Weighted Tribonacci Sums

Kunle Adegoke ${ }^{1}$
${ }^{1}$ Department of Physics and Engineering Physics, Obafemi Awolowo University, 220005 Ile-Ife, Nigeria

Abstract

We derive various weighted summation identities, including binomial and double binomial identities, for Tribonacci numbers. Our results contain some previously known results as special cases.

Keywords: binomial summation identity; generating function; partial sum, Tribonacci number; weighted sum
2010 Mathematics Subject Classification: 11B37, 11B39, 65B10

1. Introduction

For $m \geq 3$, the Tribonacci numbers are defined by
$T_{m}=T_{m-1}+T_{m-2}+T_{m-3}, \quad T_{0}=0, T_{1}=T_{2}=1$.
By writing $T_{m-1}=T_{m-2}+T_{m-3}+T_{m-4}$ and eliminating T_{m-2} and T_{m-3} between this recurrence relation and the recurrence relation (1.1), a useful alternative recurrence relation is obtained for $m \geq 4$:
$T_{m}=2 T_{m-1}-T_{m-4}, \quad T_{0}=0, \quad T_{1}=T_{2}=1, \quad T_{3}=2$.
Extension of the definition of T_{m} to negative subscripts is provided by writing the recurrence relation (1.2) as
$T_{-m}=2 T_{-m+3}-T_{-m+4}$.
Anantakitpaisal and Kuhapatanakul [2] proved that
$T_{-m}=T_{m-1}^{2}-T_{m-2} T_{m}$.
The following identity (Feng [3], equation (3.3); Shah [7], (ii)) is readily established by the principle of mathematical induction:
$T_{m+r}=T_{r} T_{m-2}+\left(T_{r-1}+T_{r}\right) T_{m-1}+T_{r+1} T_{m}$.
Irmak and Alp [5] derived the following identity for Tribonacci numbers with indices in aritheoremetic progression:
$T_{t m+r}=\lambda_{1}(t) T_{t(m-1)+r}+\lambda_{2}(t) T_{t(m-2)+r}+\lambda_{3}(t) T_{t(m-3)+r}$,
where,
$\lambda_{1}(t)=\alpha^{t}+\beta^{t}+\gamma^{t}, \quad \lambda_{2}(t)=-(\alpha \beta)^{t}-(\alpha \gamma)^{t}-(\beta \gamma)^{t}, \quad \lambda_{3}(t)=(\alpha \beta \gamma)^{t}$,
where α, β and γ are the roots of the characteristic polynomial of the Tribonacci sequence $x^{3}-x^{2}-x-1$. Thus,
$\alpha=\frac{1}{3}(1+\sqrt[3]{19+3 \sqrt{33}}+\sqrt[3]{19-3 \sqrt{33}})$,
$\beta=\frac{1}{3}\left(1+\omega \sqrt[3]{19+3 \sqrt{33}}+\omega^{2} \sqrt[3]{19-3 \sqrt{33}}\right)$
and
$\gamma=\frac{1}{3}\left(1+\omega^{2} \sqrt[3]{19+3 \sqrt{33}}+\omega \sqrt[3]{19-3 \sqrt{33}}\right)$,
where $\omega=\exp (2 i \pi / 3)$ is a primitive cube root of unity. Note that $\lambda_{1}(t), \lambda_{2}(t)$ and $\lambda_{3}(t)$ are integers for any positive integer t [5]; in particular, $\lambda_{1}(1)=1=\lambda_{2}(1)=\lambda_{3}(1)$.

