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Research Article

Abstract− This paper investigates the population dynamics of solutions to a parabolic-
parabolic-elliptic type of multi-species Keller-Segel chemotaxis system under the Neumann
boundary conditions in a smoothly bounded domain. It studies dynamical properties such as
Lρ-bounds, global existence, global boundedness, and combined mass persistence of solutions
for the aforementioned system. Under certain specified parameter conditions, the paper shows
that the system admits a unique global classical solution that remains uniformly bounded
from above. Furthermore, it establishes that the entire population persists at all times;
in other words, this study proves that any globally bounded classical solution maintains a
positive lower mass bound.
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1. Introduction

Chemotaxis is the process of directed movement of mobile organisms or cells in response to a chemical
gradient. Keller and Segel [1, 2] first established a mathematical model to explain this phenomenon in
the late 1970s. This phenomenon plays a key role in many biological processes, including population
dynamics, immune cell migration, and tumor growth. In the aftermath of this period, many authors
investigated various chemotaxis models from various perspectives, including local existence, uniqueness,
finite time blow-up, global existence and boundedness, persistence, stability, and special solutions in
various research publications, making significant contributions to the mentioned problems above. For
further details, see [3–5].

Regarding these problems in more general frameworks, including two species with chemical signals,
some variants of the model of (1.1) have also been researched in various ways. A comprehensive com-
parison exists between one-species and multi-species chemotaxis models, addressing their mathematical
frameworks, biological implications, and essential dynamical characteristics, and they are applicable in
symbiotic or competitive systems, predator-prey dynamics, and host-pathogen interactions. The main
difference between one-species and two-species chemotaxis models lies in the number of interacting
populations and their interaction with chemical signals. In simpler terms, in a one-species system,
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Çanakkale, Türkiye

https://dergipark.org.tr/tr/pub/jnt
https://doi.org/10.53570/jnt.1700338
https://orcid.org/0000-0002-9549-6445
https://orcid.org/0000-0003-2494-8229


Kurt and Ekici / A Multi-Species Keller-Segel Chemotaxis-Competition Model: Global Existence, Boundedness, and · · · 77

the cell population reacts to a single stimuli, while in two-species models, the system comprises two
populations that interact with one another and respond to a single chemical. It is well-known that
multi-species chemotaxis models offer a more accurate representation of biological scenarios. Neverthe-
less, these models, while more realistic, working on those ones mathematically is quite challenging.
It is also natural to regard competition and cooperation in chemotaxis models. In this context, the
paper presents a model that incorporates three interacting populations responding to a single chemical,
which allow for to study new challenges and areas of research, such as coexistence and extinction,
provided that a globally bounded classical solution exists. In this regard, this article first studies
global existence, global boundedness, and persistence of solutions within the following model, thereby
providing a way for an exploration of the model’s long-term behaviors. However, we leave open the
topics associated with the large time behaviors to investigate somewhere else.

This paper aims to investigate a more realistic scenario in a biological environment by illustrating the
interactions among three different cell populations as they react to one chemical. This is far more
realistic compared to the previous works, revealing numerous intriguing dynamic scenarios within such
chemotaxis systems. In this respect, this research paper analyzes the dynamical characteristics of the
population as described by the subsequent parabolic-parabolic-parabolic-elliptic chemotaxis growth
model involving strong logistic kinetics:

ut = ∆u − χ1∇ · (u∇z) + u(h1 − k1u)

vt = ∆v − χ2∇ · (v∇z) + v(h2 − k2v)

wt = ∆v − χ3∇ · (w∇z) + w(h3 − k3w)

0 = ∆z − az + bu + cv + dw

(1.1)

with the Neumann boundary conditions
∂u

∂ν
= ∂v

∂ν
= ∂w

∂ν
= ∂z

∂ν
= 0

and the initial data u0(x) := u(0, x; u0), v0(x) := v(0, x; u0), and w0(x) := w(0, x; u0) satisfying

u0, v0, w0 ∈ C0(S̄) and u0, v0, w0 ≥ 0 (1.2)

where S ⊆ Rn with n ≥ 1 is a smooth bounded domain; a, b, c, d > 0, and χi, hi, ki > 0, for i ∈ {1, 2, 3}.
Moreover, assume that

k1 > (n − 2)
{

bχ1
n

+ (c + d)χ1
n + 2 + 2b(χ2 + χ3)

n(n + 2)

}
(1.3)

k2 > (n − 2)
{(b + d)χ2

n + 2 + cχ2
n

+ 2c(χ1 + χ3)
n(n + 2)

}
(1.4)

and
k3 > (n − 2)

{(b + c)χ3
n + 2 + 2d(χ1 + χ2)

n(n + 2) + dχ3
n

}
(1.5)

From a biological standpoint, the system described by (1.1) illustrates the evolution of three competing
mobile species, namely u, v, and w, which are affected by a single chemical substance z. In this context,
the mobile cells u, v, and z are attracted by the chemical substance z. In the framework of (1.1), the
unknown functions u(x, t), v(x, t), and w(x, t) represent the density of cells, while z(x, t) indicates the
concentration of the chemical signal at time t and space x ∈ Ω; the cross-diffusion terms −χ1∇ · (u∇z),
−χ2∇ · (v∇z), and −χ3∇ · (w∇z) reflect the chemotactic movement, where χ1, χ2, χ3 > 0 are the
chemotactic sensitivity coefficients. The parameters h1, h2, h3 > 0 represent the intrinsic growth
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rates, while the parameters k1, k2, k3 > 0 indicate the self-limitation effects of the species u, v and w,
respectively. Additionally, the parameters a > 0 indicate the degradation rate of chemical substance w;
the parameters b, c, d > 0 denote the production rate of the mobile cells u, v, and w.

