 6.3. For each L-algebraic closure space (X,C), it is routine to check (X,C, |=C)
define as Example 2.6 is a strong L-algebraic system. For each L-continuous map f :
(X,CX) −→ (Y,CY ) between L-algebraic closure spaces, since

|=CX
(x, f←L (v)) = f←L (v)(x) = v(f(x)) = |=CY

(f(x), v)

for each x ∈ X and v ∈ CY , it follows that (f, (f←L )op) : (X,CX , |=CX
) −→ (Y,CY , |=CY

) is
an L-algebraic map. Then we obtain a functor between categories L-Alg and SL-AlgSys
defined as follows:

F :


L-Alg −→ SL-AlgSys
(X,C) 7−→ (X,C, |=C)

f 7−→ (f, (f←L )op)

Proposition 6.4. Let (X,A, |=) be a strong L-algebraic system. Define ext : A −→ LX

by ext(a)(x) = |=(x, a), then (X, (ext)→(A)) is an L-algebraic closure space.

Proof of Proposition 6.4. We only check that (X, (ext)→(A)) satisfies (CS3) here. Let
{ext(di) | di ∈ A, i ∈ I} ⊆d (ext)→(A) be directed, we firstly show that the family
{di | i ∈ I} is directed. For each di, dj , there exists ext(dk) such that ext(di) ≤ ext(dk)
and ext(dj) ≤ ext(dk), then |=(x, di) ≤ |=(x, dk) and |=(x, dj) ≤ |=(x, dk) hold for all
x ∈ X. Thus, di ≤ dk and dj ≤ dk. That is to say {di | i ∈ I} is directed. Furthermore,
observe that ∨

i∈I

ext(di)(x) =
∨
i∈I

|=(x, di) = |=(x,
∨
i∈I

di) = ext(
∨
i∈I

di)(x),

it follows that
∨

i∈I ext(di) ∈ (ext)→(A). □

Proposition 6.5. Let (f, ϕ) : (X,A, |=A) −→ (Y,B, |=B) be an L-algebraic map between
strong L-algebraic systems, then f : (X, (ext)→(A)) −→ (Y, (ext)→(B)) is an L-continuous
map.

Proof of Proposition 6.5. For each x ∈ X and b ∈ B, we have

f←L (ext(b))(x) = ext(b)(f(x))
= |=B(f(x), b)
= |=A(x, ϕop(b))
= ext(ϕop(b))(x).

□

From Proposition 6.4 and Proposition 6.5, we obtain the functor G :SL-AlgSys−→L-
Alg defined as follows:

G :


SL-AlgSys −→ L-Alg
(X,A, |=) 7−→ (X, (ext)→(A))

(f, ϕ) 7−→ f

Theorem 6.6. G is both the right adjoint and left inverse to F , i.e., F a G and G ◦F =
idL−Alg.
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Proof of Theorem 6.6. Step 1: It suffices to check that there is a natural bijection
between SL-AlgSys(F (X,C), (Y,B, |=B)) and L-Alg((X,C), G(Y,B, |=B)) for each L-
algebraic closure space (X,C) and strong L-algebraic system (Y,B, |=B).

Given an L-algebraic map (f, ϕ) : (X,C, |=C) −→ (Y,B, |=B), define (f, ϕ) = f . Since

f←L (ext(b))(x) = ext(b)(f(x))
= |=B(f(x), b)
= |=C(x, ϕop(b))
= ϕop(b)(x)

for each x ∈ X and b ∈ B, it follows that f←L (ext(b)) = ϕop(b) ∈ C, that is to say
(f, ϕ) : (X,C) −→ (Y, (ext)→(B)) is an L-continuous map.

Given an L-continuous map g : (X,C) −→ (Y, (ext)→(B)), define g = (g, ψ), where
ψop = g←L ◦ ext. It is easy to see that ψop(b) ∈ C for each b ∈ B and ψop is a continuous
lattice homomorphism. Moreover, since

|=B(g(x), b) = ext(b)(g(x))
= g←L (ext(b))(x)
= ψop(b)(x)
= |=C(x, ψop(b))

for each x ∈ X and b ∈ B, we obtain that g : (X,C, |=C) −→ (Y,B, |=B) is an L-algebraic
map.

Furthermore, since (f, ϕ) = (f, ψ), where ψop = f←L ◦ ext, and

ψop(b)(x) = f←L (ext(b))(x)
= ext(b)(f(x))
= |=B(f(x), b)
= |=C(x, ϕop(b))
= ϕop(b)(x),

this immediately forces (f, ϕ) = (f, ψ). The proof of g = g is straightforward.
Step 2: Let (X,C) be an L-algebraic closure space. Since ext(u)(x) = |=C(x, u) = u(x)

for each u ∈ C and x ∈ X, we have (ext)→(C) = C. Thus, G(F (X,C)) = G(X,C, |=C) =
(X, (ext)→(C)) = (X,C). □

Corollary 6.7. L-Alg is a coreflective subcategory of SL-AlgSys.

Remark 6.8. Define the functors Ω : L-AlgSys−→Cntop and Pt : Cntop−→L-AlgSys
as follows:

Ω :


L-AlgSys −→ Cntop

(X,A, |=) 7−→ A

(f, ϕ) 7−→ ϕ

Pt :


Cntop −→ L-AlgSys

A 7−→ (pt(A), A, |=pt(A))
f 7−→ (pt(f), f)

where pt(f)(p) = p ◦ fop for each p ∈ pt(A). Then it is routine to check that Ω is
both the left adjoint and left inverse to Pt, i.e., Ω a Pt and Ω ◦ Pt = idCntop . Thus,
Cntop is a reflective subcategory of L-AlgSys. Moreover, since (pt(A), A, |=pt(A)) is a
sober L-algebraic system, the adjoint Ω a Pt can be restricted to an adjoint between
the categories Cntop and L-SobAlgSys. Observe that the natural transformations η :
idL−SobAlgSys =⇒ Pt ◦ Ω and ε : Ω ◦ Pt =⇒ idCntop are natural isomorphisms, it follows
that the categories Cnt and L-SobAlgSys are dually equivalent to each other.
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7. Conclusions
In this paper, we first showed the non-topological category L-AlgSys can be embedded

into the topological category Cntop-FAlg. Then we studied the Sierpinski L-algebraic
system, L-algebraic system and its reflectivity. Furthermore, the categorical relationships
between the categories L-Alg and SL-AlgSys, and between the categories Cnt and L-
SobAlgSys were considered. However, there are still some problems worth discussing:

• We know that each T0-topological system can be embedded into a product of
copies of the Sierpinski topological systems[8], where the "product" is defined by
the coproduct of frames. What is the coproduct of continuous lattices? Can
each S0-algebraic system be embedded into a product of copies of the Sierpinski
L-algebraic systems?

• Building on the framework of variety-based L-topological systems, the category
Cntop-AlgSys of variety-based L-algebraic systems can defined as follows: An
object is a quadruple (X,A,L, |=), where (X,A,L) ∈ |Set×(Cntop)2|, and |= : X×
A −→ L is an L-satisfaction relation on (X,A); A morphism is a Set × (Cntop)2-
morphism (f, ϕ, ψ) : (X,A,L, |=1) −→ (Y,B,M, |=2) that satisfies |=1(x, ϕop(b)) =
ψop(|=2(f(x), b)) for each x ∈ X and b ∈ B. As demonstrated by the example in
Section 3 of this article, we can also prove that Cntop-AlgSys is not topological.
Can it also be embedded into other topological categories related to fuzzy algebraic
closure spaces?

We think these questions are worth further discussion.
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