2. Weighted sums

Lemma 2.1 ([1], Lemma 2). Let $\left\{X_{m}\right\}$ be any arbitrary sequence, where $X_{m}, m \in \mathbb{Z}$, satisfies a three term recurrence relation $X_{m}=$ $f_{1} X_{m-a}+f_{2} X_{m-b}$, where f_{1} and f_{2} are arbitrary non-vanishing complex functions, not dependent on m, and a and b are integers. Then,
$f_{2} \sum_{j=0}^{k} \frac{X_{m-k a-b+a j}}{f_{1}^{j}}=\frac{X_{m}}{f_{1}^{k}}-f_{1} X_{m-(k+1) a}$,
$f_{1} \sum_{j=0}^{k} \frac{X_{m-k b-a+b j}}{f_{2}^{j}}=\frac{X_{m}}{f_{2}^{k}}-f_{2} X_{m-(k+1) b}$
and
$\sum_{j=0}^{k} \frac{X_{m-(b-a) k+a+(b-a) j}}{\left(-f_{2} / f_{1}\right)^{j}}=\frac{f_{1} X_{m}}{\left(-f_{2} / f_{1}\right)^{k}}+f_{2} X_{m-(k+1)(b-a)}$.
for k a non-negative integer.
Theorem 2.2. The following identities hold for any integers m and k :
$\sum_{j=0}^{k} 2^{-j} T_{m-k-4+j}=2 T_{m-k-1}-2^{-k} T_{m}$,
$2 \sum_{j=0}^{k}(-1)^{j} T_{m-4 k-1+4 j}=(-1)^{k} T_{m}+T_{m-4 k-4}$
and
$\sum_{j=0}^{k} 2^{j} T_{m-3 k+1+3 j}=2^{k+1} T_{m}-T_{m-3 k-3}$.
Proof. From the recurrence relation (1.2), make the identifications $f_{1}=2, f_{2}=-1, a=1$ and $b=4$ and use these in Lemma 2.1 with $X=T$.

Particular instances of identities (2.4)-(2.6) are the following identities:
$\sum_{j=0}^{k} 2^{-j} T_{j}=4-2^{-k} T_{k+4}$,
giving,
$\sum_{j=0}^{\infty} 2^{-j} T_{j}=4$,
and
$2 \sum_{j=0}^{k}(-1)^{j} T_{4 j}=(-1)^{k} T_{4 k+1}-1$
and
$\sum_{j=0}^{k} 2^{j} T_{3 j}=2^{k+1} T_{3 k-1}$.
Lemma 2.3 (Partial sum of an $n^{\text {th }}$ order sequence). Let $\left\{X_{j}\right\}$ be any arbitrary sequence, where $X_{j}, j \in \mathbb{Z}$, satisfies a $n+1$ term recurrence relation $X_{j}=f_{1} X_{j-c_{1}}+f_{2} X_{j-c_{2}}+\cdots+f_{n} X_{j-c_{n}}=\sum_{m=1}^{n} f_{m} X_{j-c_{m}}$, where $f_{1}, f_{2}, \ldots, f_{n}$ are arbitrary non-vanishing complex functions, not dependent on j, and $c_{1}, c_{2}, \ldots, c_{n}$ are fixed integers. Then, the following summation identity holds for arbitrary x and non-negative integer k
$\sum_{j=0}^{k} x^{j} X_{j}=\frac{\sum_{m=1}^{n}\left\{x^{c_{m}} f_{m}\left(\sum_{j=1}^{c_{m}} x^{-j} X_{-j}-\sum_{j=k-c_{m}+1}^{k} x^{j} X_{j}\right)\right\}}{1-\sum_{m=1}^{n} x^{c_{m}} f_{m}}$.

Proof. Recurrence relation:
$X_{j}=\sum_{m=1}^{n} f_{m} X_{j-c_{m}}$.
We multiply both sides by x^{j} and sum over j to obtain
$\sum_{j=0}^{k} x^{j} X_{j}=\sum_{m=1}^{n}\left(f_{m} \sum_{j=0}^{k} x^{j} X_{j-c_{m}}\right)=\sum_{m=1}^{n}\left(x^{c_{m}} f_{m} \sum_{j=-c_{m}}^{k-c_{m}} x^{j} X_{j}\right)$,
after shifting the summation index j. Splitting the inner sum, we can write
$\sum_{j=0}^{k} x^{j} X_{j}=\sum_{m=1}^{n} x^{c_{m}} f_{m}\left(\sum_{j=-c_{m}}^{-1} x^{j} X_{j}+\sum_{j=0}^{k} x^{j} X_{j}+\sum_{j=k+1}^{k-c_{m}} x^{j} X_{j}\right)$.
Since

$$
\sum_{j=-c_{m}}^{-1} x^{j} X_{j} \equiv \sum_{j=1}^{c_{m}} x^{-j} X_{-j} \text { and } \sum_{j=k+1}^{k-c_{m}} x^{j} X_{j} \equiv-\sum_{j=k-c_{m}+1}^{k} x^{j} X_{j}
$$