In the competitive scenario, all three species strive to generate stimuli to attract their rivals to
gain dominance. Multi-species chemotaxis models have a great biological importance in real-world
scenarios, as they provide insights into the movement of different cell types or organisms in response
to chemical signals, particularly when interacting among various species or cell types. From the
biological perspective, the model in (1.1) describes the evolution of three competitive species subject
to one chemical substance. It is essential to highlight that the system represented by (1.1) is under
investigation for the first time. It is particularly noteworthy that the system incorporates three species
and one stimulus with regular sensitivity, which gives us the opportunity to compare and discuss these
three distinct cell populations at the same time. Hence, we explore the interactions among all the
species and their mutual influences on the dynamic properties of the system in (1.1). Throughout
this study, investigate the Lρ-boundedness, global existence, global boundedness, and combined mass
persistence of solutions to the system in (1.1).

Various versions of the system in (1.1), such as one-species or multi-species and one-multi type
chemical substance models, have been analyzed in many research papers so far. First, assume that
v(x, t) = w(t, x) = 0. Then, the following system is obtained:

ut = ∆u − χ∇ · (u∇z) + h1u − k1u2

0 = ∆z − az + bu
(1.6)

For the case n ≥ 2 and h1 = k1 = 0, (1.6) has a finite-time blows-up in solutions of (1.1) under some
restriction on the initial data, see [6–9]. For the case a = b = 1 and h1, k1 > 0, (1.6) has a bounded
classical solution if n < 2 or n ≥ 3 whenever χ1 < k1n

n−2 [10]. Moreover, the global existence and
boundedness of this model was obtained at the critical point, which is χ1 = k1n

n−2 with n ≥ 3 [11]. In
addition, the mass persistence of solutions of (1.6) was first studied in [12], and it was shown that in
any space dimensional setting, when S is a convex domain, all positive solutions to the model in (1.1)
always persists as a whole, that is, ∫

S
u ≥ c∗ > 0 (1.7)

Recently, the convexity condition for the persistence of mass of solutions has been eliminated in [13]
under the the following explicit conditions, which means (1.7) also holds for any domain S ⊆ Rn if

n ≤ 2 or χ ≤ k1
b

· n

n − 2 with n ≥ 3

For the other dynamical behaviors of solutions, including weak solutions, stability, and persistence,
see [11,14–26].

A selection of known results concerning similar models of (1.1) can be outlined as follows: Consider
the subsequent two-species one chemoattractant Keller-Segel model

ut = d1∆u − χ1∇ · (u∇z) + µ1u(1 − u − a1v)

vt = d2∆v − χ2∇ · (u∇z) + µ2v(1 − a2u − v)

0 = d3∆z − γz + αu + βv

(1.8)

Tello and Winkler [27] established the global existence, boundedness, and stability of solutions of
(1.8) under the conditions d3 = α = β = 1, 2(χ1 + χ2) + a2µ1 < µ2, and 2(χ1 + χ2) + a1µ2 < µ1.
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The same results [28] were achieved under the relaxed conditions provided that χ1
µ1

< min
{

d3
2α , a1d3

β

}
,

χ2
µ2

< min
{

d3
2β , a2d3

α

}
, and a1a2d2

3 <
(
d3 − 2αχ1

µ1

) (
d3 − 2βχ2

µ2

)
. The long-time behaviors of solutions to

the system in (1.8) has been established in [29] provided that a1 > 1 > a2, d3 = β = 1, χ1
µ1

≤ a1,
χ2
µ2

≤ 1
2 , and χ1

µ1
+ max

{
χ2
µ2

, a2(µ2−χ2)
µ2−2χ2

, (α−a2)χ2
µ2−2χ2

}
< 1. Afterward, in the general case, i.e., a1, a2 > 0, it

was demonstrated in [30] that the system in (1.8) has a global bounded classical solutions if n ≤ 2 or
n ≥ 3 with χ1

µ1
< d3n

n−2 min
{

1
α , a1

β

}
and χ2

µ2
< d3n

n−2 min
{

1
β , a2

α

}
. This result was improved in [31] when

α = β = γ = 1 if χ1
µ1

+ χ2
µ2

< d3. Finally, in [32], the most general case for the arbitrary parameters,
the system in (1.8) admits a bounded solution under the much milder suitable conditions on the
parameters. For the existence, boundedness, long-term behavior of solutions, such as asymptotic
stability, persistence, competitive exclusion, and coexistence, for similar models of (1.8), see [33–41].

The remainder of this paper is structured as follows: Section 2 focuses on presenting key estimates
and Lρ-bounds and discussing the global existence and boundedness of solutions to (1.1). Section 3
analyzes the persistence of the mass of globally bounded solutions to (1.1). The last section discusses
the need for further research.

2. Preliminaries

This section aims to introduce several fundamental lemmas. Initially, it discusses the local existence
and uniqueness of the solution to (1.1).

