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ABSTRACT

Understanding precipitation trends is critical for assessing climate change and its impacts on water
resources, and disaster preparedness. In this study it was aimed to analyzes the long-term trends of the
Standardized Precipitation Index (SPI) for Canakkale. The precipitation data from a period of 1929 to 2023 was
used. Three distinct models—Linear Regression, Autoregressive Integrated Moving Average (ARIMA), and Long
Short-Term Memory (LSTM) networks—were employed to evaluate SPI trends. The linear regression model
indicated significant short-term fluctuations in SPI values but did not reveal a clear long-term trend toward
wetter or drier conditions. The ARIMA model, optimized for stationarity, also suggested relatively stable
precipitation patterns, with no pronounced directional trend over the study period. The LSTM model, designed
for sequential data analysis, captured complex temporal dependencies in SPI values but did not indicate a
persistent long-term trend. Instead, the results highlighted substantial interannual variability in precipitation.
These findings underscore the complexity of climate patterns in Canakkale Province and emphasize the need for
diverse modeling approaches to accurately assess precipitation trends. The lack of a clear directional trend
suggests that short-term climate variability plays a more significant role than long-term changes in precipitation
patterns in the region. This study provides a foundation for further research into advanced modeling techniques
to enhance climate prediction capabilities. Future studies should explore hybrid and ensemble methods to
improve accuracy, which is crucial for climate adaptation strategies and water resource management.
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Canakkale igin Standart Yagis indeksi (SP1) Verileri icin Trend Modellerinin Karsilastirmali
Analizi

0z

Yagis egilimlerini anlamak, iklim degisikligini ve su kaynaklari ile afetlere karsi hazirligi etkileyen faktérleri
degerlendirmek icin kritik &neme sahiptir. Bu calismada Canakkale icin Standart Yagis indeksi'nin (SP1) uzun vadeli
egilimlerini analiz etmek amaglanmistir. 1929-2023 doénemine ait yagis verileri kullanilmistir. SPI egilimlerini
degerlendirmek icin Dogrusal Regresyon, Otoregresif Entegre Hareketli Ortalama (ARIMA) ve Uzun Kisa Vadeli
Bellek (LSTM) aglari olmak Uzere t¢ ayri model kullanilmistir. Dogrusal regresyon modeli, SPI degerlerinde kisa
vadeli dnemli dalgalanmalar géstermistir ancak daha yagish veya daha kuru kosullara dogru net bir uzun vadeli
egilim ortaya koymamistir. Duraganlik icin optimize edilmis ARIMA modeli, galisma dénemi boyunca belirgin bir
yon egilimi olmaksizin nispeten istikrarli yagis desenleri de 6nermistir. Sirali veri analizi i¢in tasarlanan LSTM
modeli, SPI degerlerinde karmasik zamansal bagimhliklari yakalamis ancak kalici uzun vadeli bir egilim ortaya
koymamustir. Sonuglar yagista onemli yillik degiskenligi ortaya koymaktadir. Bu bulgular, Canakkale ili'ndeki
iklim modellerinin karmasikligini vurgulamakta ve yagis egilimlerini dogru bir sekilde degerlendirmek
icin cesitli modelleme yaklasimlarina olan ihtiyaci ortaya koymaktadir. Net bir yon egiliminin olmamasi,

733



Turkish Journal of Agricultural and Natural Sciences 12 (3): 733-742, 2025

kisa vadeli iklim degiskenliginin bolgedeki yagis modellerindeki uzun vadeli degisikliklerden daha énemli bir rol
oynadigini gostermektedir. Bu ¢alisma, iklim tahmin vyeteneklerini gelistirmek igin gelismis modelleme
tekniklerine yonelik daha fazla arastirma igin bir temel saglamistir. Gelecekteki ¢alismalar, iklim adaptasyon
stratejileri ve su kaynaklari yonetimi icin ¢ok dnemli olan dogrulugu artirmak igin hibrit ve topluluk yéntemlerini
arastirmalidir.

Anahtar kelimeler: ARIMA, Dogrusal Regresyon, Uzun Kisa Dénemli Bellek, iklim Degiskenligi, Yagis Egilimleri.