the preceding identity can be written
$\sum_{j=0}^{k} x^{j} X_{j}=\sum_{m=1}^{n} x^{c_{m}} f_{m}\left(\sum_{j=1}^{c_{m}} x^{-j} X_{-j}+\sum_{j=0}^{k} x^{j} X_{j}-\sum_{j=k-c_{m}+1}^{k} x^{j} X_{j}\right)$.
Thus, we have
$S=\sum_{m=1}^{n} x^{c_{m}} f_{m}\left(\sum_{j=1}^{c_{m}} x^{-j} X_{-j}+S-\sum_{j=k-c_{m}+1}^{k} x^{j} X_{j}\right)$,
where
$S=S_{k}(x)=\sum_{j=0}^{k} x^{j} X_{j}$.
Removing brackets, we have
$S=\sum_{m=1}^{n} x^{c_{m}} f_{m}\left(\sum_{j=1}^{c_{m}} x^{-j} X_{-j}-\sum_{j=k-c_{m}+1}^{k} x^{j} X_{j}\right)+S \sum_{m=1}^{n} x^{c_{m}} f_{m}$,
from which the result follows by grouping the S terms.
Lemma 2.4 (Generating function). Under the conditions of Lemma 2.3, if additionally $x^{k} X_{k}$ vanishes in the limit as k approaches infinity, then
$S_{\infty}(x)=\sum_{j=0}^{\infty} x^{j} X_{j}=\frac{\sum_{m=1}^{n}\left(x^{c_{m}} f_{m} \sum_{j=1}^{c_{m}} x^{-j} X_{-j}\right)}{1-\sum_{m=1}^{n} x^{c_{m}} f_{m}}$,
so that $S_{\infty}(x)$ is a generating function for the sequence $\left\{X_{j}\right\}$.
Theorem 2.5 (Sum of Tribonacci numbers with indices in aritheoremetic progression). For arbitrary x, any integers t and r and any non-negative integer k, the following identity holds:

$$
\begin{aligned}
\left(1-\lambda_{1}(t) x-\lambda_{2}(t) x^{2}-\lambda_{3}(t) x^{3}\right) \sum_{j=0}^{k} x^{j} T_{t j+r}=T_{r} & +\left(x \lambda_{2}(t)+x^{2} \lambda_{3}(t)\right) T_{r-t}+x \lambda_{3}(t) T_{r-2 t}-x^{k+1} T_{(k+1) t+r}-x^{k+2}\left(\lambda_{2}(t)+x \lambda_{3}(t)\right) T_{k t+r} \\
& -x^{k+2} \lambda_{3}(t) T_{(k-1) t+r}
\end{aligned}
$$

where,
$\lambda_{1}(t)=\alpha^{t}+\beta^{t}+\gamma^{t}, \quad \lambda_{2}(t)=-(\alpha \beta)^{t}-(\alpha \gamma)^{t}-(\beta \gamma)^{t}, \quad \lambda_{3}(t)=(\alpha \beta \gamma)^{t}$,
where α, β and γ are the roots of the characteristic polynomial of the Tribonacci sequence $x^{3}-x^{2}-x-1$.
Proof. Write identity (1.6) as $X_{j}=f_{1} X_{j-1}+f_{2} X_{j-2}+f_{3} X_{j-3}$ and identify the sequence $\left\{X_{j}\right\}=\left\{T_{t j+r}\right\}$ and the constants $c_{1}=1, c_{2}=2$, $c_{3}=3$ and the functions $f_{1}=\lambda_{1}(t), f_{2}=\lambda_{2}(t), f_{3}=\lambda_{3}(t)$, and use these in Lemma 2.3.

Corollary 2.6 (Generating function of the Tribonacci numbers with indices in aritheoremetic progression). For any integers t and r, any non-negative integer k and arbitrary x for which $x^{k} T_{k}$ vanishes as k approaches infinity, the following identity holds:
$\sum_{j=0}^{\infty} x^{j} T_{t j+r}=\frac{T_{r}+\left(x \lambda_{2}+x^{2} \lambda_{3}\right) T_{r-t}+x \lambda_{3} T_{r-2 t}}{1-\lambda_{1} x-\lambda_{2} x^{2}-\lambda_{3} x^{3}}$,
where,
$\lambda_{1}=\alpha^{t}+\beta^{t}+\gamma^{t}, \quad \lambda_{2}=-(\alpha \beta)^{t}-(\alpha \gamma)^{t}-(\beta \gamma)^{t}, \quad \lambda_{3}=(\alpha \beta \gamma)^{t}$,
where α, β and γ are the roots of the characteristic polynomial of the Tribonacci sequence $x^{3}-x^{2}-x-1$.
Many instances of Theorem 2.5 may be explored. In particular, we have
$\left(\lambda_{1}(t)+\lambda_{2}(t)+\lambda_{3}(t)-1\right) \sum_{j=0}^{k} T_{t j+r}=-T_{r}-\left(\lambda_{2}(t)+\lambda_{3}(t)\right) T_{r-t}-\lambda_{3}(t) T_{r-2 t}+T_{(k+1) t+r}+\left(\lambda_{2}(t)+\lambda_{3}(t)\right) T_{k t+r}+\lambda_{3}(t) T_{(k-1) t+r}$,
which at $r=0$ gives
$\left(\lambda_{1}(t)+\lambda_{2}(t)+\lambda_{3}(t)-1\right) \sum_{j=0}^{k} T_{t j}=-\left(\lambda_{2}(t)+\lambda_{3}(t)\right)\left(T_{t-1}^{2}-T_{t-2} T_{t}\right)-\lambda_{3}(t)\left(T_{2 t-1}^{2}-T_{2 t-2} T_{2 t}\right)+T_{(k+1) t}+\left(\lambda_{2}(t)+\lambda_{3}(t)\right) T_{k t}+\lambda_{3}(t) T_{(k-1) t} ;$
and