Lemma 2.1. For all u0 and v0 satisfying (1.2), there exists a Tmax(u0, v0, w0) ∈ (0, ∞] such that
the system described by (1.1) and (1.2) admit a classical solution on (0, Tmax) with initial conditions
u(0, x) = u0(x), v(0, x) = v0(x), and w(0, x) = w0(x) satisfying

lim
t→0

∥u(t, ·) − u0(·)∥L∞(S̄) = lim
t→0

∥v(t, ·) − v0(·)∥L∞(S̄) = lim
t→0

∥w(t, ·) − w0(·)∥L∞(S̄) = 0

where u, v, w ∈ C((0, Tmax) × S̄) ∩ C2,1((0, Tmax) × S̄)) and z ∈ C2,0((0, Tmax) × S̄)). In addition, being
Tmax(u0, v0, w0) < ∞ also implies

∥u(t, ·) + v(t, ·) + w(t, ·)∥L∞(S̄) = ∞ as t → Tmax

The proof can be obtained from the similar operations of Theorem 2.1 in [10].

In the subsequent discussion, we establish upper bounds for the solutions that serve as a foundation for
proving the main results herein. Note that we prove the following lemmas in the interval t ∈ (0, Tmax),
for all 0 < t < Tmax(u0, v0, w0) ∈ (0, ∞].

Lemma 2.2. The following hold:

i. Let |S| be the Lebesgue measure of S. Then,∫
S

u ≤ m1 := max
{h1

k1
|S|,

∫
S

u0
}

∫
S

v ≤ m2 := max
{h2

k2
|S|,

∫
S

v0
}

and ∫
S

w ≤ m3 := max
{h3

k3
|S|,

∫
S

v0
}

for all t ∈ (0, Tmax).
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ii. Let ξ > 1. For all ε > 0, there are C(ε, ξ, m1) > 0, C(ε, ξ, m2) > 0, and C(ε, ξ, m3) such that∫
S

uξ ≤ ε

∫
S

uξ−2|∇u|2 + C(ε, ξ, m1)∫
S

vξ ≤ ε

∫
S

vξ−2|∇v|2 + C(ε, ξ, m2)

and ∫
S

wξ ≤ ε

∫
S

wξ−2|∇w|2 + C(ε, ξ, m3)

for all t ∈ (0, Tmax).

Proof. i. Integrating the first and second equalities in (1.1) and using Hölder inequality,
d

dt

∫
S

u = h1

∫
S

u − k1

∫
S

u2 ≤ h1

∫
S

u − k1
|S|

( ∫
S

u
)2

d

dt

∫
S

v = h2

∫
S

v − k2

∫
S

v2 ≤ h2

∫
S

v − k2
|S|

( ∫
S

v
)2

and
d

dt

∫
S

w = h3

∫
S

v − k3

∫
S

w2 ≤ h3

∫
S

w − k3
|S|

( ∫
S

w
)2

for all t ∈ (0, Tmax). Then, i follows from the ODE’s comparison principle.

ii. By the Erhling type lemma, for ε > 0, C(ε, ξ) > 0 such that∫
S

uξ ≤ 4ε

ξ2

∫
S

|∇u
ξ
2 |2 + C(ε, ξ)

( ∫
S

u
)ξ

≤ ε

∫
S

uξ−2|∇u|2 + C(ε, ξ)(m1)ξ

∫
S

vξ ≤ 4ε

ξ2

∫
S

|∇v
ξ
2 |2 + C(ε, ξ)

( ∫
S

v
)ξ

≤ ε

∫
S

vξ−2|∇v|2 + C(ε, ξ)(m2)ξ

and ∫
S

wξ ≤ 4ε

ξ2

∫
S

|∇w
ξ
2 |2 + C(ε, ξ)

( ∫
S

w
)ξ

≤ ε

∫
S

wξ−2|∇w|2 + C(ε, ξ)(m3)ξ

for all t ∈ (0, Tmax). Then, ii follows.

Lemma 2.3. Let ξ > 0. Then, for all t ∈ (0, Tmax),∫
S

uξ−1∇u · ∇z ≤
[

b

ξ
+ c

ξ + 1 + d

ξ + 1

] ∫
S

uξ+1 + c

ξ(ξ + 1)

∫
S

vξ+1 + d

ξ(ξ + 1)

∫
S

wξ+1

∫
S

vξ−1∇v · ∇z ≤ b

ξ(ξ + 1)

∫
S

uξ+1 +
[

b

ξ + 1 + c

ξ
+ d

ξ + 1

] ∫
S

vξ+1 + d

ξ(ξ + 1)

∫
S

wξ+1

and ∫
S

wξ−1∇w · ∇z ≤ b

ξ(ξ + 1)

∫
S

uξ+1 + c

ξ(ξ + 1)

∫
S

vξ+1 +
[

b

ξ + 1 + c

ξ + 1 + d

ξ

] ∫
S

wξ+1

Proof. By multiplying the third equality in (1.1) by uξ−1 and integrating by parts over S,∫
S

uξ−1 · (∆z − az + bu + cv + dw) = 0

which gives by Young’s inequality

ξ

∫
S

uξ−1∇u · ∇z + a

∫
S

zuξ = b

∫
S

uξ+1 + c

∫
S

vuξ + d

∫
S

wuξ

≤ b

∫
S

uξ+1 + c

ξ + 1

∫
S

vξ+1 + cξ

ξ + 1

∫
S

uξ+1 + d

ξ + 1

∫
S

wξ+1 + dξ

ξ + 1

∫
S

uξ+1
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for all t ∈ (0, Tmax). Similarly,

ξ

∫
S

vξ−1∇v · ∇z + a

∫
S

zvξ = b

∫
S

uvξ + c

∫
S

vξ+1 + d

∫
S

wvξ

≤ b

ξ + 1

∫
S

uξ+1 + bξ

ξ + 1

∫
S

vξ+1 + c

∫
S

vξ+1 + d

ξ + 1

∫
S

wξ+1 + dξ

ξ + 1

∫
S

vξ+1

and

ξ

∫
S

wξ−1∇w · ∇z + a

∫
S

zwξ = b

∫
S

uwξ + c

∫
S

vwξ + d

∫
S

wξ+1

≤ b

ξ + 1

∫
S

uξ+1 + bξ

ξ + 1

∫
S

wξ+1 + c

ξ + 1

∫
S

vξ+1 + cξ

ξ + 1

∫
S

wξ+1 + d

∫
S

wξ+1

for all t ∈ (0, Tmax).