INTRODUCTION

Studying precipitation trends is vital in climate science due to its significant impact on various
environmental and societal aspects. Precipitation patterns influence water resources, agriculture, ecosystems,
and urban planning, making it crucial to understand and predict these trends accurately. Analyzing spatial
patterns of precipitation trends helps in understanding regional climatology and preparing for climatic changes.
For example, research on the continental United States identified hotspots of increasing and decreasing
precipitation trends, which can guide regional planning and adaptation strategies (O'Brien, 2018). Accurate
prediction of precipitation trends is crucial for economic development as well. Studies in the Swat River basin,
Pakistan, showed variability in precipitation trends across different time scales, highlighting the importance of
precise predictions for water resource management and agricultural planning (Ahmad et al., 2015). On a global
scale, mapping minimal detectable trends in annual precipitation is highly important for assessing the impact of
climate change. This helps in identifying regions at risk and formulating global adaptation strategies (Morin,
2011). Detecting overlooked trends in precipitation, especially in extreme events, is critical for risk management
in agriculture, water supply, and ecosystems. Quantile regression analyses have revealed significant trends in
extreme precipitation that traditional methods might miss (Lausier & Jain, 2018). Precipitation trends directly
affect the hydrological cycle and water management policies. Studies in Turkey demonstrated that
understanding the spatial and temporal variations of precipitations is critical for effective management of water
resources (Yavuz & Erdogan, 2012). Studying trends in precipitation alongside temperature helps predict future
climate scenarios. Joint modeling of these parameters provides more accurate predictions of climate impacts,
which are essential for planning and adaptation (Mesbahzadeh et al., 2019).

In this study it was aimed to monitor Standardized Precipitation Index (SPI) trends for further
understanding and mitigating the impact of climate change. To achieve this objective three different approaches
in modeling and predicting SPI data are employed using long term (1929 — 2023) precipitation data.

MATERIALS AND METHODS

Study Area and Dataset

Canakkale province is located at of 39°27' north latitude and 26°16' east longitude (Figure 1). These
coordinates show that the province is in the northwest of Turkey, bordering the Aegean and the Marmara Seas
(Unsal, 2015). Canakkale has a climate that is transitional between the Mediterranean climate and the Black Sea
climate. A warm and temperate climate prevails throughout the province. The average annual temperature is
around 15°C. Summer months are hot and dry. In July and August, temperatures often rise above 30°C. Winters
are warm and rainy. The average temperature in January varies between 5-10°C. Snowfall is rare, it usually rains.
The mean precipitation varies between 600-700 mm. Precipitation generally occurred in fall and winter (Kale,
2017).

Figure 1. Study area
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Montly precipitation data for the years 1929 - 2023 were obtained from the Turkish State Meteorological
Service. The file containing precipitation data also includes data from all stations in the country. Therefore, first
of all, only information about Canakkale meteorology station was extracted from the txt file. These data were
then converted into an Excel file and made ready for statistical analysis. Statistical calculations were made in
Python programming language. Libraries such as Keras, Tensorflow, Sklearn, NumPy and Panda were used in the
analyses. Necessary coding for trend analysis was done on Google Colab.

Standardized Precipitation Index (SPI)

The SPI is a commonly used technique designed to quantify precipitation deficits within different time
scales. It provides a probabilistic measure of precipitation anomalies. Its calculation requires a historical data
that fits probability distribution followed by transformation into a normal distribution. This allows the SPI to
express the precipitation deficit or surplus as standard deviations from the mean. The commonly used probability
distribution for SPI calculation is the gamma distribution, but other distributions such as normal, log-normal, and
Weibull can also be employed based on the region and time scale (Angelidis et al., 2012). It can be calculated for
different time scales, mainly from 1 to 48 months. Time scale of 1-6 months are useful for agricultural droughts,
time scales of 12-48 months are better for hydrological droughts (Guenang & Kamga, 2014).

In this study it was aimed to monitor hydrological drought. Therefore, 12-month time scale was used for
SPI calculations. The 12-month SPI integrates seasonal and interannual variability, providing a more stable and
smoothed indicator of precipitation anomalies that directly impact water resource availability, reservoir levels,
and watershed-scale hydrology. Additionally, focusing on a single, longer time scale reduced the dimensionality
and complexity of model comparisons, allowing a clearer evaluation of the models’ performance in capturing
meaningful long-term climate signals. To fit a probability distribution, two-parameter gamma equation was used
due to its flexibility and suitability for precipitation data (Equation 1) (Blain & Meschiatti, 2015).

