

Gazi Üniversitesi **Fen Bilimleri Dergisi**PART C: TASARIM VE TEKNOLOJİ

Gazi University Journal of Science PART C: DESIGN AND

TECHNOLOGY

GU J Sci, Part C, 13(3): 1184-1194 (2025)

Effects of in-situ formed TiB₂ Phase on Mechanical Properties of Spark Plasma Sintered Boron Carbide

Sinem BAŞKUT^{1*} , Name YALAMA¹, Servet TURAN¹

¹Eskisehir Technical University, Faculty of Engineering, Department of Materials Science and Engineering, Eskisehir, Türkiye

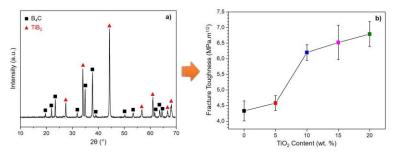
Article Info

Research article Received: 14/05/2025 Revision: 29/06/2025 Accepted: 30/06/2025

Keywords

B₄C TiB₂ Fracture Toughness Hardness SPS

Makale Bilgisi


Araştırma makalesi Başvuru: 14/05/2025 Düzeltme: 29/06/2025 Kabul: 30/06/2025

Anahtar Kelimeler

B₄C TiB₂ Kırılma Tokluğu Sertlik SPS

Graphical/Tabular Abstract (Grafik Özet)

This study investigated the effects of TiO₂ additions on B₄C sintered via SPS. The in-situ formed TiB₂ phase contributed to the improvement of fracture toughness of B₄C through various toughening mechanisms. / Bu çalışma, SPS yöntemiyle sinterlenmiş B₄C'ye TiO₂ ilavelerinin etkilerini araştırmıştır. In-situ olarak oluşmuş TiB₂ fazı, çeşitli tokluk mekanizmaları yoluyla B₄C'nin kırılma tokluğunun artmasına katkıda bulunmuştur.

Figure A: (a) XRD patern of the B₄C containing 20 wt. % TiO₂ and (b) fracture toughness values of the B₄Cs containing 5, 10, 15 and 20 wt. % TiO₂ / **Şekil A**: Ağırlıkça % 20 TiO₂ içeren B₄C'nin XRD paterni (b) Ağırlıkça % 5, 10, 15 ve 20 TiO₂ içeren B₄C'lerin kırılma tokluk değerleri.

Highlights (Önemli noktalar)

- In-situ TiB2 phase was formed as a result of the reactions between B4C and TiO2 during SPS. / SPS sırasında B4C ve TiO2 arasında gerçekleşen reaksiyonlar sonucu in-situ TiB2 fazı olusmustur.
- > The toughening mechanisms provided by TiB₂ contributed to the improvement of fracture toughness of B₄C. / TiB₂ 'nin sağladığı tokluk mekanizmaları B₄C'nin kırılma tokluğunun iyileşmesine katkıda bulunmuştur.
- The relative density and hardness of B₄C decreased with increasing TiO₂ content. / TiO₂ içeriği arttıkça B₄C'nin bağıl yoğunluğu ve sertliği azalmıştır.

Aim (Amaç): Identify the second phases that may form during SPS when TiO₂ is used as a sintering additive in B₄C matrix, and to evaluate their effects on the density and mechanical properties of the resulting composites. / TiO₂, B₄C matrisinde sinterleme katkı maddesi olarak kullanıldığında, SPS işlemi sırasında oluşabilecek ikinci fazları belirlemek ve bu fazların elde edilen kompozitlerin yoğunluğu ve mekanik özellikleri üzerindeki etkilerini değerlendirmektir.

Originality (Özgünlük): The fracture toughness of B_4C was enhanced through the in-situ formation of TiB_2 using a cost-effective approach. $/B_4C$ 'nin kırılma tokluğu, ekonomik bir yöntemle in-situ TiB_2 oluşumu vasıtasıyla artırılmıştır.

Results (Bulgular): The results revealed that an in-situ TiB₂ phase was formed as a result of the reactions between B₄C and TiO₂ during SPS. The relative density and hardness of the B₄C matrix slightly decreased with increasing TiO₂ content. The fracture toughness of the B₄C matrix was enhanced by the presence of residual stress-induced microcracks and by toughening mechanisms such as crack deflection, bridging, and blocking promoted by the in-situ formed TiB₂ phase. / Sonuçlar, SPS sırasında B₄C ile TiO₂ arasındaki reaksiyonlar sonucunda in-situ TiB₂ fazının oluştuğunu ortaya koymuştur. Artan TiO₂ içeriğiyle birlikte B₄C matrisinin bağıl yoğunluğu ve sertliğinde hafif bir azalma gözlemlenmiştir. B₄C matrisinin kırılma tokluğu, artık gerilme kaynaklı mikroçatlakların varlığı ve in-situ olarak oluşan TiB₂ fazı ile desteklenen çatlak saptırma, köprüleme ve durdurma gibi toklaştırma mekanizmaları sayesinde artırılmıştır.

Conclusion (Sonuç): The fracture toughness of B_4C was significantly improved through various toughening mechanisms provided by the in-situ formed TiB_2 phase throughout the matrix. $/B_4C$ nin kırılma tokluğu, in-situ olarak oluşmuş TiB_2 fazının matris boyunca sağladığı çeşitli tokluk mekanizmalarının yardımıyla önemli ölçüde iyileştirilmiştir.