The subsequent lemma represents a significant estimate for the Lρ-bounds of u + v.

Lemma 2.4. Assume that (1.3)-(1.5) holds. Then for all k1, k2 and k3, there is a ξ := ξ(k1, k2, k3) > 1
such that ∫

S
uξ +

∫
S

vξ +
∫

S
wξ ≤ C

for all t ∈ (0, Tmax).

Proof. Multiplying the first equality in (1.1) by uξ−1 and integrating it over S,
1
ξ

· d

dt

∫
S

uξ =
∫

S
uξ−1∆u − χ1

∫
S

uξ−1∇ · (u∇z) + h1

∫
S

uξ − k1

∫
S

uξ+1

= −(ξ − 1)
∫

S
uξ−2|∇u|2 + (ξ − 1)χ1

∫
S

uξ−1∇u · ∇z + h1

∫
S

uξ − k1

∫
S

uξ+1
(2.1)

for all t ∈ (0, Tmax). Similarly,
1
ξ

· d

dt

∫
S

vξ = −(ξ − 1)
∫

S
vξ−2|∇v|2 + (ξ − 1)χ2

∫
S

vξ−1∇v · ∇z + h2

∫
S

vξ − k2

∫
S

vξ+1 (2.2)

and
1
ξ

· d

dt

∫
S

wξ = −(ξ − 1)
∫

S
wξ−2|∇w|2 + (ξ − 1)χ3

∫
S

wξ−1∇w · ∇z + h3

∫
S

wξ − k3

∫
S

wξ+1 (2.3)

for all t ∈ (0, Tmax). By adding (2.1)-(2.3),

1
ξ

· d

dt

(∫
S

uξ +
∫

S

vξ +
∫

S

wξ

)
= −(ξ − 1)

∫
S

uξ−2|∇u|2 − (ξ − 1)
∫

S

vξ−2|∇v|2 − (ξ − 1)
∫

S

wξ−2|∇w|2

+ (ξ − 1)χ1

∫
S

uξ−1∇u · ∇z + (ξ − 1)χ2

∫
S

vξ−1∇v · ∇z + (ξ − 1)χ3

∫
S

wξ−1∇w · ∇z

+ h1

∫
S

uξ + h2

∫
S

vξ + h3

∫
S

wξ − k1

∫
S

uξ+1 − k2

∫
S

vξ+1 − k3

∫
S

wξ+1

for all t ∈ (0, Tmax). By Lemma 2.2, there is a positive number C > 0 such that

h1

∫
S

uξ ≤ (ξ − 1)
∫

S
uξ−2|∇u|2 + C

3

h2

∫
S

vξ ≤ (ξ − 1)
∫

S
vξ−2|∇v|2 + C

3
and

h3

∫
S

wξ ≤ (ξ − 1)
∫

S
wξ−2|∇w|2 + C

3
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for all t ∈ (0, Tmax). Moreover, by Lemma 2.3,

(ξ−1)χ1

∫
S

uξ−1∇u·∇z ≤ (ξ−1)χ1

[
b

ξ
+ c

ξ + 1 + d

ξ + 1

] ∫
S

uξ+1+c(ξ − 1)χ1

ξ(ξ + 1)

∫
S

vξ+1+d(ξ − 1)χ1

ξ(ξ + 1)

∫
S

wξ+1

(ξ−1)χ2

∫
S

vξ−1∇v·∇z ≤ (ξ−1)χ2

[
b

ξ + 1 + c

ξ
+ d

ξ + 1

] ∫
S

vξ+1+b(ξ − 1)χ2

ξ(ξ + 1)

∫
S

uξ+1+d(ξ − 1)χ2

ξ(ξ + 1)

∫
S

wξ+1

and

(ξ−1)χ3

∫
S

wξ−1∇w·∇z ≤ b(ξ − 1)χ3

ξ(ξ + 1)

∫
S

uξ+1+c(ξ − 1)χ3

ξ(ξ + 1)

∫
S

vξ+1+(ξ−1)χ3

[
b

ξ + 1 + c

ξ + 1 + d

ξ

] ∫
S

wξ+1

which yields

(ξ − 1)

[
χ1

∫
S

uξ−1∇u · ∇z + χ2

∫
S

vξ−1∇v · ∇z + χ3

∫
S

wξ−1∇w · ∇z

]
≤ (ξ − 1)

[
bχ1

ξ
+

(c + d)χ1

ξ + 1
+

b(χ2 + χ3)
ξ(ξ + 1)

]∫
S

uξ+1

+ (ξ − 1)
[

(b + d)χ2

ξ + 1
+

cχ2

ξ
+

c(χ1 + χ3)
ξ(ξ + 1)

]∫
S

vξ+1

+ (ξ − 1)
[

(b + c)χ3

ξ + 1
+

d(χ1 + χ2)
ξ(ξ + 1)

+
dχ3

ξ

]∫
S

wξ+1

(2.4)

for all t ∈ (0, Tmax). It then follows that
1
ξ

· d

dt

(∫
S

uξ +
∫

S
vξ +

∫
S

wξ
)