-X

x2-1, /B
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(1)
Where; x is the variable of interest, which is the value at which the probability density function (PDF) is
evaluated (precipitation amount), a is the shape parameter, B is the scale parameter, I is the gamma function,
and e is the base of the natural logarithm.
Then, cumulative probabilities of each precipitation value were computed by using Equation (2).

£ e gt (2)

Where; G(x) is the cumulative distribution function (CDF), t is variable of integration, which represents all
possible values up to x, a is the shape parameter.

Finally, the cumulative probability transformed into standard normal distribution. This is done by the
inverse normal (Gaussian) function (Equation 3).

SPI = ©-1(G(x)) (3)
Where; ®-1 represents the inverse function of the standard normal cumulative distribution.

Trend Analysis

Linear regression model

Linear regression is a fundamental statistical tool used to analyze and interpret trends in different fields.
Linear regression models are employed to define relationships between an outcome (dependent) variable and
one or more input (independent) variables. The fundamental equation governing this relationship is presented
in Equation (4).

Y=BO+B1X+e (4)
Where; Y represents the dependent variable while X represents the independent variable. B0, B1, and €

are the intercept, slope and error term, respectively.
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Autoregressive integrated moving average (ARIMA)

In environmental sciences, ARIMA models are used to analyze trends in climatic data, such as precipitation
and temperature patterns, which are crucial for understanding climate change impacts and planning mitigation
strategies (Dimri et al., 2020). These models are characterized by three key parameters: p (autoregressive order),
d (differencing order), and q (moving average order), and are generally represented as ARIMA(p,d,q). The
Autoregressive (p) component signifies that the variable of interest is predicted based on its past values. The
integrated (d) component accounts for differencing the raw data to achieve stationarity in the time series. Lastly,
the moving average (q) component identifies the relationship between an observed value and the residual errors.
The general equation for the ARIMA model is presented in Equation (5).

Yt=c+d1Yt-1+Pp2Yt-2+...+PpYt-p+01let-1+02€et-2+...+0qet—qg+et (5)

Where; Yt represents the value at time t, c is a constant, ¢i are the coefficients for the autoregressive
terms, 6j are the coefficients for the moving average terms, and €t is the error term at time t (Green & Noles,
1977).

The best model parameters are determined using the AIC (Akaike Information Criterion), and the
combination of (p, d, q) which yields the lowest value is defined as the optimal model. Zhang & Meng, (2023)
demonstrates the application of AIC in the selection of ARIMA model parameters, balancing model complexity
and accuracy. The AIC criterion aids in selecting the optimal model by minimizing its value, ensuring the best
combination of (p, d, q) is chosen.

Using the ADF test’s p-value and ADF statistics it was evaluated that if the data is stationary. If this value
is less than a threshold value (commonly 0.05), this means that the data is likely stationary. Additionally, if the
ADF test statistic is more negative than the critical values at different significance levels (1%, 5%, 10%), it indicates
that the data is stationary. In summary, a low p-value (typically less than 0.05) or an ADF statistic more negative
than the critical value suggests that both data are stationary.

Long Short-Term Memory Networks (LSTM)

LSTMs are a type of recurrent neural networks (RNNs). This advanced type is developed to handle the
shortcomings of traditional RNNs. They perform well in managing long-term dependencies. They are highly
effective for sequential data tasks, such as time series analysis (Oruh et al., 2022).

LSTM networks consist of multiple units, each incorporating a cell, an input gate, an output gate, and a
forget gate. The traffic of information within the network is controlled by these gates, enabling LSTMs to
efficiently retain and update long-term dependencies. They operate by iteratively processing input sequences
through the gates and cell states. The primary equations governing an LSTM unit at time step t are given in
following Equations (6, 7, 8, 9, 10, 11).

ft=o0(Wf:[ht-1,xt]+bf) (6)
Where; ft represents the forget gate activation at time step t, o denotes the Sigmoid activation function,
WHf is the weight matrix associated with the forget gate, ht-1 is hidden state from the previous time step t-1, xt

is input at the current time step t, and bf is bias for the forget gate.

it=0(Wi-[ht-1,xt]+bi) (7)
Ct=tanh(WC-[ht-1,xt]+bC) (8)

Where; it is input gate activation at time step t, Wi is weight matrix for the input gate, bi is bias for the
input gate, Ct is candidate cell state at time step t, tanh is hyperbolic tangent activation function, WC is weight
matrix for the candidate cell state, and bC is bias for the candidate cell state.