Gazi Üniversitesi **Fen Bilimleri Dergisi**PART C: TASARIM VE
TEKNOLOJİ

Gazi University

Journal of Science

PART C: DESIGN AND

TECHNOLOGY

http://dergipark.gov.tr/gujsc

Effects of in-situ formed TiB₂ Phase on Mechanical Properties of Spark Plasma Sintered Boron Carbide

Sinem BAŞKUT^{1*}, Name YALAMA¹, Servet TURAN¹

Eskisehir Technical University, Faculty of Engineering, Department of Materials Science and Engineering, Eskisehir, Türkiye

Article Info

Research article Received: 14/05/2025 Revision: 29/06/2025 Accepted: 30/06/2025

Keywords

B₄C TiB₂ Fracture Toughness Hardness

Abstract

Due to their superior properties, B₄C ceramics are extensively utilized in applications such as defense and ballistic protection, coatings, aerospace, and high-temperature electronic devices. However, enhancing its low fracture toughness and poor sinterability would significantly expand its potential applications. In this study, the effects of TiO₂ as a sintering additive on the density and mechanical properties of B₄C were investigated, along with the identification of in-situ second phases likely to form during sintering with SPS. To achieve this, TiO2 was added to B4C in amounts of 5, 10, 15, and 20 wt. %. XRD analyses of the SPS-sintered samples confirmed the formation of an in-situ TiB2 phase, resulting from reactions between B4C and TiO2 during sintering. The release of CO gas from the reactions between TiO2 and B4C during sintering led to a slight decrease in the relative density of the B₄C matrix with increasing TiO₂ content. The results from density measurements were in agreement with BSE-SEM images. The addition of TiO2 caused a minor decrease in the hardness of the B₄C matrix. The fracture toughness of the B₄C matrix improved by approximately 6, 43, 51, and 57 % with the addition of 5, 10, 15, and 20 wt. % TiO2, respectively. This improvement has been attributed to the contribution of toughening mechanisms such as crack deflection, bridging, and blocking provided by the in-situ formed TiB2, as well as the presence of stress-induced microcracks.

In-situ Olarak Oluşmuş TiB₂ Fazının Spark Plazma Sinterleme ile Üretilmiş Bor Karbürün Mekanik Özellikleri Üzerine Etkileri

Makale Bilgisi

Araştırma makalesi Başvuru: 14/05/2025 Düzeltme: 29/06/2025 Kabul: 30/06/2025

Anahtar Kelimeler

B₄C TiB₂ Kırılma Tokluğu Sertlik SPS

Öz

B₄C seramikleri üstün özellikleri nedeniyle savunma ve balistik koruma, kaplamalar, havacılık ve yüksek sıcaklıkta çalışan elektronik cihazlar gibi uygulamalarda yaygın olarak kullanılmaktadır. Ancak, düşük kırılma tokluğu ve zayıf sinterlenebilirliğinin iyileştirilmesi, bu malzemenin potansiyel kullanım alanlarını önemli ölçüde genişletecektir. Bu çalışmada, TiO2'nin sinterleme ilavesi olarak B₄C'nin yoğunluğu ve mekanik özellikleri üzerindeki etkileri ile SPS yöntemiyle sinterleme sırasında oluşması muhtemel in-situ ikinci fazların belirlenmesi üzerinde durulmuştur. Bu amaçla, TiO2 B4C'ye ağırlıkça % 5, 10, 15 ve 20 oranlarında ilave edilmiştir. SPS ile sinterlenmis numunelerin XRD analizleri, sinterleme sırasında B₄C ile TiO₂ arasında gerçekleşen reaksiyonlar sonucunda in-situ TiB2 fazının oluştuğunu göstermiştir. Sinterleme sürecinde TiO2 ile B4C arasındaki reaksiyonlar sırasında açığa çıkan CO gazı nedeniyle, artan TiO2 içeriğiyle birlikte B₄C matrisinin bağıl yoğunluğunda az miktarda azalma gözlemlenmiştir. Yoğunluk ölçüm sonuçları, BSE-SEM görüntüleri ile uyumlu bulunmuştur. TiO2 ilavesi, B4C matrisinin sertliğinde hafifçe azalmaya neden olmuştur. B4C matrisinin kırılma tokluğu, sırasıyla % 5, 10, 15 ve 20 TiO₂ katkısıyla yaklaşık % 6, 43, 51 ve 57 oranlarında artış göstermiştir. Bu iyileşme, in-situ olarak oluşmuş TiB2'nin sağladığı çatlak saptırma, köprüleme ve durdurma gibi toklaştırma mekanizmalarının katkıları ile artık gerilme kaynaklı mikroçatlakların varlığıyla ilişkilendirilmiştir.

1. INTRODUCTION (GİRİŞ)

Boron carbide (B₄C) ceramics are widely used in various industrial applications due to their outstanding properties, including low density (2.52 g/cm³), excellent chemical inertness, high hardness

(~3770 kg/mm²), high melting point (2427 °C), an elastic modulus of 450 GPa, and superior wear resistance. Common applications include body armor, cutting tools, mechanical seals, blast nozzles, wire-drawing dies, and neutron-absorbing components [1–5]. Despite these advantages, B₄C

suffers from several limitations. It is difficult to densification owing to its low self-diffusion coefficient, often resulting in a porous microstructure. Additionally, its relatively low flexural strength and poor fracture toughness restrict its broader use as a structural engineering ceramic [6–8].