≤
{

(ξ − 1)
(

bχ1
ξ

+ (c + d)χ1
ξ + 1 + b(χ2 + χ3)

ξ(ξ + 1)

)
− k1

}∫
S

uξ+1

+
{

(ξ − 1)
((b + d)χ2

ξ + 1 + cχ2
ξ

+ c(χ1 + χ3)
ξ(ξ + 1)

)
− k2

}∫
S

vξ+1

+
{

(ξ − 1)
((b + c)χ3

ξ + 1 + d(χ1 + χ2)
ξ(ξ + 1) + dχ3

ξ

)
− k3

}∫
S

vξ+1 + C

for all t ∈ (0, Tmax). Fix ξ > 1 sufficiently close to 1 such that ξ := 1 + ε, for ε ≪ 1. By (1.3)-(1.5), for
all k1, k2, and k3,

ε ·
[

bχ1
1 + ε

+ (c + d)χ1
2 + ε

+ b(χ2 + χ3)
(1 + ε)(2 + ε)

]
− k1 < 0

ε ·
[(b + d)χ2

2 + ε
+ cχ2

1 + ε
+ c(χ1 + χ3)

(1 + ε)(2 + ε)

]
− k2 < 0

and
ε ·
[(b + c)χ3

2 + ε
+ d(χ1 + χ2)

(1 + ε)(2 + ε) + dχ3
1 + ε

]
− k3 < 0

Then, by Young’s inequality with some elementary arrangements, there is a k∗ > 0 such that
1
ξ

· d

dt

(∫
S

uξ +
∫

S
vξ +

∫
S

wξ
)

≤ −k∗
(∫

S
uξ +

∫
S

vξ +
∫

S
wξ
)

+ C∗

for all t ∈ (0, Tmax). Let y(t) :=
∫

S uξ +
∫

S vξ +
∫

S wξ, which yields y′ ≤ −ξk∗y + ξC∗. Then, the ODE’s
comparison principle yields∫

S
uξ +

∫
S

vξ +
∫

S
wξ ≤ C, for all t ∈ (0, Tmax)

3. Main Results

This section provides the obtained primary results.
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3.1. Lρ-Bounds

This subsection establishes Lρ-bounds of u + v + w.

Theorem 3.1 (Lρ-boundedness). Suppose that the initial functions u0, v0, and w0 satisfy (1.2), and
the assumptions in (1.3)-(1.5) are valid. Then, for any given n

2 < ρ < n,∫
S

uρ +
∫

S
vρ +

∫
S

wρ ≤ C, for all t ∈ (0, Tmax)

Proof. Fix n
2 < ξ < n. Then, the main assumptions in (1.3)-(1.5) guarantee that the following hold:

(ξ − 1)
(

bχ1
ξ

+ (c + d)χ1
ξ + 1 + b(χ2 + χ3)

ξ(ξ + 1)

)
− k1 < 0

(ξ − 1)
((b + d)χ2

ξ + 1 + cχ2
ξ

+ c(χ1 + χ3)
ξ(ξ + 1)

)
− k2 < 0

and
(ξ − 1)

((b + c)χ3
ξ + 1 + d(χ1 + χ2)

ξ(ξ + 1) + dχ3
ξ

)
− k3 < 0

Hence, by Lemma 2.4, ∫
S

uξ +
∫

S
vξ +

∫
S

wξ ≤ Cξ

for all t ∈ (0, Tmax). Moreover, by the Gagliardo-Nirenberg embedding theorem and Young’s inequality,
for all ε > 0, ∫

S
uρ+1 = ∥u

ρ
2 ∥

2(ρ+1)
ρ

L
2(ρ+1)

ρ (S)

≤ C∥∇u
ρ
2 ∥

2(ρ+1)θ
ρ

L2(S) ∥u
ρ
2 ∥

2(ρ+1)(1−θ)
ρ

L
2ξ
ρ (S)

+ C∥u
ρ
2 ∥

2(ρ+1)θ
ρ

L
2ξ
ρ (S)

≤ C

(
ρ2

4

∫
S

uρ−2|∇u|2
) (ρ+1)θ

ρ

(Cξ)
(ρ+1)(1−θ)

ξ + C(Cξ)
(ρ+1)θ

ξ

≤ ε

∫
S

uρ−2|∇u|2 + C(ρ, ξ, ε, θ, Cξ, |S|) for all t ∈ (0, Tmax)

(3.1)

where

θ =
ρ
2ξ − ρ

2(ρ+1)
1
n + ρ

2ξ − 1
2

= ρn

ρ + 1 · ρ + 1 − ξ

2ξ + n(p − ξ) ∈ (0, 1) and (ρ + 1)θ
ρ

< 1

due to the fact that (1.3) implies

χ1 <
n

n − 2 · k1
b1

for all n − 2
2 <

n

2 < ρ < n

Similarly, ∫
S

vρ+1 ≤ ε

∫
S

vρ−2|∇v|2 + C(ρ, ξ, ε, θ, Cξ, |S|) (3.2)

and ∫
S

wρ+1 ≤ ε

∫
S

wρ−2|∇w|2 + C(ρ, ξ, ε, θ, Cξ, |S|) (3.3)

for all t ∈ (0, Tmax). Besides, multiplying the first equality in (1.1) by uρ−1 with ρ > 1, the second
equality in (1.1) by vρ−1 with ρ > 1, and the third equality in (1.1) by wρ−1 with ρ > 1, integrating
them over S, and adding these equations,
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1
ρ

d

dt

(∫
S

uρ +
∫

S

vρ +
∫

S

wρ

)
= −(ρ − 1)

