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1. Introduction

Abstract

Traditional methods for 3D coordinate transformation often struggle with complex
mathematical computations. This study presents a machine learning approach using Extreme
Gradient Boosting (XGBoost) to achieve high-precision coordinate transformations between
measurement systems. We developed three specialized XGBoost models (X, Y, Z axes) that
learn the transformation rules directly from data, eliminating the need for predefined
mathematical models. The framework processed raw coordinate measurements through
careful data cleaning and splitting (80% training, 20% testing), intentionally avoiding
normalization to preserve transformation relationships. Results demonstrated exceptional
transformation accuracy, with R? scores of 0.9999 (X), 0.9996 (Y), and 0.9975 (Z), and RMSE
values as low as 0.185 units. Error analysis showed maximum deviations under 1.5 units
across all axes, while 3D visualization confirmed the model's ability to maintain geometric
relationships during transformation. The independent axis modeling approach proved
particularly effective for coordinate system conversions, capturing axis-specific
transformation characteristics without cross-contamination. This work establishes XGBoost
as a powerful alternative to conventional transformation methods, offering superior accuracy
for applications in geodesy, photogrammetry, and CAD systems. Future enhancements could
incorporate hybrid models that combine the strengths of parametric transformations with
machine learning refinements.

research has examined how arbitrary coordinate
systems can be aligned with national systems for

Coordinate transformation is a critically important topic
in land surveying, especially with the widespread use of
the Global Positioning System (GPS). Since GPS data is
often collected in a global system, it must be converted
into the local coordinate system used by the end user.
These transformations are inherently tied to how
reference coordinate systems are defined [1], [2], [3], [4].
Historically, such transformations were derived by
correlating photographic and terrestrial coordinate
systems in photogrammetry. Additionally, earlier

transformation purposes [5],[6],[7]-

The accurate geodetic transformation is
important in geospatial science, it's considered as a
foundation for many applications such as land surveying,
remote sensing, cadastral mapping, and satellite
positioning systems [8], [9]. The conversion between
global and local reference datums guarantees spatial
consistency and accuracy when integrating multi-source
geospatial data [10]. For example, the World Geodetic
System 1984 (WGS84), used by the Global Positioning
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System (GPS), and local systems such as the Addan
Reference (used in parts of Africa including Sudan), show
significant difference due to distinct origins, ellipses, and
transformation parameters [11]. This difference shows
systematic errors in site accuracy if not correctly
transmitted [12]. Understanding and applying three-
dimensional coordinate transformations between these
references is crucial for national mapping agencies,
engineering projects, and scientific research based on
high-resolution geospatial data [13].

1.1 Traditional 3D Coordinate Transformation
Methods and Their Limitations

Geodetic coordinate transformations are essential for
converting coordinates between different reference
systems (e.g., WGS84 to Adindan). Traditional methods
rely on mathematical models with fixed parameters, but
they struggle with non-linear distortions, tectonic
deformations, and sparse control points. Below, we

examine the most widely used models, their

formulations, and key limitations.

1.1.1 Helmert 7-Parameter Transformation
(Bursa-Wolf Model)

X, X, [4X

Y,|=(1+s).R.|Yi |+ |4y 1)

Zy Zil 1Az

S = Scale Factor

R = rotation matrix (from small angles €y, &y, £7)
[AX,AY,AZ]T = translation vector

This method finds practical use in both global and
regional datum transformations, such as converting data
from the International Terrestrial Reference Frame
(ITRF) to the North American Datum of 1983 (NAD83).
To accurately estimate transformation parameters, it
necessitates the presence of at least three control points
that are spatially well-distributed. However, the
approach comes with notable limitations. It operates
under the assumption of linear behavior, meaning it only
accommodates small rotational changes and uniform
scaling. As a result, it becomes ineffective in regions
experiencing tectonic activity, where crustal movement
is complex and non-rigid. Additionally, the accuracy of
the transformation can degrade significantly when
control points are either sparsely located or unevenly
spread, leading to error propagation across the network
[10], [14].

1.1.2. Molodensky Transformation (Direct Geographic Shift)

_ —AXsinpcosA — AYsingsind + AZcosg + (adf + fAa)sin2¢

Ao =
¢ p+h

AL = —AXsinA + AYcosA
B (N + h)cosg

Ah = AXcos@cosA + AYcospsind + AZsing — Aa +

a, f= ellipsoid parameters
p, N =radii of curvature
X, = centroid of local control points.