Sintering methods such as spark plasma sintering (SPS), hot pressing (HP), hot isostatic pressing (HIP), and pressureless sintering (PS) are commonly used to achieve high temperatures necessary for the densification of B₄C [9]. Among these, PS is often preferred due to its costeffectiveness. However, in the PS technique, excessive grain growth at elevated temperatures can adversely affect the densification of B₄C. To address this issue, the addition of sintering additives is a widely used approach. These additives help lower the sintering temperature and enhance both densification and the mechanical properties of B₄C. They can be carbon-based, metallic, oxide, nonoxide or a combination of these types [10]. In one study [11], the addition of 10 wt. % graphene platelets (GPLs) to the B₄C matrix improved its fracture toughness by approximately 50 %. In another study [12], the incorporation of aluminum (Al) as a sintering additive significantly enhanced the density, fracture toughness, and strength of B₄C. Similarly, Kelvin et al. [13] reported that adding 5 wt. % Al₂O₃ to the B₄C matrix led to nearly full densification (97 %) and a ~ 45 % increase in fracture toughness.

A review of the literature indicated that in-situ secondary phases can form due to reactions between added sintering additives and B₄C during sintering [14-20]. These in-situ phases have been reported to enhance the fracture toughness of B₄C by impeding crack propagation. For instance, in a study [15] where ZrO2 was added to B4C and the SPS technique was used as the sintering method, it was determined that the fracture toughness increased from $2.3 \text{ MPa.m}^{1/2}$ to $3.96 \text{ MPa.m}^{1/2}$ due to the crack deflection and branching toughening mechanisms provided by the in-situ formed TiB₂ phase. Perevislov et al. [16] produced B₄C matrix composites containing varying amounts of Si using HP, and reported that the fracture toughness of B₄C increased by approximately 12 % due to the in-situ formation of a SiC phase. Liu et al. [17] examined B₄C composites containing 5 wt. % metallic Ti sintered via PS and reported the in-situ formation of a TiB₂ phase, which increased the relative density from ~79 % to ~96 % and doubled the fracture toughness, attributed to crack-bridging, deflection, and branching mechanisms induced by the TiB2 phase. Şahin et al. [18], who added 20 vol. % metallic Ti to the B₄C matrix and identified the insitu formation of TiB2 after SPS sintering, achieved a fracture toughness value of 5.9 MPa.m^{1/2}. In a study [19] where titanium silicide (Ti₅Si₃) powder was added to the B₄C matrix as a sintering additive, the in-situ formation of TiB₂ and SiC phases was observed during SPS sintering, and a significant improvement in the wear resistance of the B₄C matrix was reported. In another study [20], where amorphous B, Ti, and graphite were added to B₄C and the powder mixtures were sintered using SPS, B₄C/TiB₂ composites with varying ratios were obtained depending on the amounts of the starting powders, and fracture toughness values as high as 9.9 ± 0.01 MPa.m^{1/2} were obtained.

Given these findings, the objective of the present study is to identify the second phase that may form during sintering with SPS when TiO₂ is used as a sintering additive in B₄C, and to evaluate its effects on the density and mechanical properties of the resulting composites. To this end, TiO₂ and B₄C powders were mixed by ball milling and sintered using the SPS technique. The phases present in the sintered samples were identified via x-ray diffraction (XRD), while microstructures were examined using scanning electron microscopy (SEM). In addition, measurements of density, hardness, and fracture toughness were conducted during the study.

2. MATERIALS AND METHODS (MATERYAL VE METOD)

Commercially available B_4C powder (CRS Chemicals, F2000 Grade, d_{50} =1.61 µm) and TiO_2 (Acros Organics, 99 % Anatase, d_{50} =5 µm) powder were used as starting materials. Prior to mixing, the TiO_2 powder was ball milled (Fritsch Pulverisette) at 300 rpm for 1 h in an isopropanol medium. TiO_2 was then added to the B_4C powder at weight fractions of 5, 10, 15, and 20 %. Subsequently, B_4C and TiO_2 powders were blended in a silicon nitride (Si_3N_4) jar with Si_3N_4 balls for 75 min. at 300 rpm in an isopropanol medium. After milling, isopropanol was removed using an evaporator, and the dried mixtures were sieved.

The prepared compositions were sintered using the SPS technique (HP 25D, FCT GmbH) at 1950 °C under a uniaxial pressure of 50 MPa for a dwell time of 20 min. in a vacuum atmosphere. The heating rate was set to 100 °C/min. The resulting sintered samples had a diameter of 20 mm and a thickness of 6 mm.

Bulk densities of the samples were measured using Archimedes' principle, with deionized water as the immersion medium. Relative density values were calculated based on the rule of mixtures. For the calculations, theoretical densities of B_4C and TiB_2 were taken as 2.52 g/cm³ and 4.52 g/cm³, respectively.

XRD (Rigaku, RINT-2000) analyses were carried out to bulk samples between 10–70° (2θ) under the conditions of 40 kV accelerating voltage, 15 mA current, 1 °/min. scan speed and 0.02 step size. Samples were sectioned and polished using an automatic polisher (STRUERS TegraPol-25), progressing from coarse to fine polishing steps. The polished surfaces of the samples were investigated by backscatter electron imaging (BSE-SEM) and energy dispersive spectroscopy (EDS-SEM, Oxford Instruments, INCA Energy) techniques in the SEM (Zeiss, SUPRA 50 VP).