∫
S

uρ−2|∇u|2 − (ρ − 1)
∫

S

vρ−2|∇v|2 − (ρ − 1)
∫

S

wρ−2|∇w|2

+ (ρ − 1)χ1

∫
S

uρ−1∇u · ∇z + (ρ − 1)χ2

∫
S

vρ−1∇v · ∇z + (ρ − 1)χ3

∫
S

wρ−1∇w · ∇z

+ h1

∫
S

uρ + h2

∫
S

vρ + h3

∫
S

wρ − k1

∫
S

uρ+1 − k2

∫
S

vρ+1 − k3

∫
S

wρ+1

(3.4)

for all t ∈ (0, Tmax). In view of (2.4), (3.1), (3.2), and (3.3),

(ρ − 1)

[
χ1

∫
S

uρ−1∇u · ∇z + χ2

∫
S

vρ−1∇v · ∇z + χ3

∫
S

wρ−1∇w · ∇z

]
≤ (ξ − 1)

[
bχ1

ξ
+

(c + d)χ1

ξ + 1
+

b(χ2 + χ3)
ξ(ξ + 1)

]∫
S

uρ+1

+ (ξ − 1)
[

(b + d)χ2

ξ + 1
+

cχ2

ξ
+

c(χ1 + χ3)
ξ(ξ + 1)

]∫
S

vρ+1

+ (ξ − 1)
[

(b + c)χ3

ξ + 1
+

d(χ1 + χ2)
ξ(ξ + 1)

+
dχ3

ξ

]∫
S

wρ+1

≤ (ρ − 1)

∫
S

vρ−2|∇v|2 + (ρ − 1)

∫
S

vρ−2|∇v|2

+ (ρ − 1)

∫
S

wρ−2|∇w|2 + C

(3.5)

for t ∈ (0, Tmax). Moreover, by Young’s inequality,

h1

∫
S

uρ ≤ k1
2

∫
S

uρ+1 + C(h1, k1, |S|) (3.6)

h2

∫
S

vρ ≤ k2
2

∫
S

vρ+1 + C(h2, k2, |S|) (3.7)

and

h3

∫
S

wρ ≤ k3
2

∫
S

wρ+1 + C(h3, k3, |S|) (3.8)

for all t ∈ (0, Tmax). Collecting (3.4)-(3.8),
1
ρ

d

dt

(∫
S

uρ +
∫

S
vρ +

∫
S

wρ
)

≤ − min
{

k1
2 ,

k2
2 ,

k3
2

}(∫
S

uρ +
∫

S
uρ +

∫
S

wρ
)

+ C∗

which implies by the ODE’s comparison principle that∫
S

uρ +
∫

S
vρ +

∫
S

wρ ≤ max
{∫

S
(uρ

0 + vρ
0 + wρ

0), 4C∗

min{k1, k2, k3}

}
for all t ∈ (0, Tmax). The proof is thus over.

3.2. Global Existence and Boundedness

This subsection presents the subsequent observation related to the global existence and boundedness of
solutions to (1.1).

Theorem 3.2 (Global existence and boundedness). Assume that the initial functions u0, v0, and w0

satisfy (1.2), and (1.3) and (1.4) hold. Then, the solution (u, v, w, z) is global, i.e.,

Tmax(u0, v0, w0) = ∞
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Moreover, there is a K∞ > 0 such that

∥u + v + w∥L∞(S) ≤ K∞, for all t > 0

Proof. It is well known that if ρ > n
2 , then Lρ-boundedness of solutions in time implies the L∞-

boundedness in time of solutions. Thus, by Theorem 3.1 and similar operations in the proof of Theorem
2.5 in [27], Tmax(u0, v0, w0) = ∞ and

sup ∥u(t, ·) + v(t, ·) + w(t, ·)∥L∞(S) < ∞, for all t > 0

3.3. Combined Mass Persistence

This section analyzes the combined mass persistence of solutions to (1.1). It first present the following
key estimate.

Lemma 3.3. Let β0, β1, and β2 be positive, θ1 > 1, θ2 > 1, t0 ∈ R, and y ∈ C1 ([t0, ∞)) be nonnegative
and satisfy the following inequality, for all t > 0:

y′(t) ≥ β0y(t) − β1yθ1(t) − β2yθ2(t)

Then,

y(t) ≥ min
{

y(t0),
(

β0
2β1

) 1
θ1−1

,

(
β0
2β2

) 1
θ2−1

}

The proof follows from the argument of Lemma 2.5 in [42]

Afterward, we provide an estimate from below for u(t, x) + v(t, x) + w(t, x).

Lemma 3.4. Assume that δ ∈ (0, 1). Then, there is a σ > 0 such that∫
S
(uδ(t, x) + vδ(t, x) + wδ(t, x)) dx ≥ σ, for all t > 0

Proof. Let δ ∈ (0, 1). Then, multiplying the first equality in (1.1) by uδ−1 with , the second equality
in (1.1) by vδ−1 with δ ∈ (0, 1), and the third equality in (1.1) by wδ−1 with δ ∈ (0, 1), integrating
them over S, and adding these equations, for all t > 0,

1
δ

· d

dt

(∫
S

uδ +
∫

S

vδ +
∫

S

wδ

)
= (1 − δ)