This method enables direct conversion between
ellipsoidal coordinate systems like WGS84 and local
datums, making it efficient for small-area
transformations without using Cartesian coordinates.
However, its accuracy declines over larger areas
(beyond 100 km), it doesn’t handle rotational
distortions, and it is sensitive to errors in ellipsoid
parameters [15].
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1.1.3. Molodensky-Badekas Model (Centroid-
Based Transformation)
X'=T+R(X—X,)+s(X—X,)+Xo (5)

This method is particularly well-suited for local geodetic
networks, such as national coordinate systems, as it
enhances accuracy by minimizing residual errors
through referencing rotational parameters to a central
point or centroid. This localized referencing approach
improves the fit within the network area. However, it
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retains a linear transformation model, which makes it
inadequate for regions experiencing significant
deformation or non-linear ground movement.

1.2. Key Limitations of Traditional Methods

Traditional coordinate transformation methods, like
Helmert and Molodensky, work well under ideal
conditions but fall short in complex, real-world settings.
They assume the Earth behaves in a simple, rigid way
with small, uniform changes—an assumption that
doesn't hold in areas with tectonic activity, such as
Sudan’s rift zones or places affected by earthquakes.
These models also rely heavily on well-placed and
precise control points, which are often lacking in
developing regions. As a result, errors creep in easily and
tend to spread throughout the system. Additionally,
these models can’t handle sudden local distortions, like
ground shifts along fault lines or sinking land in mining
areas. Even small mismatches between reference
systems, like Adindan and WGS84, can further reduce
accuracy [17],[18],[19].

in Sudan, traditional topographic mapping has
historically relied on the Adindan coordinate system,
which is based on the Clarke 1880 Helge ellipsoid.
However, with the widespread adoption of the Global
Positioning System (GPS), which operates on the WGS84
reference frame, a clear need arose to enable accurate
transformation between the two systems to ensure
consistency between legacy and modern geospatial data.
A detailed analytical study was undertaken to evaluate
the three-dimensional transformation parameters
between WGS84 and Adindan. The research applied both
the Bursa-Wolf and Molodensky-Badekas models using
32 high-quality first-order control points that were
common to both systems. The findings indicated that
these transformation models delivered reliable accuracy
suitable for geodetic applications in Sudan. Specifically,
the results from least-squares solutions revealed that
coordinate discrepancies after conversion remained
within 0.5 meters, highlighting the practical effectiveness
of both models for local surveying and mapping tasks in
the region [20]. [21], [11].

1.3. Artificial Intelligence (AI)

Artificial Intelligence (AI) involves designing
computer systems that can carry out tasks traditionally
associated with human cognition, such as reasoning,
learning, problem-solving, and interpreting sensory
input. A central component of Al is Machine Learning
(ML), which focuses on creating algorithms that enable
machines to learn from data and make informed
predictions or decisions without being explicitly
programmed [22],[23],[24],[25],[26].

Among the various ML techniques, XGBoost
(Extreme Gradient Boosting) is recognized for its high
efficiency and scalability It operates by
combining multiple weak prediction models usually
decision trees in a sequential manner to improve
accuracy and reduce error. XGBoost excels in handling
large and complex datasets, dealing with missing values,

Additionally, the method's reliability depends heavily on
the availability and precision of high-quality local control
points [16].

and capturing intricate feature relationships. Its speed
and predictive strength make it a preferred choice for
both classification and regression problems in data-
intensive applications [29][30],[31].

1.4. Study Area

Sudan, the third-largest country in Africa, comprises 18
states: Kassala, Northern State, Khartoum, Al Jazirah,
Sennar, White Nile, Central Darfur, Blue Nile, North
Darfur, East Darfur, South Darfur, West Darfur, Red Sea,
Al Qadarif, North Kurdufan, River Nile, West Kurdufan,
and South Kurdufan [10]. Located in northeastern Africa,
it shares borders with South Sudan to the south, Egypt to
the north, Libya to the northwest, Eritrea and Ethiopia to
the east, the Red Sea to the northeast, Chad to the west,
and the Central African Republic to the southwest.
[32],[33],[34]-

The primary objective of this study is to
implement a three-dimensional coordinate
transformation between the WGS84 and Adindan
geodetic systems using an artificial intelligence-based
approach. Specifically, the study employs the XGBoost
algorithm—a gradient boosting technique known for its
robustness and high performance in geospatial
regression tasks. This approach is adopted to overcome
the limitations of traditional transformation models,
which often struggle in regions with complex geodetic
distortions and sparse control data. By leveraging
XGBoost’s capability to capture non-linear relationships,
handle large datasets efficiently, and maintain high
predictive accuracy with reduced risk of overfitting, the
study aims to deliver a more reliable and adaptive
solution for coordinate conversion in the Sudanese
geospatial context.

