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ABSTRACT  
Understanding precipitation trends is critical for assessing climate change and its impacts on water 

resources, and disaster preparedness. In this study it was aimed to analyzes the long-term trends of the 
Standardized Precipitation Index (SPI) for Çanakkale. The precipitation data from a period of 1929 to 2023 was 
used. Three distinct models—Linear Regression, Autoregressive Integrated Moving Average (ARIMA), and Long 
Short-Term Memory (LSTM) networks—were employed to evaluate SPI trends. The linear regression model 
indicated significant short-term fluctuations in SPI values but did not reveal a clear long-term trend toward 
wetter or drier conditions. The ARIMA model, optimized for stationarity, also suggested relatively stable 
precipitation patterns, with no pronounced directional trend over the study period. The LSTM model, designed 
for sequential data analysis, captured complex temporal dependencies in SPI values but did not indicate a 
persistent long-term trend. Instead, the results highlighted substantial interannual variability in precipitation. 
These findings underscore the complexity of climate patterns in Çanakkale Province and emphasize the need for 
diverse modeling approaches to accurately assess precipitation trends. The lack of a clear directional trend 
suggests that short-term climate variability plays a more significant role than long-term changes in precipitation 
patterns in the region. This study provides a foundation for further research into advanced modeling techniques 
to enhance climate prediction capabilities. Future studies should explore hybrid and ensemble methods to 
improve accuracy, which is crucial for climate adaptation strategies and water resource management. 
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Çanakkale için Standart Yağış İndeksi (SPI) Verileri için Trend Modellerinin Karşılaştırmalı 
Analizi 

 
ÖZ  

Yağış eğilimlerini anlamak, iklim değişikliğini ve su kaynakları ile afetlere karşı hazırlığı etkileyen faktörleri 
değerlendirmek için kritik öneme sahiptir. Bu çalışmada Çanakkale için Standart Yağış İndeksi'nin (SPI) uzun vadeli 
eğilimlerini analiz etmek amaçlanmıştır. 1929-2023 dönemine ait yağış verileri kullanılmıştır. SPI eğilimlerini 
değerlendirmek için Doğrusal Regresyon, Otoregresif Entegre Hareketli Ortalama (ARIMA) ve Uzun Kısa Vadeli 
Bellek (LSTM) ağları olmak üzere üç ayrı model kullanılmıştır. Doğrusal regresyon modeli, SPI değerlerinde kısa 
vadeli önemli dalgalanmalar göstermiştir ancak daha yağışlı veya daha kuru koşullara doğru net bir uzun vadeli 
eğilim ortaya koymamıştır. Durağanlık için optimize edilmiş ARIMA modeli, çalışma dönemi boyunca belirgin bir 
yön eğilimi olmaksızın nispeten istikrarlı yağış desenleri de önermiştir. Sıralı veri analizi için tasarlanan LSTM 
modeli, SPI değerlerinde karmaşık zamansal bağımlılıkları yakalamış ancak kalıcı uzun vadeli bir eğilim ortaya 

koymamıştır. Sonuçlar yağışta önemli yıllık değişkenliği ortaya koymaktadır. Bu bulgular, Çanakkale İli'ndeki 
iklim modellerinin karmaşıklığını vurgulamakta ve yağış eğilimlerini doğru bir şekilde değerlendirmek 
için çeşitli modelleme yaklaşımlarına olan ihtiyacı ortaya koymaktadır. Net bir yön eğiliminin olmaması, 
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kısa vadeli iklim değişkenliğinin bölgedeki yağış modellerindeki uzun vadeli değişikliklerden daha önemli bir rol 
oynadığını göstermektedir. Bu çalışma, iklim tahmin yeteneklerini geliştirmek için gelişmiş modelleme 
tekniklerine yönelik daha fazla araştırma için bir temel sağlamıştır. Gelecekteki çalışmalar, iklim adaptasyon 
stratejileri ve su kaynakları yönetimi için çok önemli olan doğruluğu artırmak için hibrit ve topluluk yöntemlerini 
araştırmalıdır. 