∫
S

uδ−2|∇u|2 + (1 − δ)
∫

S

vδ−2|∇v|2 + (1 − δ)
∫

S

wδ−2|∇w|2

− (1 − δ)χ1

∫
S

uδ−1∇u · ∇z − (1 − δ)χ2

∫
S

vδ−1∇v · ∇z

− (1 − δ)χ3

∫
S

wδ−1∇w · ∇z + h1

∫
S

uδ + h2

∫
S

vδ + h3

∫
S

wδ

− k1

∫
S

uδ+1 − k2

∫
S

vδ+1 − k3

∫
S

wδ+1

(3.9)

From Lemma 2.3, the third equality in (1.1), and integration by parts over S,

(1 − δ)χ1

∫
S

uδ−1∇u · ∇z ≤ (1 − δ)χ1

(
b

δ
+ c + d

δ + 1

)∫
S

uδ+1 + (1 − δ)cχ1
δ(δ + 1)

∫
S

vδ+1 + (1 − δ)dχ1
δ(δ + 1)

∫
S

wδ+1

(1 − δ)χ2

∫
S

vδ−1∇v · ∇z ≤ (1 − δ)bχ2
δ(δ + 1)

∫
S

uδ+1 + (1 − δ)χ2

(
b + d

δ + 1 + c

δ

)∫
S

vδ+1 + (1 − δ)bχ2
δ(δ + 1)

∫
S

wδ+1

and

(1−δ)χ3

∫
S

wδ−1∇w·∇z ≤ b(δ − 1)χ3

δ(δ + 1)

∫
S

uδ+1+ c(δ − 1)χ3

δ(δ + 1)

∫
S

vδ+1+(δ−1)χ3

(
b

δ + 1 + c

δ + 1 + d

δ

)∫
S

wδ+1
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which entail for all t > 0 that

(1 − δ)
[

χ1

∫
S

uδ−1∇u · ∇z + χ2

∫
S

vδ−1∇v · ∇z + χ3

∫
S

wδ−1∇w · ∇z

]
≤ C1

∫
S

uδ+1 + C2

∫
S

vδ+1 + C3

∫
S

wδ+1 (3.10)

where
C1 = (1 − δ)χ1

(
b

δ
+ c + d

δ + 1

)
+ (1 − δ)bχ2

δ(δ + 1)
b(δ − 1)χ3
δ(δ + 1)

C2 = (1 − δ)cχ1
δ(δ + 1) + (1 − δ)χ2

(
b + d

δ + 1 + c

δ

)
+ c(δ − 1)χ3

δ(δ + 1)
and

C3 = (1 − δ)dχ1
δ(δ + 1) + (1 − δ)bχ2

δ(δ + 1) + (δ − 1)χ3

(
b

δ + 1 + c

δ + 1 + d

δ

)
Define ζ > 0 such that

0 <
ξ(n − 2δ)
n(ξ − δ) < ζ < 1 < ξ

where ξ > 1 is as in Lemma 2.4. By Hölder’s inequality, for all t > t0 > 0,∫
S

uδ+1 =
∫

S
uζ · uδ+1−ζ ≤

( ∫
S

uξ
) ζ

ξ
( ∫

S
u

ξ(δ+1−ζ)
ξ−ζ

) ξ−ζ
ξ ≤ (Cξ)

ζ
ξ

( ∫
S

u
ξ(δ+1−ζ)

ξ−ζ

) ξ−ζ
ξ (3.11)

Employing the Gagliardo–Nirenberg Theorem and Young’s inequality yields that( ∫
S

u
ξ(δ+1−ζ)

ξ−ζ

) ξ−ζ
ξ = ∥u

δ
2 ∥

2(δ+1−ζ)
δ

L
2q(δ+1−ζ)

δ(ξ−ζ) (S)

≤ C∥∇u
δ
2 ∥

2(δ+1−ζ)θ
δ

L2(S) ∥u
δ
2 ∥

2(δ+1−ζ)(1−θ)
δ

L2(S) + C∥u
δ
2 ∥

2(δ+1−ζ)
δ

L2(S)

≤ C
( ∫

S
uδ−2|∇u|2

) (δ+1−ζ)θ
δ

( ∫
S

uδ
) (δ+1−ζ)(1−θ)

δ + C
( ∫

S
uδ
) δ+1−ζ

r

≤ (1 − δ)C−1
1 (Cξ)− ζ

ξ

∫
S

uδ−2|∇u|2 + C̃
( ∫

S
uδ
) (δ+1−ζ)(1−θ)

δ−θ(δ+1−ζ) + C
( ∫

S
uδ
) δ+1−ζ

δ

where

θ =
1
2 − δ(ξ−ζ)

2ξ(δ+1−ζ)
1
n + 1

2 − 1
2

= n

2ξ
· ξ − ζξ + ζδ

δ + 1 − ζ
∈ (0, 1)

(δ + 1 − ζ)θ
δ

= n(ξ − ξζ + δζ)
2ξδ

∈ (0, 1)

(δ + 1 − ζ)(1 − θ)
δ − θ(δ + 1 − ζ) = 1 + 1 − ζ

δ − θ(δ + 1 − ζ) > 1

and
δ + 1 − ζ

δ
> 1

It then follows that for all t > t0,

C1

∫
S

ur+1 ≤ (1 − δ)
∫

S
uδ−2|∇u|2 + β1

( ∫
S

uδ
)θ1

+ β2
( ∫

S
uδ
)θ2

(3.12)

where β1, β2 > 0 are certain positive constants and θ1, θ2 > 1. Similarly, for all t > t0,