$$
\begin{align*}
\left(1+\lambda_{1}(t)-\lambda_{2}(t)+\lambda_{3}(t)\right) \sum_{j=0}^{k}(-1)^{j} T_{t j+r}=T_{r} & +\left(\lambda_{3}(t)-\lambda_{2}(t)\right) T_{r-t}-\lambda_{3}(t) T_{r-2 t}+(-1)^{k} T_{(k+1) t+r}+(-1)^{k}\left(\lambda_{3}(t)-\lambda_{2}(t)\right) T_{k t+r} \tag{2.13}\\
& -(-1)^{k} \lambda_{3}(t) T_{(k-1) t+r}
\end{align*}
$$

which at $r=0$ gives

$$
\begin{align*}
\left(1+\lambda_{1}(t)-\lambda_{2}(t)+\lambda_{3}(t)\right) \sum_{j=0}^{k}(-1)^{j} T_{t j}= & \left(\lambda_{3}(t)-\lambda_{2}(t)\right)\left(T_{t-1}^{2}-T_{t-2} T_{t}\right)-\lambda_{3}(t)\left(T_{2 t-1}^{2}-T_{2 t-2} T_{2 t}\right)+(-1)^{k} T_{(k+1) t}+(-1)^{k}\left(\lambda_{3}(t)-\lambda_{2}(t)\right) T_{k t} \\
& -(-1)^{k} \lambda_{3}(t) T_{(k-1) t} . \tag{2.14}
\end{align*}
$$

Many previously known results are particular instances of the identities (2.11) and (2.13). For example, Theorem 5 of [6] is obtained from identity (2.12) by setting $t=4$. Sums of Tribonacci numbers with indices in aritheoremetic progression are also discussed in references $[4,5,6]$ and references therein, using various techniques.

Weighted sums of the form $\sum_{j=0}^{k} j^{p} T_{t j+r}$, where p is a non-negative integer, may be evaluated by setting $x=e^{y}$ in the identity of Theorem 2.5 , differentiating both sides p times with respect to y and then setting $y=0$. The simplest examples in this category are the following:
$2 \sum_{j=0}^{k} j T_{j+r}=-T_{r-2}+3 T_{r+1}+(k-1) T_{k+r-1}+(2 k-1) T_{k+r}+(k-2) T_{k+r+1}$
and
$2 \sum_{j=0}^{k} j^{2} T_{j+r}=-3 T_{r-1}-5 T_{r}-6 T_{r+1}+\left(k^{2}-2 k+3\right) T_{k+r-1}+\left(2 k^{2}-2 k+5\right) T_{k+r}+\left(k^{2}-4 k+6\right) T_{k+r+1}$,
with the particular cases
$2 \sum_{j=0}^{k} j T_{j}=2+(k-1) T_{k-1}+(2 k-1) T_{k}+(k-2) T_{k+1}$
and
$2 \sum_{j=0}^{k} j^{2} T_{j}=-6+\left(k^{2}-2 k+3\right) T_{k+r-1}+\left(2 k^{2}-2 k+5\right) T_{k}+\left(k^{2}-4 k+6\right) T_{k+1}$.