 
Anahtar kelimeler: ARIMA, Doğrusal Regresyon, Uzun Kısa Dönemli Bellek, İklim Değişkenliği, Yağış Eğilimleri. 

 
INTRODUCTION 

Studying precipitation trends is vital in climate science due to its significant impact on various 
environmental and societal aspects. Precipitation patterns influence water resources, agriculture, ecosystems, 
and urban planning, making it crucial to understand and predict these trends accurately. Analyzing spatial 
patterns of precipitation trends helps in understanding regional climatology and preparing for climatic changes. 
For example, research on the continental United States identified hotspots of increasing and decreasing 
precipitation trends, which can guide regional planning and adaptation strategies (O'Brien, 2018). Accurate 
prediction of precipitation trends is crucial for economic development as well. Studies in the Swat River basin, 
Pakistan, showed variability in precipitation trends across different time scales, highlighting the importance of 
precise predictions for water resource management and agricultural planning (Ahmad et al., 2015). On a global 
scale, mapping minimal detectable trends in annual precipitation is highly important for assessing the impact of 
climate change. This helps in identifying regions at risk and formulating global adaptation strategies (Morin, 
2011). Detecting overlooked trends in precipitation, especially in extreme events, is critical for risk management 
in agriculture, water supply, and ecosystems. Quantile regression analyses have revealed significant trends in 
extreme precipitation that traditional methods might miss (Lausier & Jain, 2018). Precipitation trends directly 
affect the hydrological cycle and water management policies. Studies in Turkey demonstrated that 
understanding the spatial and temporal variations of precipitations is critical for effective management of water 
resources (Yavuz & Erdogan, 2012). Studying trends in precipitation alongside temperature helps predict future 
climate scenarios. Joint modeling of these parameters provides more accurate predictions of climate impacts, 
which are essential for planning and adaptation (Mesbahzadeh et al., 2019).  

In this study it was aimed to monitor Standardized Precipitation Index (SPI) trends for further 
understanding and mitigating the impact of climate change. To achieve this objective three different approaches 
in modeling and predicting SPI data are employed using long term (1929 – 2023) precipitation data.  

  
MATERIALS AND METHODS 

Study Area and Dataset 
Çanakkale province is located at of 39°27' north latitude and 26°16' east longitude (Figure 1). These 

coordinates show that the province is in the northwest of Turkey, bordering the Aegean and the Marmara Seas 
(Ünsal, 2015). Çanakkale has a climate that is transitional between the Mediterranean climate and the Black Sea 
climate. A warm and temperate climate prevails throughout the province. The average annual temperature is 
around 15°C. Summer months are hot and dry. In July and August, temperatures often rise above 30°C. Winters 
are warm and rainy. The average temperature in January varies between 5-10°C. Snowfall is rare, it usually rains. 
The mean precipitation varies between 600-700 mm. Precipitation generally occurred in fall and winter (Kale, 
2017). 

 
                                                                 Figure 1. Study area 
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Montly precipitation data for the years 1929 - 2023 were obtained from the Turkish State Meteorological 

Service. The file containing precipitation data also includes data from all stations in the country. Therefore, first 
of all, only information about Çanakkale meteorology station was extracted from the txt file. These data were 
then converted into an Excel file and made ready for statistical analysis. Statistical calculations were made in 
Python programming language. Libraries such as Keras, Tensorflow, Sklearn, NumPy and Panda were used in the 
analyses. Necessary coding for trend analysis was done on Google Colab. 
 

Standardized Precipitation Index (SPI) 
The SPI is a commonly used technique designed to quantify precipitation deficits within different time 

scales. It provides a probabilistic measure of precipitation anomalies. Its calculation requires a historical data 
that fits probability distribution followed by transformation into a normal distribution. This allows the SPI to 
express the precipitation deficit or surplus as standard deviations from the mean. The commonly used probability 
distribution for SPI calculation is the gamma distribution, but other distributions such as normal, log-normal, and 
Weibull can also be employed based on the region and time scale (Angelidis et al., 2012). It can be calculated for 
different time scales, mainly from 1 to 48 months. Time scale of 1-6 months are useful for agricultural droughts, 
time scales of 12-48 months are better for hydrological droughts (Guenang & Kamga, 2014). 