Ct=ft-Ct-1+it-Ct (9)

Where; Ct is updated cell state at time step t, ft is forget gate activation at time step t, Ct-1 is cell state
from the previous time step t-1.

ot=0(Wo-[ht-1,xt]+bo) (10)
ht=ot-tanh(Ct) (11)
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Where; ot is output gate activation at time step t, Wo is weight matrix for the output gate, ht-1is hidden
state from the previous time step t-1, xt is input at the current time step t, bo is bias for the output gate, ht is
hidden state or output of the LSTM unit at time step t, Ct is cell state at time step t.

The statistical parameters of LSTM networks, such as weights, biases, activation functions, learning rate,
number of units, batch size, and dropout rate, play a highly important role in their performance. Understanding
and optimizing these parameters is essential for leveraging the full potential of LSTM networks in various
applications (Merity et al., 2017).

RESULTS AND DISCUSSION

Linear Regression Model

12-month SPI and trend line drawn via linear regression model are represented in Figure 2. The SPI values
exhibit significant fluctuations, indicating variability in annual precipitation with periods of both wetter and drier
conditions. On the other hand, the nearly horizontal red trend line indicates that, on average, there is no
significant increase or decrease in annual SPI values over the observed period. This implies that there is no strong
indication of wetter or drier conditions for the long term.

—— Annual SPI
0.6 —— Linear Regression Trend
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Figure 2. Annual SPI trend analysis with linear regression

The statistics for the linear regression model are listed in Table 1. Given in Table 1, a highly small R2 value
suggesting that the linear trend does not capture much of the variability in the data. Additionally, a relatively low
MSE value indicates that the model's predictions closely align with the actual values on average. Another
parameter is the slope of the linear regression model. The small positive slope indicates a slight upward trend in
SPI values over time, but the trend is very minimal.

Table 1. Linear regression model statistics

Parameter Value

R2 0.00297
Mean Squared Error (MSE) 0.07507
Slope 0.00056
Intercept -1.08741

The linear regression analysis reveals no substantial long-term trend in the annual SPI values. The natural
variability in annual precipitation remains the dominant feature of the SPI data.

ARIMA Analysis

After calculating the annual SPI values (Figure 2), an ARIMA trend analysis was conducted. Important
model parameters in this analysis are defined by the letters (p, d, q) as explained above. Using Python’s itertools
library, the optimal parameters that yield lowest AIC value were attempted to be determined by trial-error
method. However, the iteration resulted in (0,0,0) values, indicating that the data is non-stationary. Stationarity
is highly important for ARIMA, because these models assume that the statistical properties of the series are not
changed. To convert the data from non-stationary to stationary form, differencing was applied. After
differencing, the data appeared as given in Figure 3.
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Figure 3. Differenced annual SPI data

Stationarity of original and differenced data was evaluated using the Augmented Dickey-Fuller (ADF) test.
The results are listed in Table 2.

Table 2. ADF test statistics

Value
Parameter Original Data Differenced Data

ADF Statistic: -9.59 -6.055
p-value: 2.04x1016 1.25x107
Critical Values:

1%: -3.50 -3.51

5%: -2.89 -2.90

10%: -2.58 -2.59

Based on the test statistics an ARIMA model without differencing was used as the data does not require
differencing.While the test results indicate that the original data is stationary, the inability to fit ARIMA models
effectively on the original data suggests that there might be other factors at play, such as higher-order
dependencies or non-linearities that are not captured by simple ARIMA models without differencing. As a result,
differenced data is used to run ARIMA model. Once the iteration process was applied (1,1,1) model fitted well
on the differenced data. Therefore ARIMA (1, 1, 1) model was applied. The ARIMA model output and differenced
SPI data plot are given in Figure 4.

—— Annual SPI
061 —— ARIMA(1,1,1) Trend

1940 1960 1980 2000 2020
Year

Figure 4. Annual SPI trend analysis with selected ARIMA model

Based on ARIMA, the trend line appears relatively flat with minor fluctuations over the years. This flat
trend line suggests that there is no significant long-term trend in the SPI values, indicating either wetter or drier
conditions over the entire period. In early years (Pre-1950s) the SPI values exhibit high variability with noticeable
peaks and troughs. The red trend line shows a slight downward trend initially, indicating drier conditions during
this period.