3. Weighted binomial sums

Lemma 3.1 ([1], Lemma 3). Let $\left\{X_{m}\right\}$ be any arbitrary sequence. Let $X_{m}, m \in \mathbb{Z}$, satisfy a three term recurrence relation $X_{m}=$ $f_{1} X_{m-a}+f_{2} X_{m-b}$, where f_{1} and f_{2} are non-vanishing complex functions, not dependent on m, and a and b are integers. Then,
$\sum_{j=0}^{k}\binom{k}{j}\left(\frac{f_{1}}{f_{2}}\right)^{j} X_{m-b k+(b-a) j}=\frac{X_{m}}{f_{2}^{k}}$,
$\sum_{j=0}^{k}\binom{k}{j} \frac{X_{m+(a-b) k+b j}}{\left(-f_{2}\right)^{j}}=\left(-\frac{f_{1}}{f_{2}}\right)^{k} X_{m}$
and
$\sum_{j=0}^{k}\binom{k}{j} \frac{X_{m+(b-a) k+a j}}{\left(-f_{1}\right)^{j}}=\left(-\frac{f_{2}}{f_{1}}\right)^{k} X_{m}$,
for k a non-negative integer.
Theorem 3.2. The following identities hold for any integer m and any non-negative integer k :
$\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} 2^{j} T_{m-4 k+3 j}=(-1)^{k} T_{m}$,
$\sum_{j=0}^{k}\binom{k}{j} T_{m-3 k+4 j}=2^{k} T_{m}$
and
$\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} 2^{-j} T_{m+3 k+j}=2^{-k} T_{m}$.
Proof. Identify $X=T$ in Lemma 3.1 and use the f_{1}, f_{2}, a and b values found in the proof of Theorem 2.2.
Particular cases of (3.4), (3.5) and (3.6) are the following identities:
$\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} 2^{j} T_{3 j}=(-1)^{k} T_{4 k}$,
$\sum_{j=0}^{k}\binom{k}{j} T_{4 j}=2^{k} T_{3 k}$
and
$\sum_{j=0}^{k}(-1)^{j}\binom{k}{j} 2^{-j} T_{j}=2^{-k}\left(T_{3 k-1}^{2}-T_{3 k-2} T_{3 k}\right)$.

4. Weighted double binomial sums

Lemma 4.1. Let $\left\{X_{m}\right\}$ be any arbitrary sequence, X_{m} satisfying a four term recurrence relation $X_{m}=f_{1} X_{m-a}+f_{2} X_{m-b}+f_{3} X_{m-c}$, where f_{1}, f_{2} and f_{3} are arbitrary nonvanishing functions and a, b and c are integers. Then, the following identities hold:
$\sum_{j=0}^{k} \sum_{s=0}^{j}\binom{k}{j}\binom{j}{s}\left(\frac{f_{2}}{f_{3}}\right)^{j}\left(\frac{f_{1}}{f_{2}}\right)^{s} X_{m-c k+(c-b) j+(b-a) s}=\frac{X_{m}}{f_{3}{ }^{k}}$,
$\sum_{j=0}^{k} \sum_{s=0}^{j}\binom{k}{j}\binom{j}{s}\left(\frac{f_{3}}{f_{2}}\right)^{j}\left(\frac{f_{1}}{f_{3}}\right)^{s} X_{m-b k+(b-c) j+(c-a) s}=\frac{X_{m}}{f_{2}{ }^{k}}$,
$\sum_{j=0}^{k} \sum_{s=0}^{j}\binom{k}{j}\binom{j}{s}\left(\frac{f_{3}}{f_{1}}\right)^{j}\left(\frac{f_{2}}{f_{3}}\right)^{s} X_{m-a k+(a-c) j+(c-b) s}=\frac{X_{m}}{f_{1}{ }^{k}}$,
$\sum_{j=0}^{k} \sum_{s=0}^{j}\binom{k}{j}\binom{j}{s}\left(\frac{f_{2}}{f_{3}}\right)^{j}\left(-\frac{1}{f_{2}}\right)^{s} X_{m-(c-a) k+(c-b) j+b s}=\left(-\frac{f_{1}}{f_{3}}\right)^{k} X_{m}$,
$\sum_{j=0}^{k} \sum_{s=0}^{j}\binom{k}{j}\binom{j}{s}\left(\frac{f_{1}}{f_{3}}\right)^{j}\left(-\frac{1}{f_{1}}\right)^{s} X_{m-(c-b) k+(c-a) j+a s}=\left(-\frac{f_{2}}{f_{3}}\right)^{k} X_{m}$,
and
$\sum_{j=0}^{k} \sum_{s=0}^{j}\binom{k}{j}\binom{j}{s}\left(\frac{f_{1}}{f_{2}}\right)^{j}\left(-\frac{1}{f_{1}}\right)^{s} X_{m-(b-c) k+(b-a) j+a s}=\left(-\frac{f_{3}}{f_{2}}\right)^{k} X_{m}$.
Proof. Only identity (4.1) needs to be proved as identities (4.2)-(4.6) are obtained from (4.1) by re-arranging the recurrence relation. The proof of (4.1) is by induction on k, similar to the proof of Lemma 3 of [1].