In this study it was aimed to monitor hydrological drought. Therefore, 12-month time scale was used for 
SPI calculations. The 12-month SPI integrates seasonal and interannual variability, providing a more stable and 
smoothed indicator of precipitation anomalies that directly impact water resource availability, reservoir levels, 
and watershed-scale hydrology. Additionally, focusing on a single, longer time scale reduced the dimensionality 
and complexity of model comparisons, allowing a clearer evaluation of the models’ performance in capturing 
meaningful long-term climate signals. To fit a probability distribution, two-parameter gamma equation was used 
due to its flexibility and suitability for precipitation data (Equation 1) (Blain & Meschiatti, 2015).  
 

𝑓(𝑥) =
𝑥𝛼−1𝑒

−𝑥
𝛽⁄

𝛽𝛼Γ(𝛼)
                                                                                                                                                    (1) 

 
Where; x is the variable of interest, which is the value at which the probability density function (PDF) is 

evaluated (precipitation amount), α is the shape parameter, β  is the scale parameter, Γ is the gamma function, 
and e is the base of the natural logarithm. 

Then, cumulative probabilities of each precipitation value were computed by using Equation (2). 
 

𝐺(𝑥) = ∫
𝑡𝛼−1𝑒

−𝑡
𝛽⁄

𝛽𝛼Γ(𝛼)
𝑑𝑡

𝑥

0
                                                                                                                                         (2) 

 
Where; G(x) is the cumulative distribution function (CDF), t is variable of integration, which represents all 

possible values up to x, α is the shape parameter. 
Finally, the cumulative probability transformed into standard normal distribution. This is done by the 

inverse normal (Gaussian) function (Equation 3). 
 

SPI = Φ-1(G(x))                                                                                                                                                          (3) 
 
Where; Φ−1 represents the inverse function of the standard normal cumulative distribution. 
  

Trend Analysis  
Linear regression model 
Linear regression is a fundamental statistical tool used to analyze and interpret trends in different fields. 

Linear regression models are employed to define relationships between an outcome (dependent) variable and 
one or more input (independent) variables. The fundamental equation governing this relationship is presented 
in Equation (4). 
 

Y=β0+β1X+ϵ                                                                                                                                                              (4) 
 

Where; Y represents the dependent variable while X represents the independent variable. β0, β1, and ϵ 
are the intercept, slope and error term, respectively. 
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Autoregressive integrated moving average (ARIMA) 
In environmental sciences, ARIMA models are used to analyze trends in climatic data, such as precipitation 

and temperature patterns, which are crucial for understanding climate change impacts and planning mitigation 
strategies (Dimri et al., 2020). These models are characterized by three key parameters: p (autoregressive order), 
d (differencing order), and q (moving average order), and are generally represented as ARIMA(p,d,q). The 
Autoregressive (p) component signifies that the variable of interest is predicted based on its past values. The 
integrated (d) component accounts for differencing the raw data to achieve stationarity in the time series. Lastly, 
the moving average (q) component identifies the relationship between an observed value and the residual errors. 
The general equation for the ARIMA model is presented in Equation (5). 
 

Yt=c+ϕ1Yt−1+ϕ2Yt−2+...+ϕpYt−p+θ1ϵt−1+θ2ϵt−2+...+θqϵt−q+ϵt                                                                    (5) 
 

Where; Yt represents the value at time t, c is a constant, ϕi are the coefficients for the autoregressive 
terms, θj are the coefficients for the moving average terms, and ϵt is the error term at time t (Green & Noles, 
1977). 