However, during mid to late period (Post-1950s) the SPI values continue to show variability, but the fluctuations
become more moderate. The red trend line flattens out and remains close to zero, indicating that there is no
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strong indication of wetter or drier conditions for this period. The ARIMA (1, 1, 1) model indicates that the annual
SPI values have not shown a consistent long-term trend towards wetter or drier conditions over the years. The
conditions appear relatively stable, with fluctuations that do not point towards a significant change in either
direction.

Long Short-Term Memory (LSTM) Networks Analysis

Used as a version of recurrent neural networks that is particularly good at learning from sequences and
temporal data, making it applicable for time series analysis. Improving the performance of an LSTM model can
involve several strategies, including tuning hyperparameters, increasing model complexity, adding regularization,
and improving data preprocessing. In order to find the select best LSTM parameters, Keras’ optimizer library was
employed. Based on the optimization (tuning hyperparameters) following model was developed representing
the SPI data trend (Table 3).

Table 3. LSTM model parameters

Parameter Value
Validation loss 0.0272
Units in the first layer 64
Units in the second layer 160
Dropout rate for first layer 0.2
Dropout rate for second layer 0.3
Number of layers 3
Learning rate 0.0025

Based on Table 3, A lower validation loss indicates better generalization and model performance. The
number of units (neurons) in the first LSTM layer having 64 units means that the layer has 64 LSTM cells, each
with its own set of weights and biases to learn from the data. Similar to the first LSTM layer, the number of units
in the second LSTM layer having 160 units suggests that this layer is larger and might be capturing more detailed
temporal patterns from the data. A dropout rate of 0.2 means that 20% of the neurons in the first LSTM layer are
randomly dropped during each epoch, forcing the model to learn redundant representations and improve its
generalization ability. Similarly, this dropout rate is applied to the second LSTM layer. A rate of approximately
0.3 (30%) means that 30% of the neurons in this layer are randomly dropped during training. The number of
layers indicates the total number of layers in the model. In this case, the optimal number is 3, which typically
includes the two LSTM layers and one additional layer (often a Dense layer) for the final output. A learning rate
of approximately 0.002465 means the optimizer (Adam) will update the model weights by this fraction of the
gradient. Selecting an appropriate learning rate is essential for model performance. If the learning rate is too
high, the model may converge too quickly to a suboptimal solution, whereas a low learning rate can lead to an
overly slow training process. Utilizing this optimized model, the trend analysis obtained through LSTM is
presented in Figure 5.

— Actual SPI
0.6 —— Train Prediction
—— Test Prediction

0.4

0.2 1

SPI

0.0 1

19‘4(] 19'60 19‘3(] 2 DIGO 2 [}‘20
Figure 5. Improved annual SPI trend analysis with LSTM
As stated above the SPI values fluctuate significantly, indicating periods of both wet and dry conditions.
The red line, on the other hand, represents the predicted values. The model reflects some general trends in the

training data, but there are some deviations from the actual SPI values. It also seems to smooth out some of the
higher peaks and lower troughs, indicating that it captures the overall trend but might miss some short-term
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fluctuations. The green line, representing the model's predictions on the test dataset, follows the general trend
of the actual SPI values reasonably well, with some deviations. The performance of the model on the test set
indicates it has generalized well to unseen data, though it still shows some smoothing of extreme values. The
overall trend captured by the LSTM model does not show a clear and consistent long-term increase or decrease
in SPI values, which would indicate a significant trend towards wetter or drier conditions. There are periods of
negative SPI values, but these are interspersed with periods of positive SPI values, indicating a balance between
wet and dry periods over time. As a result, based on the trend analysis, there is no clear long-term trend towards
drought in the given SPI data. The SPI values fluctuate around zero, indicating alternating periods of wet and dry
conditions without a significant downward trend.

Ahmad et al. (2015) determined high variability in SPI trends in the Swat River basin using non-parametric
tests, stating that precipitation trends are better explained with flexible and dynamic modeling rather than static
linear methods. Yavuz & Erdogan (2012) also determined strong spatial and temporal variability in Turkish
precipitation records with no consistent trends between areas, which corroborated the theory that local
influences have a tendency to overpower larger-scale climate signals.