Theorem 4.2. The following identities hold for non-negative integer k, integer m and integer $r \notin\{-17,-4,-1,0\}$:
$\sum_{j=0}^{k} \sum_{s=0}^{j}\binom{k}{j}\binom{j}{s}\left(T_{r-1}+T_{r}\right)^{j-s} \frac{T_{r+1}^{s}}{T_{r}^{j}} T_{m-(r+2) k+j+s}=\frac{T_{m}}{T_{r}^{k}}$,
$\sum_{j=0}^{k} \sum_{s=0}^{j}\binom{k}{j}\binom{j}{s} \frac{T_{r}^{j-s} T_{r+1}^{s}}{\left(T_{r-1}+T_{r}\right)^{j}} T_{m-(r+1) k-j+2 s}=\frac{T_{m}}{\left(T_{r-1}+T_{r}\right)^{k}}$,
$\sum_{j=0}^{k} \sum_{s=0}^{j}\binom{k}{j}\binom{j}{s} \frac{T_{r-1}^{j-s}\left(T_{r-2}+T_{r-1}\right)^{s}}{T_{r}^{j}} T_{m-(r-1) k-2 j+s}=\frac{T_{m}}{T_{r}^{k}}$,
$\sum_{j=0}^{k} \sum_{s=0}^{j}(-1)^{s}\binom{k}{j}\binom{j}{s} \frac{\left(T_{r-1}+T_{r}\right)^{j-s}}{T_{r}^{j}} T_{m-2 k+j+(r+1) s}=(-1)^{k}\left(\frac{T_{r+1}}{T_{r}}\right)^{k} T_{m}$,
$\sum_{j=0}^{k} \sum_{s=0}^{j}(-1)^{s}\binom{k}{j}\binom{j}{s} \frac{T_{r+1}^{j-s}}{T_{r}^{j}} T_{m-k+2 j+r s}=(-1)^{k}\left(\frac{T_{r-1}+T_{r}}{T_{r}}\right)^{k} T_{m}$
and
$\sum_{j=0}^{k} \sum_{s=0}^{j}(-1)^{s}\binom{k}{j}\binom{j}{s} \frac{T_{r+1}^{j-s}}{\left(T_{r-1}+T_{r}\right)^{j}} T_{m+k+j+r s}=(-1)^{k}\left(\frac{T_{r}}{T_{r-1}+T_{r}}\right)^{k} T_{m}$.
Proof. Write the identity (1.5) as $T_{m}=T_{r} T_{m-r-2}+\left(T_{r-1}+T_{r}\right) T_{m-r-1}+T_{r+1} T_{m-r}$, identify $f_{1}=T_{r}, f_{2}=T_{r-1}+T_{r}, f_{3}=T_{r+1}, a=r+2$, $b=r+1, c=r$ and use these in Lemma 4.1 with $X=T$.

Acknowledgement

The author thanks the anonymous referee whose comments helped improve the presentation.

References

[1] K. Adegoke, Weighted sums of some second-order sequences, arXiv:1803.09054[math.NT] (2018).
[2] P. Anantakitpaisal and K. Kuhapatanakul, Reciprocal sums of the Tribonacci numbers, Journal of Integer sequences 19 (2016), 1-9.
[3] J. Feng, More identities on the Tribonacci numbers, Ars Combinatorial C (2011), 73-78.
[4] R. Frontczak, Sums of Tribonacci and Tribonacci-Lucas numbers, International Journal of Mathematical Analysis 12:1 (2018), 19-24.
[5] N. Irmak and M. Alp, Tribonacci numbers with indices in arithmetic progression and their sums, Miskolc Mathematical Notes 14:1 (2013), 125-133.
[6] E. Kilic, Tribonacci sequences with certain indices and their sums, Ars Combinatorial 86 (2008), 13-22.
[7] D. V. Shah, Some Tribonacci identities, Mathematics Today 27 (2011), 1-9.