C2

∫
S

vδ+1 ≤ (1 − δ)
∫

S
vδ−2|∇v|2 + β3

( ∫
S

vδ
)θ1

+ β4
( ∫

S
vδ
)θ2

(3.13)

and
C3

∫
S

wδ+1 ≤ (1 − δ)
∫

S
wδ−2|∇w|2 + β5

( ∫
S

wδ
)θ1

+ β6
( ∫

S
wδ
)θ2

(3.14)
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where β3, β4, β5, β6 > 0 are certain positive constants. Hence, from (3.10)-(3.14),

(1 − δ)

[
χ1

∫
S

uδ−1∇u · ∇z + χ2

∫
S

vδ−1∇v · ∇z + χ3

∫
S

wδ−1∇w · ∇z

]
≤ (1 − δ)

[∫
S

uδ−2|∇u|2 +

∫
S

vδ−2|∇v|2 +

∫
S

wδ−2|∇w|2
]

+ β1

(∫
S

uδ

)θ1

+ β3

(∫
S

vδ

)θ1

+ β5

(∫
S

wδ

)θ1

+ β2

(∫
S

uδ

)θ2

+ β4

(∫
S

vδ

)θ2

+ β6

(∫
S

wδ

)θ2

≤ (1 − δ)

[∫
S

uδ−2|∇u|2 +

∫
S

vδ−2|∇v|2 +

∫
S

wδ−2|∇w|2
]

+ β7

(∫
S

uδ +

∫
S

vδ +

∫
S

wδ

)θ1

+ β8

(∫
S

uδ +

∫
S

vδ +

∫
S

wδ

)θ2

for some β7, β8 > 0. Together with (3.9), this yields that
1
δ

· d

dt

(∫
S

uδ +
∫

S
vδ +

∫
S

wδ

)
≥ min{h1, h2, h3}

(∫
S

uδ +
∫

S
vδ +

∫
S

wδ

)
− β5

( ∫
S

uδ +
∫

S
vδ +

∫
S

wδ
)θ1

− β6

( ∫
S

uδ +
∫

S
vδ +

∫
S

wδ
)θ2

for all t > t0. Consequently, by Lemma 3.3, there is a σ > 0 such that for all t > t0,∫
S

uδ +
∫

S
vδ +

∫
S

wδ ≥ σ

Theorem 3.5 (Combined mass persistence). Suppose that initial functions u0, v0, and w0 satisfy
(1.2), and the main assumptions in (1.3) and (1.4) are valid. Then, there is a σ∗ > 0 such that∫

S
(u + v + w) ≥ σ∗, for all t > 0

Proof. By Hölder inequality, for all δ ∈ (0, 1) and for all t > 0,∫
S
(u + v + w) ≥ |S|

δ−1
δ

(∫
S
(u + v + w)δ

) 1
δ

≥ |S|
δ−1

δ

{∫
S

uδ +
∫

S
vδ +

∫
S

wδ
} 1

δ

Afterward, by Lemma 3.4, for all δ ∈ (0, 1), there is a σ > 0 such that for all t > 0,∫
S

uδ +
∫

S
vδ +

∫
S

wδ ≥ σ

Therefore, for all t > 0,∫
S
(u + v + w) ≥ |S|

δ−1
δ

{∫
S

uδ +
∫

S
vδ +

∫
S

wδ
} 1

δ

≥ |S|
δ−1

δ σ
1
δ

4. Conclusion

In this section, we analyze the obtained findings, outline open problems related to the system in (1.1),
and suggest potential directions for future research. To begin with, we remark that the system in (1.1)
represents a mixed-type Keller-Segel chemotaxis model, incorporating three mobile species and a single
chemical stimulus. This model combines standard sensitivities with competitive dynamics defined
by weak logistic sources. Furthermore, it is significant to point out that this is the inaugural study
documented related to the system in (1.1) in the related literature.
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Afterward, we discuss the results obtained in Theorems 3.1, 3.2, and 3.5. To begin with, we note that
compared to the Lotka-Volterra kinetics, which involves interactions among multiple species such as
competition, predation, or mutualism, the current logistic source for any cell represented by u, v, w

in the system described in (1.1) does not interact with other species. This situation presents both
advantages and disadvantages for the system in (1.1). The benefit of the existing logistic source is its
ability to prevent species extinction, refers to persistence. In contrast, the limitations are connected to
the continuous evolution of the cell population over time, avoiding infinite growth or collapse within a
finite period, which relates to global existence and boundedness, under more stronger assumptions
regarding the parameters, particularly k1, k2, and k3. The Lotka-Volterra kinetics offers more beneficial
conditions for achieving outcomes associated with global existence and boundedness; however, it can
also cause the extinction of one or two species as time progresses. While the current logistic kinetics
requires more rigorous conditions on the parameters to secure the stated results on existence, it will
ensure the strict positivity of species at any moment they exist. Therefore, the assumptions herein in
establishing the main results presented in Theorem 3.5 compared to the previous works are considerably
more stronger than those in earlier studies [12, 35] in terms of the persistency of species. On the
other hand, these current results indicate the upper bounds for global existence, boundedness, and
persistence in the (1.1) if the Lotka-Volterra kinetics is integrated into the system. We highlight that
the global existence, boundedness and combined mass persistence of the current system has been
established for the first time in this paper. Hence, future works associated with the system in (1.1)
can focus on the following topics:

i. If (1.3) and (1.4) are not valid, then the global existence, boundedness, and mass persistence of the
solution to the system in (1.1) is still open. The next phases of this research could involve an analysis
of the asymptotic stability, co-existence, extinction, and bifurcation analysis of solutions, along with
their numerical simulations.

ii. Another future works related to system in (1.1) may involve integrating Lotka-Volterra kinetics
into the system to investigate its dynamics, followed by comparing the results from each model.
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