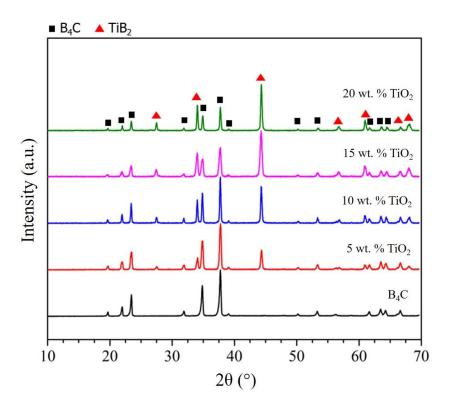
Hardness measurements were conducted using the Vickers indentation method (Emco-Test) under a 5 kg load and a dwell time of 10 seconds. A minimum of ten indentations was made per sample, and the average values were used for statistical analysis. Fracture toughness was calculated using Equation 1 [21].

$$K_c = 0.067 \left(\frac{E}{H_V}\right)^{0.4} H_V \alpha^{0.5} \left(\frac{c}{a}\right)^{-1.5} \tag{1}$$

3. RESULTS AND DISCUSSION (SONUÇLAR VE YORUMLAR)

XRD spectra of the B₄C matrix and B₄Cs containing 5, 10, 15, and 20 wt.% TiO₂ are presented in Figure 1. XRD analysis of the pure B₄C matrix revealed only the B₄C phase, whereas the patterns of the TiO₂-containing B₄Cs indicated the presence of both B₄C and TiB₂ phases. This confirms that the insitu TiB₂ phase was formed as a result of the reactions between B₄C and TiO₂ during the sintering process, as described by Equation 2 [22, 23].

$$4B_4C(s) + 5 \text{ TiO}_2 \rightarrow 5\text{TiB}_2(s) + 4\text{CO}(g) + 6\text{BO}(g)$$
(2)


Furthermore, the absence of detectable TiO_2 peaks in the XRD spectra of the TiO_2 -added B_4Cs indicated that all the TiO_2 was consumed during the reactions. With increasing TiO_2 content, the intensity of the TiB_2 peaks increased, whereas the intensity of the B_4C peaks gradually decreased. This trend suggested that a higher amount of B_4C was consumed and more TiB_2 was formed with

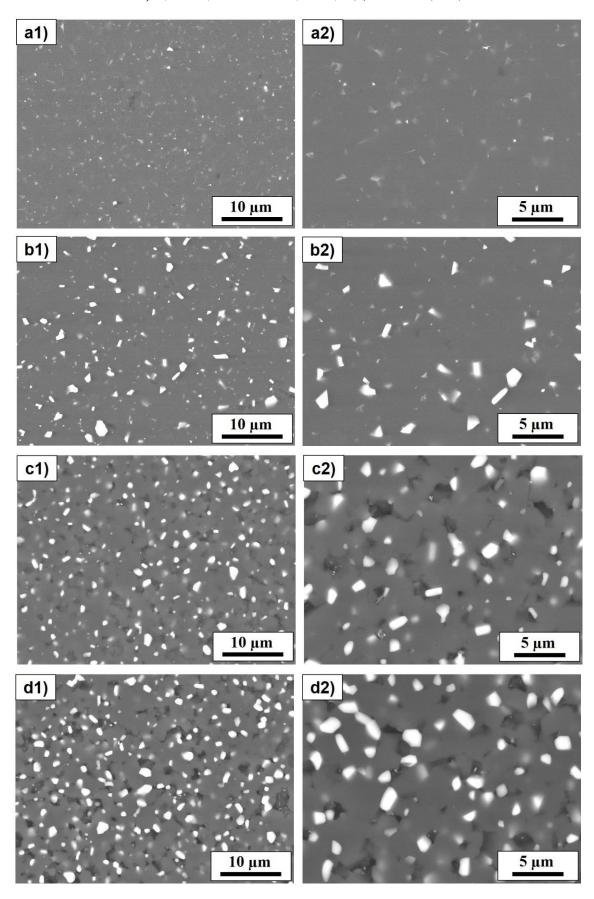
increasing TiO₂ content, consistent with previous findings [24].

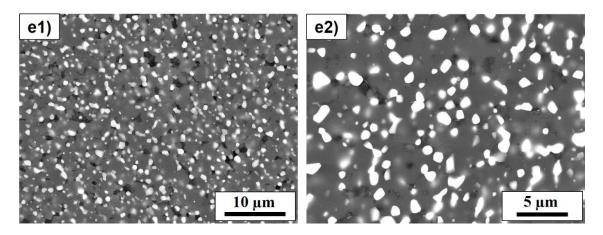
BSE-SEM images of the TiO₂-containing B₄C composites (Fig. 2 b1-e2) revealed two distinct phases, distinguished by white and gray contrasts. To identify the phases present, EDS-SEM analyses were performed on the polished surface of the B₄C composite containing 10 wt.% TiO2, as shown in Figure 3. For each phase, measurements were taken at five different points, and the average atomic percentages (atm. %) were then calculated. In the gray-contrast regions (Fig. 3b1 and 3b2), labeled as region 1 (green) in the BSE-SEM image (Fig. 3a), the atm. % of boron (B) and carbon (C) were approximately 80 % and 20 %, respectively (Fig. 3b1, b2). In contrast, the white-contrast regions labeled as Region 2 (orange) in Fig. 3a exhibited atm. % of boron (B) and titanium (Ti) of approximately 65 % and 35 %, respectively (Fig. 3c1, c2). Based on the EDS-SEM results, the gray contrast can be attributed to the B₄C phase, while the white contrast corresponds to the TiB₂ phase. Considering the combined results from XRD, SEM imaging, and EDS-SEM analyses, the TiO2-added B₄C systems can be classified as in-situ formed B₄C–TiB₂ composites.