The best model parameters are determined using the AIC (Akaike Information Criterion), and the 
combination of (p, d, q) which yields the lowest value is defined as the optimal model. Zhang & Meng, (2023) 
demonstrates the application of AIC in the selection of ARIMA model parameters, balancing model complexity 
and accuracy. The AIC criterion aids in selecting the optimal model by minimizing its value, ensuring the best 
combination of (p, d, q) is chosen. 

Using the ADF test’s p-value and ADF statistics it was evaluated that if the data is stationary. If this value 
is less than a threshold value (commonly 0.05), this means that the data is likely stationary. Additionally, if the 
ADF test statistic is more negative than the critical values at different significance levels (1%, 5%, 10%), it indicates 
that the data is stationary. In summary, a low p-value (typically less than 0.05) or an ADF statistic more negative 
than the critical value suggests that both data are stationary.  
 

Long Short-Term Memory Networks (LSTM) 
LSTMs are a type of recurrent neural networks (RNNs). This advanced type is developed to handle the 

shortcomings of traditional RNNs. They perform well in managing long-term dependencies. They are highly 
effective for sequential data tasks, such as time series analysis (Oruh et al., 2022). 

LSTM networks consist of multiple units, each incorporating a cell, an input gate, an output gate, and a 
forget gate. The traffic of information within the network is controlled by these gates, enabling LSTMs to 
efficiently retain and update long-term dependencies. They operate by iteratively processing input sequences 
through the gates and cell states. The primary equations governing an LSTM unit at time step t are given in 
following Equations (6, 7, 8, 9, 10, 11). 
 

ft=σ(Wf⋅[ht−1,xt]+bf)                                                                                                                                                (6) 
 
Where; ft represents the forget gate activation at time step t, σ denotes the Sigmoid activation function,  

Wf is the weight matrix associated with the forget gate,  ht−1 is hidden state from the previous time step t−1, xt 
is input at the current time step t, and bf is bias for the forget gate. 
 

it=σ(Wi⋅[ht−1,xt]+bi)                                                                                                                       (7) 
Ćt=tanh(WC⋅[ht−1,xt]+bC)                                                                                                                                       (8) 
 
Where; it is input gate activation at time step t, Wi is  weight matrix for the input gate, bi is bias for the 

input gate, Ćt  is candidate cell state at time step t, tanh is hyperbolic tangent activation function, WC is weight 
matrix for the candidate cell state, and  bC is bias for the candidate cell state. 
 

Ct=ft⋅Ct−1+it⋅Ćt                                                                                                                                                          (9) 
 
Where; Ct is updated cell state at time step t, ft is forget gate activation at time step t,  Ct−1 is cell state 

from the previous time step t−1. 
 

ot=σ(Wo⋅[ht−1,xt]+bo)                                                                                                                                           (10) 
ht=ot⋅tanh(Ct)                                                                                                                                                          (11) 

 



Turkish Journal of Agricultural and Natural Sciences 12 (3): 733–742, 2025 
 

737 
 

Where; ot is output gate activation at time step t, Wo is weight matrix for the output gate,   ht−1 is hidden 
state from the previous time step t−1, xt is input at the current time step t, bo is bias for the output gate, ht is 
hidden state or output of the LSTM unit at time step t, Ct is cell state at time step t. 

The statistical parameters of LSTM networks, such as weights, biases, activation functions, learning rate, 
number of units, batch size, and dropout rate, play a highly important role in their performance. Understanding 
and optimizing these parameters is essential for leveraging the full potential of LSTM networks in various 
applications (Merity et al., 2017). 

 

RESULTS AND DISCUSSION  

Linear Regression Model   
 12-month SPI and trend line drawn via linear regression model are represented in Figure 2. The SPI values 
exhibit significant fluctuations, indicating variability in annual precipitation with periods of both wetter and drier 
conditions. On the other hand, the nearly horizontal red trend line indicates that, on average, there is no 
significant increase or decrease in annual SPI values over the observed period. This implies that there is no strong 
indication of wetter or drier conditions for the long term. 
 