2. Method

2.1. Data Collection and Preprocessing

The input and target 3D coordinates (X, Y, Z) used in
this study are the geospatial or structural measurements.
The measured values are the input coordinates, and the
ground truth or transformed values are the target
coordinates. To preprocess the data for modeling, a
thorough preprocessing process was performed. The
raw data entries, which had commas as thousand
separators, were first cleaned to make all values
consistent in numerical format. It was carefully verified
that there were no corrupt or missing entries. The
dataset was then divided into training (80%) and test
(20%) sets using the train_test_split function from scikit-
learn with an arbitrary random seed
(random_state=420) for reproducibility. Even though
such normalization techniques as Min-Max scaling and Z-
score standardization were not applied in this study,
their capability to promote model convergence is
acknowledged and held in reserve for future research.
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2.2. Model Selection and Training

We chose the Extreme Gradient Boosting (XGBoost)
Regressor because it's well-known for delivering top-
notch performance in regression problems. It's
especially good at capturing complex, non-linear
patterns in data, and it has built-in tools to help
prevent overfitting. All of these features make it a
great choice for building accurate models that predict
3D coordinates effectively.

2.2.1 Architectural Modeling

Three independent models—each in charge of
forecasting one coordinate axis (X, Y, or Z)—were
developed to maximize predictive performance. For
every spatial dimension, this design promotes
autonomous error minimization. Setting the number of
estimators (n_estimators) to 8000, stating the learning
objective as squared error regression (objective="reg:
squarederror"), and keeping a constant random state
(random_state=420) for repeatability were among the
key hyperparameters.

2.2.2. Training Process

Each coordinate-specific model was trained separately
on the corresponding target component of the training
set (X_train and y_train[:, i]). Although early stopping
mechanisms were not implemented in this study, their
application could be beneficial for preventing overfitting,
particularly when scaling to larger datasets.

2.3 Model Evaluation
2.3.1 Performance Metrics

Model performance was assessed using two primary
metrics: Root Mean Squared Error (RMSE) and the R?
Score (coefficient of determination). RMSE quantifies the
average magnitude of prediction errors, while the R?
Score measures the proportion of variance in the target
variable that is captured by the model. RMSE was
calculated using:

v
1 A
RMSE = = " (v~ y{)* ©)
i=1

and R? was computed as:

2 _ 4 Yo yi)?
S VR CRTOE )

2.4 Results

The overall RMSE was calculated across all predicted
coordinates, and separate R? Scores were reported for
each axis (X, Y, and Z) to provide a more detailed
understanding of model performance across spatial
dimensions.

2.5 Visualization Techniques

In order to get a better understanding of what the model
did and where it went wrong, we did a range of
visualization techniques. For the entire dataset and test
set, we plotted 3D scatter plots to see the relationship
between the input points, the true values, and the
predictions. We also plotted prediction vs. true values for
each coordinate to see if we can find any patterns or
systematic biases. In fact, we wanted to investigate these
errors further. Thus, histograms showing their
distribution were made and the plot of the absolute
errors against sample indices was conducted to see if any
trends were observed. The cumulative error analysis, in
turn, made it clear to what extent the errors could be
considered a regular deviation.

Additionally, we utilized intrinsic feature importance
of XGBoost to figure out which of the input dimensions
were mostly influencing the model decisions.

2.6. Validation and Robustness

To test the robustness and generalizability of the model,
it was validated against another unique test set. This was
essential to confirm its performance to avoid bias. Next,
after a perfect performance on the second test set, the
model was evaluated against another unique set of data
points that were not part of either the training or test
sets. This was to confirm that the model does not rely on
the original data provided for training and has a
generalizable nature. Finally, standard error statistics
i.e.,, mean error, maximum error, and standard deviation
of the error, were calculated to check if the model is
stable and accurate across different data distributions.
Also, interactive 3D plots created using Plotly helped in
studying the spatial statistics of the error and diagnosing
the model prediction.

2.7 Computational Tools

The whole modeling pipeline was carried out in python
programming language, and a set of special libraries was
used during the modeling process. xgboost was used for
the implementation of the regression model, while scikit-
learn was used for the splitting of the data and
performance metrics, as well as preprocessing. Numpy
and pandas were used for handling data. For
visualization, plotly was used for the immediate 3D
visualization of the data obtained and matplotlib was
used for static plots. Outputs of the process were stored
on a Google Drive and Google colab was used for carrying
out the experiments in order to take advantage of the
cloud computing.
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Raw Data Cleaning
Data Collection & Preprocessing
Raw 3D coordinate data is cleaned

and prepared for modeling

o Data Splitting

Train/Test Division

Dataset divided into 80% training
and 20% test sets for model
development

XGBoost Regressor

[ Model Selection Chosen

Extreme Gradient Boosting
selected for its regression
capabilities

Coordinate-Specific
Models

Three independent models built for
X, Y, and Z coordinates

» Architectural Modeling ]