The BSE-SEM images of the B₄C–TiB₂ composites (Fig. 2, b1–e2) revealed that the in-situ formed TiB₂ phase is homogeneously distributed within the B₄C matrix microstructure. Additionally, as observed in the images ranging from Fig. 2 b1 to e2, the in-situ formation of TiB₂ predominantly occurs along the B₄C grain boundaries. Among the in-situ formed B₄C-TiB₂ composites, no significant porosity was observed in the microstructure of the sample containing 5 wt. % TiO₂ (Fig. 2 b1 and b2). In contrast, noticeable porosities are evident in the samples containing 10, 15, and 20 wt. % TiO₂ (Fig. c1-e2). Some of these porosities may result from grain pull-out during mechanical polishing. However, the majority of the porosity is likely due to the release of CO gas generated by the in-situ reaction during the sintering process [9].

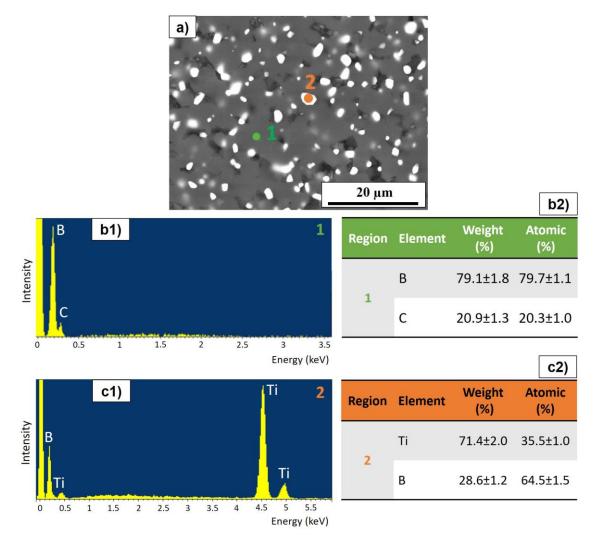
Table 1 presents the bulk and relative density values of the B_4C matrix and in-situ B_4C — TiB_2 composites. The B_4C matrix exhibited a bulk density of 2.49 g/cm³ and a relative density of 98.8 %, indicating that the material was nearly fully densified. These density measurements align well with the microstructural observations of B_4C matrix shown in Fig. 2 a1 and a2, which reveal no significant porosity. The addition of TiO_2 resulted in an increase in bulk density but a decrease in relative

Figure 1. XRD spectra of the B₄C matrix and B₄Cs containing 5, 10, 15, 20 wt. % TiO₂. B₄C ID:2235962, TiB₂ ID: 2002799 (B₄C matrix ile ağırlıkça % 5, 10, 15 ve 20 TiO₂ içeren B₄C'lerin XRD spektrası)


Table 1. Bulk and relative density values of the B₄C matrix and B₄Cs containing 5, 10, 15, 20 wt. % TiO₂. (B₄C matrisi ile ağırlıkça % 5, 10, 15 ve 20 TiO₂ içeren B₄C'lerin yığınsal ve bağıl yoğunluk değerleri.)


Materials	Bulk Density (gcm ⁻³)	Relative Density (%)
B ₄ C	2.490	98.8
B ₄ C-5 wt. % TiO ₂	2.516	97.7
B ₄ C-10 wt. % TiO ₂	2.537	96.3
B ₄ C-15 wt. % TiO ₂	2.589	96.0
B ₄ C-20 wt. % TiO ₂	2.619	94.7

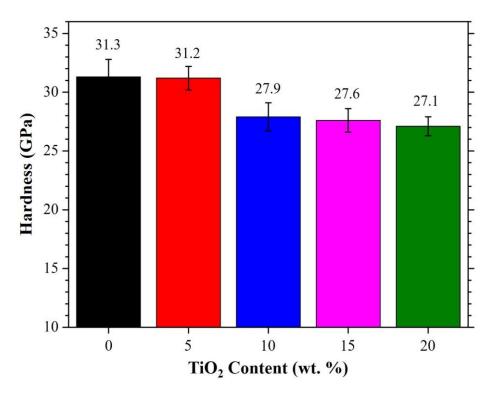
density. The increase in bulk density can be attributed to the formation of the TiB_2 phase, which has a higher intrinsic density than B_4C . Conversely, the reduction in relative density with increasing TiO_2 content is likely due to porosity generated by the release of CO gas during the in-situ reaction between TiO_2 and B_4C during sintering. These trends in relative density are consistent with the microstructural properties of the B_4C – TiB_2 composites (Fig. 2 b1–e2).