 
 
Figure 2. Annual SPI trend analysis with linear regression 

 
The statistics for the linear regression model are listed in Table 1. Given in Table 1, a highly small R2 value 

suggesting that the linear trend does not capture much of the variability in the data. Additionally, a relatively low 
MSE value indicates that the model's predictions closely align with the actual values on average. Another 
parameter is the slope of the linear regression model. The small positive slope indicates a slight upward trend in 
SPI values over time, but the trend is very minimal. 

 
Table 1. Linear regression model statistics 

Parameter Value 

R2 
Mean Squared Error (MSE) 
Slope  
Intercept 

0.00297 
0.07507 
0.00056 
-1.08741 

 
The linear regression analysis reveals no substantial long-term trend in the annual SPI values. The natural 

variability in annual precipitation remains the dominant feature of the SPI data. 
 
ARIMA Analysis 
After calculating the annual SPI values (Figure 2), an ARIMA trend analysis was conducted. Important 

model parameters in this analysis are defined by the letters (p, d, q) as explained above. Using Python’s itertools 
library, the optimal parameters that yield lowest AIC value were attempted to be determined by trial-error 
method. However, the iteration resulted in (0,0,0) values, indicating that the data is non-stationary. Stationarity 
is highly important for ARIMA, because these models assume that the statistical properties of the series are not 
changed. To convert the data from non-stationary to stationary form, differencing was applied. After 
differencing, the data appeared as given in Figure 3. 
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Figure 3. Differenced annual SPI data 

 
Stationarity of original and differenced data was evaluated using the Augmented Dickey-Fuller (ADF) test. 

The results are listed in Table 2. 
 
Table 2. ADF test statistics 

 Value 

Parameter Original Data Differenced Data 

ADF Statistic:  
p-value:  
Critical Values: 

1%:  
5%:  
10%:  

-9.59 
2.04×10-16 

 
-3.50 
-2.89 
-2.58 

-6.055 
1.25×10-7 
 
-3.51 
-2.90 
-2.59 

 
Based on the test statistics an ARIMA model without differencing was used as the data does not require 

differencing.While the test results indicate that the original data is stationary, the inability to fit ARIMA models 
effectively on the original data suggests that there might be other factors at play, such as higher-order 
dependencies or non-linearities that are not captured by simple ARIMA models without differencing. As a result, 
differenced data is used to run ARIMA model. Once the iteration process was applied (1,1,1) model fitted well 
on the differenced data. Therefore ARIMA (1, 1, 1) model was applied. The ARIMA model output and differenced 
SPI data plot are given in Figure 4. 

 

 
Figure 4. Annual SPI trend analysis with selected ARIMA model 
 

Based on ARIMA, the trend line appears relatively flat with minor fluctuations over the years. This flat 
trend line suggests that there is no significant long-term trend in the SPI values, indicating either wetter or drier 
conditions over the entire period. In early years (Pre-1950s) the SPI values exhibit high variability with noticeable 
peaks and troughs. The red trend line shows a slight downward trend initially, indicating drier conditions during 
this period. 
However, during mid to late period (Post-1950s) the SPI values continue to show variability, but the fluctuations 
become more moderate. The red trend line flattens out and remains close to zero, indicating that there is no 
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strong indication of wetter or drier conditions for this period. The ARIMA (1, 1, 1) model indicates that the annual 
SPI values have not shown a consistent long-term trend towards wetter or drier conditions over the years. The 
conditions appear relatively stable, with fluctuations that do not point towards a significant change in either 
direction. 
 

Long Short-Term Memory (LSTM) Networks Analysis 
Used as a version of recurrent neural networks that is particularly good at learning from sequences and 

temporal data, making it applicable for time series analysis. Improving the performance of an LSTM model can 
involve several strategies, including tuning hyperparameters, increasing model complexity, adding regularization, 
and improving data preprocessing. In order to find the select best LSTM parameters, Keras’ optimizer library was 
employed. Based on the optimization (tuning hyperparameters) following model was developed representing 
the SPI data trend (Table 3). 
 