At the global level, Morin (2011) highlighted that the few discernible trends in annual precipitation are
overshadowed by huge interannual variability, a result mimicked in this study's outcome of SPI trends fluctuating
around a zero mean with no directional trend. In addition, Lausier & Jain (2018) demonstrated how traditional
statistical approaches can overlook subtle trends, especially in extremes, which further validates the
manuscript's use of advanced models like LSTM in identifying subtle trends.

Model Performance Evaluation and Statistical Comparison

To enhance the comparative evaluation of the three models, additional performance metrics—Root Mean
Square Error (RMSE), Mean Absolute Error (MAE), and the coefficient of determination (R?)—were calculated
(Table 4). The Linear Regression model had the poorest performance, with RMSE of 1.867, MAE of 1.693, and a
negative R? value of -2.508, indicating that it failed to capture the variation in SPI values. In contrast, both the
ARIMA and LSTM models yielded substantially better metrics, with nearly identical RMSE (0.998 for ARIMA, 0.996
for LSTM) and MAE (0.791 for ARIMA, 0.790 for LSTM), though their R? values remained close to zero (-0.0031
and 0.0004 respectively), suggesting limited predictive strength in terms of explained variance.

Table 4. Model Performance Metrics

RMSE MAE R?
Linear Regression 1.8669 1.6923 -2.5089
ARIMA 0.9982 0.7912 -0.0031
LSTM 0.9964 0.7902 0.0004

To statistically assess the difference in forecast accuracy, the Diebold-Mariano (DM) test was applied
(Table 5). The test showed statistically significant differences between Linear Regression and both ARIMA (DM =
27.83, p<0.001) and LSTM (DM = 27.91, p < 0.001). However, the difference between ARIMA and LSTM was not
statistically significant (DM = 0.61, p = 0.54). These results confirm that while ARIMA and LSTM models
outperform Linear Regression, their relative predictive performance is statistically similar. Therefore, both
ARIMA and LSTM offer more reliable modeling options for SPI trend analysis in Canakkale.

Table 5. Diebold-Mariano Test Results

DM Statistic p-value
LR vs ARIMA 27.8322 0.0000
LR vs LSTM 27.9088 0.0000
ARIMA vs LSTM 0.6104 0.5417

CONCLUSION

This study meticulously analyzed the Standardized Precipitation Index (SPI) for Canakkale using three
distinct models—Linear Regression (LR), Autoregressive Integrated Moving Average (ARIMA), and Long Short-
Term Memory (LSTM)—spanning the period from 1929 to 2023. The findings reveal that none of the models
identified a strong, consistent long-term trend in precipitation, highlighting the complex and variable nature of
climate patterns in the region.
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Quantitative performance metrics further clarified the relative effectiveness of the models. Linear
Regression exhibited the weakest performance, with the highest RMSE and MAE values and a strongly negative
R?, indicating its inability to capture the underlying variability in SPI. In contrast, both ARIMA and LSTM models
achieved significantly lower error rates and nearly identical performance, though their R? values remained close
to zero. The Diebold-Mariano statistical test confirmed that both ARIMA and LSTM significantly outperformed
Linear Regression in forecasting accuracy (p < 0.001), while no statistically significant difference was found
between ARIMA and LSTM (p = 0.54).

The analysis carried out here took into consideration trend modeling of SPI values based on local
precipitation only, ignoring overall atmospheric or oceanic climate forcing factors. Thus, the lack of persistence
in a long-term trend in SPI does not necessarily imply climatic stability, but is instead a reflection of the non-
availability of modulating variables that effect precipitation variability on interannual to decadal timescales.
Climate indices such as the North Atlantic Oscillation (NAO), the Arctic Oscillation (AO), and the El Niflo-Southern
Oscillation (ENSQO) have been seen to influence regional precipitation traits over Europe and the eastern
Mediterranean, including Turkey. For example, positive and negative phases of the NAO have been shown to be
related to wetter or drier conditions in western Anatolia. Leaving these indices out may then minimize SPI trend
interpretation to disregard such important teleconnections that could be primarily behind the interannual
variability observed. Although no statistically significant long-term trend towards increasing or decreasing
precipitation based on SPI-12 analysis was detected in this research, the fact of substantial interannual variability
renders adaptive water management essential to Canakkale. Policy makers need to put top priority on the
development of variable drought preparedness policies capable of responding to short-term variations over the
single strategy of long-term prediction. Investments should be made in climate-resilient infrastructure, such as
multi-year water storage infrastructure, to serve as a cushion against unpredictable dry years.
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