The average hardness and fracture toughness values of the B₄C matrix and the in-situ B₄C-TiB₂

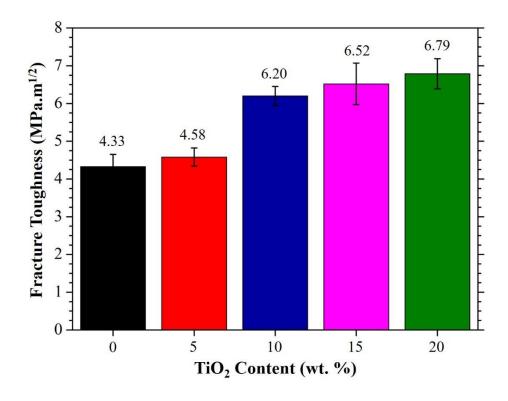
composites are presented in Figure 4 and Figure 5, respectively. Since the hardness of materials is generally directly proportional to their density, the hardness the B_4C measured of $(31.3 \pm 1.5 \,\text{GPa})$ aligns with expected values (~30 GPa). While no significant change was observed in the hardness of B₄C with the addition of 5 wt. % TiO2, its hardness decreased by approximately 11-13 % with the addition of 10, 15, and 20 wt. % TiO2. This reduction is attributed to the increased porosity in the microstructure caused by higher TiO₂ content, which negatively impacts hardness. Furthermore, since TiB2 has lower

Figure 2. BSE-SEM images of the (a1, a2) B₄C matrix and B₄Cs containing (b1, b2) 5, (c1, c2) 10, (d1, d2) 15, (e1, e2) 20 wt. % TiO₂ at (a1, b1, c1, d1, e1) 5000X and (a2, b2, c2, d2, e2) 10000X magnifications. ((a1, a2) B₄C matrisi ile (b1, b2) % 5, (c1, c2) % 10, (d1, d2) % 15 ve (e1, e2) % 20 TiO₂ içeren B₄C'lerin (a1, b1, c1, d1, e1) 5000X ve (a2, b2, c2, d2, e2) 10000X büyütmelerde BSE-SEM görüntüleri.)

Figure 3. EDS-SEM analyses results of the phases present in the microstructure of B₄C containing 10 wt. % TiO₂. (Ağırlıkça %10 TiO₂ içeren B₄C'nin mikroyapısında bulunan fazlara ait EDS-SEM analiz sonuçları.)


hardness than B₄C, the formation of the TiB₂ phase within the composite also contributed to the overall decrease in hardness of the in-situ formed TiB₂–B₄C composites.

The fracture toughness value of the B₄C matrix $(4.33\pm0.32 \text{ MPa.m}^{1/2})$ increased by ~ 6, 43, 51 and 57 % with the addition of 5, 10, 15 and 20 wt. % TiO₂, respectively (Fig. 5). Additionally, Figure 6 contains representative microstructures revealing effective toughening mechanisms along the cracks created by Vickers indentation on the surfaces of the B₄C matrix (a) and B₄C matrix composite containing 10 wt. % TiO₂ (b). The B₄C grain boundaries were observed to be the only factor delaying crack propagation in the B₄C matrix (Fig. 6 a). On the other hand, it was determined that toughening mechanisms such as deflection, bridging and blocking provided by the TiB₂ phase along the crack increased the fracture toughness of B₄C (Fig. 6 b). Some of the energy accumulated at the crack tip, which enables its propagation, was dissipated due to crack deflections upon encountering TiB₂ phases. Subsequently, the crack was thinned through crack-bridging mechanisms provided by TiB₂. When the crack with reduced energy encountered the TiB₂ phase, its propagation was halted due to blocking mechanism (Fig. 6 b).


Residual stresses arising from the large mismatch in thermal expansion coefficients between B₄C (4.5 x 10^{-6} K^{-1}) and TiB₂ (8.1 x 10^{-6} K^{-1}) can lead to the formation of microcracks at B₄C-TiB₂ grain boundaries [25, 26]. In addition, the presence of free carbon has been reported to weaken the interfacial bonding between B₄C and TiB₂ phases, leading to the formation of microcracks at the interfaces. These microcracks may deflect propagating cracks, thereby increasing the fracture path and energy absorption, which enhances the fracture toughness [9, 27, 28]. Moreover, the increase in fracture toughness of the B₄C-TiB₂ composite with increasing TiB2 content can be attributed to the higher intrinsic fracture toughness of TiB₂ compared to B₄C.

4. CONCLUSION (SONUÇLAR)

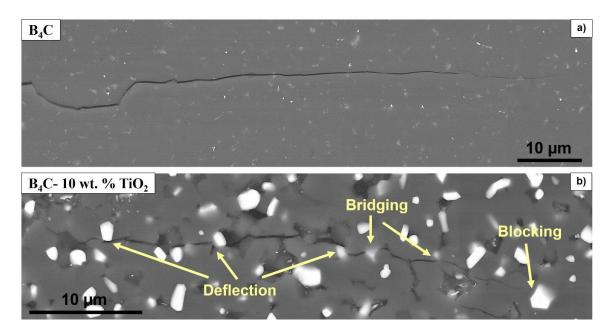

In this study, TiO₂ was used as a sintering additive to increase the sinterability and mechanical properties of B₄C. TiO₂ powder was added to B₄C matrix powder at different ratios, and the resulting compositions were sintered using the SPS technique. XRD and EDS-SEM analyses revealed that the in-situ TiB₂ phase was formed as a result of

Figure 4. Hardness values of the B₄C matrix and B₄Cs containing 5, 10, 15, 20 wt. % TiO₂. (B₄C matrisi ile ağırlıkça % 5, 10, 15 ve 20 TiO₂ içeren B₄C'lerin sertlik değerleri.)