Table 3. LSTM model parameters 

Parameter Value 

Validation loss 
Units in the first layer 
Units in the second layer 
Dropout rate for first layer  
Dropout rate for second layer  
Number of layers  
Learning rate  

0.0272 
64 
160 
0.2 
0.3 
3 
0.0025 

 
Based on Table 3, A lower validation loss indicates better generalization and model performance. The 

number of units (neurons) in the first LSTM layer having 64 units means that the layer has 64 LSTM cells, each 
with its own set of weights and biases to learn from the data. Similar to the first LSTM layer, the number of units 
in the second LSTM layer having 160 units suggests that this layer is larger and might be capturing more detailed 
temporal patterns from the data. A dropout rate of 0.2 means that 20% of the neurons in the first LSTM layer are 
randomly dropped during each epoch, forcing the model to learn redundant representations and improve its 
generalization ability. Similarly, this dropout rate is applied to the second LSTM layer. A rate of approximately 
0.3 (30%) means that 30% of the neurons in this layer are randomly dropped during training. The number of 
layers indicates the total number of layers in the model. In this case, the optimal number is 3, which typically 
includes the two LSTM layers and one additional layer (often a Dense layer) for the final output.  A learning rate 
of approximately 0.002465 means the optimizer (Adam) will update the model weights by this fraction of the 
gradient. Selecting an appropriate learning rate is essential for model performance. If the learning rate is too 
high, the model may converge too quickly to a suboptimal solution, whereas a low learning rate can lead to an 
overly slow training process. Utilizing this optimized model, the trend analysis obtained through LSTM is 
presented in Figure 5. 

 
Figure 5. Improved annual SPI trend analysis with LSTM 
 

As stated above the SPI values fluctuate significantly, indicating periods of both wet and dry conditions. 
The red line, on the other hand, represents the predicted values. The model reflects some general trends in the 
training data, but there are some deviations from the actual SPI values. It also seems to smooth out some of the 
higher peaks and lower troughs, indicating that it captures the overall trend but might miss some short-term 
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fluctuations. The green line, representing the model's predictions on the test dataset, follows the general trend 
of the actual SPI values reasonably well, with some deviations. The performance of the model on the test set 
indicates it has generalized well to unseen data, though it still shows some smoothing of extreme values. The 
overall trend captured by the LSTM model does not show a clear and consistent long-term increase or decrease 
in SPI values, which would indicate a significant trend towards wetter or drier conditions. There are periods of 
negative SPI values, but these are interspersed with periods of positive SPI values, indicating a balance between 
wet and dry periods over time. As a result, based on the trend analysis, there is no clear long-term trend towards 
drought in the given SPI data. The SPI values fluctuate around zero, indicating alternating periods of wet and dry 
conditions without a significant downward trend. 

Ahmad et al. (2015) determined high variability in SPI trends in the Swat River basin using non-parametric 
tests, stating that precipitation trends are better explained with flexible and dynamic modeling rather than static 
linear methods. Yavuz & Erdogan (2012) also determined strong spatial and temporal variability in Turkish 
precipitation records with no consistent trends between areas, which corroborated the theory that local 
influences have a tendency to overpower larger-scale climate signals. 

At the global level, Morin (2011) highlighted that the few discernible trends in annual precipitation are 
overshadowed by huge interannual variability, a result mimicked in this study's outcome of SPI trends fluctuating 
around a zero mean with no directional trend. In addition, Lausier & Jain (2018) demonstrated how traditional 
statistical approaches can overlook subtle trends, especially in extremes, which further validates the 
manuscript's use of advanced models like LSTM in identifying subtle trends. 
 