Figure 5. Fracture toughness values of the B₄C matrix and B₄Cs containing 5, 10, 15, 20 wt. % TiO₂. (B₄C matrisi ile ağırlıkça % 5, 10, 15 ve 20 TiO₂ içeren B₄C'lerin kırılma tokluğu değerleri.)

Figure 6. Representative BSE-SEM images of the cracks obtained by Vickers indentation on the surfaces of (a) B₄C matrix and (b) B₄C matrix composite containing 10 wt. % TiO₂. ((a) B₄C matrisi ve (b) ağırlıkça % 10 TiO₂ içeren B₄C matris kompozit yüzeylerinde Vickers indentasyon yöntemiyle elde edilen çatlaklardan alınmış temsili BSE-SEM görüntüleri.)

the reactions between B₄C and TiO₂ during sintering. Microstructure examinations and density measurements showed that highly dense B₄C matrix could be produced with the applied sintering conditions. While the density of the B₄C matrix composite containing 5 wt. % TiO2 was comparable to that of pure B₄C, increased porosity was observed in composites with 10, 15, and 20 wt. % TiO2 due to CO gas evolution during the reaction. Accordingly, the relative density slightly decreased. The hardness value of the B₄C matrix was obtained at the expected value (31.3±1.5 GPa). As the TiO₂ content increased, the hardness values tended to decrease, which corresponded proportionally to the reduction in relative density. On the other hand, the fracture toughness of the B₄C matrix, determined to be approximately 4.33 ± 0.32 MPa.m^{1/2}, increased by ~ 6, 43, 51, and 57 % with the addition of 5, 10, 15, and 20 wt. % TiO₂, respectively. The deflection, bridging and blocking toughening mechanisms provided by the in-situ formed TiB2 phase to crack propagation positively affected the fracture toughness. Additionally, the microcracks formed due to residual stress in the in-situ B₄C-TiB₂ composites contributed to an increase in the fracture toughness of B₄C. In applications where hardness is prioritized over fracture toughness, the addition of 5 wt. % TiO2 can be considered ideal, whereas in applications that demand higher fracture toughness, increased TiO₂ content may be preferred.

ACKNOWLEDGEMENTS (TEŞEKKÜR)

The Eskisehir Technical University Scientific Research Projects under the project number of 23LÖP040 and Tubitak 2209-A-Research Project Support Programme for Undergraduate Students with a number of 1919B012223499 supported this work.

AUTHORS' CONTRIBUTIONS (YAZARLARIN KATKILARI)

Sinem BAŞKUT: She took part in the execution of the experiments, analyzed the results, and carried out the writing process.

Deneylerin yürütülmesine katıldı, sonuçları analiz etti ve yazım sürecini gerçekleştirdi.

Name YALAMA: She was involved in the experimental procedures.

Deneysel süreçlerin gerçekleştirilmesinde görev aldı.

Servet TURAN: He contributed to the analysis of the results.

Sonuçların analiz edilmesine katkı sağladı.

CONFLICT OF INTEREST (CIKAR CATISMASI)

There is no conflict of interest in this study.

Bu çalışmada herhangi bir çıkar çatışması yoktur.

REFERENCES (KAYNAKLAR)

- [1] Domnich V, Reynaud S, Haber RA, Chhowalla M. Boron carbide: structure, properties, and stability under stress. Journal of the American Ceramic Society. 94; 2011: 3605–3628.
- [2] Zhu Y, Cheng H, Wang Y, An R. Effects of carbon and silicon on microstructure and mechanical properties of pressureless sintered B₄C/TiB₂ composites. Journal of Alloys and Compounds. 772; 2019: 537–545.
- [3] Shi L, Gu Y, Chen L, Qian Y, Yang Z, Ma J. A low temperature synthesis of crystalline B₄C ultrafine powders, Solid State Communication. 128; 2003: 5–7.
- [4] Thevenot F. Sintering of Boron Carbide and Boron Carbide-silicon Carbide Two-phase Materials and Their Properties. Journal of Nuclear Materials. 152; 1988: 154–162.
- [5] Rafi-ud-din GH et al. Ethylene Glycol Assisted Low-Temperature Synthesis of Boron Carbide Powder from Borate Citrate Precursors, Journal of Asian Ceramic Society. 2: 3; 2014: 268–274.
- [6] Liu L et al. Sintering Dense Boron Carbide Without Grain Growth under High Pressure, Journal of the American Ceramic Society. 101:3; 2018:1289–1297.
- [7] Tuffe S, Dubois J, Barbier G. Densification, Microstructure and Mechanical Properties of TiB₂-B₄C Based Composites. International Journal of Refractory Metals & Hard Materials. 14; 1996: 305–310.
- [8] Hwang C et al. Small Amount TiB₂ Addition into B₄C through Sputter Deposition and Hot Pressing. Journal of the American Ceramic Society. 102: 8; 2019: 4421–4426.
- [9] Khajehzadeha M, Ehsania N, Baharvandia RH, Abdollahia A, Bahaaddini M, Tamadonb A. Thermodynamical evaluation, microstructural characterization and mechanical properties of B₄C-TiB₂ nanocomposite produced by in-situ