Model Performance Evaluation and Statistical Comparison 
To enhance the comparative evaluation of the three models, additional performance metrics—Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE), and the coefficient of determination (R²)—were calculated 
(Table 4). The Linear Regression model had the poorest performance, with RMSE of 1.867, MAE of 1.693, and a 
negative R² value of -2.508, indicating that it failed to capture the variation in SPI values. In contrast, both the 
ARIMA and LSTM models yielded substantially better metrics, with nearly identical RMSE (0.998 for ARIMA, 0.996 
for LSTM) and MAE (0.791 for ARIMA, 0.790 for LSTM), though their R² values remained close to zero (−0.0031 
and 0.0004 respectively), suggesting limited predictive strength in terms of explained variance. 

 
Table 4. Model Performance Metrics  

 RMSE      MAE      R² 

Linear Regression   1.8669   1.6923  -2.5089 
ARIMA               0.9982   0.7912  -0.0031 
LSTM                0.9964   0.7902   0.0004 

 
  To statistically assess the difference in forecast accuracy, the Diebold-Mariano (DM) test was applied 
(Table 5). The test showed statistically significant differences between Linear Regression and both ARIMA (DM = 
27.83, p < 0.001) and LSTM (DM = 27.91, p < 0.001). However, the difference between ARIMA and LSTM was not 
statistically significant (DM = 0.61, p = 0.54). These results confirm that while ARIMA and LSTM models 
outperform Linear Regression, their relative predictive performance is statistically similar. Therefore, both 
ARIMA and LSTM offer more reliable modeling options for SPI trend analysis in Çanakkale. 
 
Table 5. Diebold-Mariano Test Results  

 DM Statistic   p-value 

LR vs ARIMA       27.8322    0.0000 
LR vs LSTM           27.9088    0.0000 
ARIMA vs LSTM     0.6104    0.5417 

 
 

CONCLUSION 
This study meticulously analyzed the Standardized Precipitation Index (SPI) for Çanakkale using three 

distinct models—Linear Regression (LR), Autoregressive Integrated Moving Average (ARIMA), and Long Short-
Term Memory (LSTM)—spanning the period from 1929 to 2023. The findings reveal that none of the models 
identified a strong, consistent long-term trend in precipitation, highlighting the complex and variable nature of 
climate patterns in the region. 
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Quantitative performance metrics further clarified the relative effectiveness of the models. Linear 
Regression exhibited the weakest performance, with the highest RMSE and MAE values and a strongly negative 
R², indicating its inability to capture the underlying variability in SPI. In contrast, both ARIMA and LSTM models 
achieved significantly lower error rates and nearly identical performance, though their R² values remained close 
to zero. The Diebold-Mariano statistical test confirmed that both ARIMA and LSTM significantly outperformed 
Linear Regression in forecasting accuracy (p < 0.001), while no statistically significant difference was found 
between ARIMA and LSTM (p = 0.54). 

The analysis carried out here took into consideration trend modeling of SPI values based on local 
precipitation only, ignoring overall atmospheric or oceanic climate forcing factors. Thus, the lack of persistence 
in a long-term trend in SPI does not necessarily imply climatic stability, but is instead a reflection of the non-
availability of modulating variables that effect precipitation variability on interannual to decadal timescales. 
Climate indices such as the North Atlantic Oscillation (NAO), the Arctic Oscillation (AO), and the El Niño-Southern 
Oscillation (ENSO) have been seen to influence regional precipitation traits over Europe and the eastern 
Mediterranean, including Turkey. For example, positive and negative phases of the NAO have been shown to be 
related to wetter or drier conditions in western Anatolia. Leaving these indices out may then minimize SPI trend 
interpretation to disregard such important teleconnections that could be primarily behind the interannual 
variability observed. Although no statistically significant long-term trend towards increasing or decreasing 
precipitation based on SPI-12 analysis was detected in this research, the fact of substantial interannual variability 
renders adaptive water management essential to Çanakkale. Policy makers need to put top priority on the 
development of variable drought preparedness policies capable of responding to short-term variations over the 
single strategy of long-term prediction. Investments should be made in climate-resilient infrastructure, such as 
multi-year water storage infrastructure, to serve as a cushion against unpredictable dry years. 
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