- reaction of Nano-TiO₂. Ceramics International. 46: 2020: 26970–26984.
- [10] Zhang W, Yamashita S, Kita H. Progress in pressureless sintering of boron carbide ceramics—a review. Advanced in Applied Ceramic. 118: 4; 2019: 222-239.
- [11] Sedlák R, Kovalčíková A, Múdra E, Rutkowski P, Dubiel A, Girman V, Bystrický R, Dusza J. Boron carbide/graphene platelet ceramics with improved fracture toughness and electrical conductivity. Journal of the European Ceramic Society 37: 12; 2017: 3773-3780.
- [12] Mashhadi M, Nassaj ET, Sglavo VM. Pressureless sintering of boron carbide. Ceramics International. 36: 1; 2010: 151–159.
- [13] Kelvin Y, Xie M, Toksoy F, Kuwelkar K, Zhang B, Krogstad JA, Haber RA, Hemker KJ. Effect of Alumina on the Structure and Mechanical Properties of Spark Plasma Sintered Boron Carbide. Journal of the American Ceramic Society 97: 11; 2014: 3710–3718.
- [14] Goldstein A, Geffen Y, Goldenberg A. Boron Carbide–Zirconium Boride In Situ Composites by the Reactive Pressureless Sintering of Boron Carbide–Zirconia Mixtures. Journal of the American Ceramic Society 84: 3; 2001: 642–644.
- [15] Yao W, Yan J, Li X, Chen P, Zhu Y, Zhu B. In Situ ZrB₂ Formation in B₄C Ceramics and Its Strengthening Mechanism on Mechanical Properties. Materials. 15; 2022 7961.
- [16] Perevislov SN, Lysenkov AS, Vikhman SV. Effect of Si Additions on the Microstructure and Mechanical Properties of Hot-Pressed B₄C. Inorganic Materials. 53: 4; 2017: 376– 380.
- [17] Liua G, Chenb S, Zhaoc Y, Fua Y, Wang Y. Effect of Ti and its compounds on the mechanical properties and microstructure of B₄C ceramics fabricated via pressureless sintering. Ceramics International, 47: 10; 2021: 13756-13761.
- [18] Şahin FÇ, Mansoor M, Cengiz M, Apak B, Yanmaz L, Balazsi K, Fogarassy Z, Derin B, Göller G, Yücel O. B₄C Composites with a TiB₂-C Core—Shell Microstructure Produced by Self-Propagating High-Temperature Synthesis-Assisted Spark Plasma Sintering.

- The Journal of Physical Chemistry C. 126: 47; 2022; 20114-20126.
- [19] Twardowska A, Kowalski M. The Microstructure, Mechanical, and Friction-Wear Properties of Boron Carbide-Based Composites with TiB₂ and SiC Formed In Situ by Reactive Spark Plasma Sintering. Materials, 17; 2024: 2379.
- [20] Wang S, Yuan Y, Hanc W, Yin Z. Microstructure and mechanical properties of B₄C-TiB₂ composite ceramic fabricated by reactive spark plasma sintering. International Journal of Refractory Metals and Hard Materials. 92; 2020: 105307.
- [21] Rangel ER. Fracture Toughness Determinations by Means of Indentation Fracture, Nanocomposites with Unique Properties and Applications in Medicine and Industry. InTechOpen. 2011: ISBN:978-953-307-351-4.
- [22] Kakazey M, Vlasova M, Gonzalez-Rodriguez JG, Dominguez-Patino M, Leder R. X-ray and EPR study of reactions between B₄C and TiO₂, Materials Science Engineering A. 418; 2006: 111-114.
- [23] Levin L, Frage N, Dariel MP. The effect of Ti and TiO₂ additions on the pressureless sintering of B₄C. Metallurgical and Materials Transactions A, 30;1999: 3201-3210.
- [24] Yang LK, Shen P, Guo R-F, Jiang Q-C. The role of TiO₂ incorporation in the preparation of B₄C/Al laminated composites with high strength and Toughness. Ceramics International. 44:13; 2018: 15219-15227.
- [25] Asghar Z, Aziz T, Khan AR, Shah A, Waqas H, Ali F, Rasul HT, Khan MF. High-Hardness High-Fracture-Toughness B₄C-TiB₂ Composite Produced by Reactive Hot Pressing. Journal of Materials Engineering and Performance. 32; 2023: 7225–7233.
- [26] He Q et al. Microstructures and Mechanical Properties of B₄C-TiB₂-SiC Composites Fabricated by Ball Milling and Hot Pressing. Journal of the European Ceramic Society. 38:7; 2018: 2832–2840.
- [27] Sigl LS, Kleebe HJ. Microcracking in B₄C-TiB₂ Composites. Journal of American Ceramic Society. 78: 9; 1995: 2374–2380.
- [28] Wang W, Lian J, Ru H. Pressureless sintered SiC matrix toughened by in situ synthesized

 TiB_2 : process conditions and fracture Toughness. Ceramics International. 38; 2012: 2079-2085.