[ Model Training
Training Process

Each model trained on its
respective coordinate component

Performance Metrics

Calculated Model Evaluation J

RMSE and R? scores computed to
assess model accuracy

Error Analysis Plots
Visualization Techniques
3D scatter plots, prediction vs. true

plots, and error histograms created

Multiple Test Sets

Model validated on unique test
sets to ensure generalizability

» Validation & Robustness J

[ Python Libraries Used
Computational Tools ¢

XGBoost, scikit-learn, NumPy,
pandas, plotly, and matplotlib used
for modeling and visualization

Figure 1. Flowchart For Methdology
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3. Results

When predicting 3D coordinates (X, Y, and Z) from the
input dataset, the XGBoost model performs remarkably
well. The ability of XGBoost to represent intricate
nonlinear relationships is demonstrated by this
achievement, which is especially helpful in spatial
transformation problems where coordinate
dependencies might not exhibit straightforward linear
trends. The model demonstrates outstanding
generalization capabilities by capturing complex
patterns in all three spatial dimensions, which makes it
ideal for geospatial positioning.

With an R2 score of 0.9999, the actual and
predicted values for the X coordinate nearly match as
shown in Figure 2. This degree of accuracy shows that the
model is almost perfect at predicting the X component of
the 3D coordinates and has learned the patterns in the
data very well. The model's high accuracy and resilience
in this dimension are further supported by the plot's
nearly complete overlap between the green solid line
(actual) and the red dashed line (predicted).

With an R2 score of 0.9996 for the Y coordinate
as shown in Figure 3, the model likewise exhibits
remarkable performance. The predictions are still very
accurate even though there are small differences at some
sample indices. These minor changes point to possible
areas for model improvement, such as reducing noise, or
fine-tuning hyperparameters. The prediction line still
closely resembles the actual trajectory, though, and
overall performance is still strong.

leb

With an R2 score 0f 0.9975 as shown in Figure 4,
the Z coordinate prediction is equally impressive. It
shows very high model fidelity even though it is a little
lower than for X and Y. It's possible that the Z component
has more variability or is impacted by more intricate
relationships in the data, as evidenced by the slight
difference in predictions at some sample points.
However, the model accurately depicts the broad
patterns and oscillations, which is essential for
applications where 3D accuracy is important.

X Coordinate: Actual vs Predicted for All Data (R2: 0.9999)

—— Actual
Predicted

5.4

5.3 4

514

5.0 A

o] 5 10

Figure 2. Actual Vs Predicted for X Cordinate

1|5

20 25 30

Sample Index
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166 Y Coordinate: Actual vs Predicted for All Data (R2: 0.9996)

3.6

3.5

3.4

Y Value

3.2

3.1

3.0+

—— Actual
——- Predicted

o] 5 10

1|5

20 25 30

Sample Index
Figure 3. Actual Vs Predicted for Y Cordinate
166 Z Coordinate: Actual vs Predicted for All Data (R2: 0.9975)
2.4
—— Actual
——- Predicted

2.2

2.04

164

144

1.2 A

Figure 4. Actual Vs Predicted for Z Cordinate

4. Discussion

After training the XGBoost model on the 3D
transformation dataset, the model was used to predict X,
Y, and Z coordinates on a set of seven new data points to
determine the model's generalization capacity.

The comparison between real vs predicted
coordinate values are displayed for all the cases. In the
case of X coordinate as shown in Figure 5, the prediction
was found to be quite close to the truth with RMSE =
0.775. The pattern of change due to both the increase in
the trial number and the sharp and sudden changes was
captured by the model. In my opinion, the model will also
be accurate in the X dimension.

Equally, for the Y coordinate predictions as
shown in Figure 6, the model-predicted values were an
exact match for the measured values with RMSE = 0.620.
Furthermore, Post-hoc, the model was able to replicate
significant jumps such as the drop at point 4 and resume
the upward trends with minimal error, suggesting that
the XGBoost model is an expert at characterizing and
recording both linear and nonlinear relationships in the

1|5

20 25 30

Sample Index

Y direction, even in the context of sudden jumps in
values.

The results of the Z coordinate as shown in
Figure 7 were similar to the results of the other two
dimensions with RMSE = 0.185. The predicted values
closely followed the measured values throughout the test
dataset, following the general downward trend as well as
some small fluctuations. The lack of any major
differences in the Z values between predicted and
measured data further confirms the model’s ability to
handle changes in this axis.

To further study the accuracy of the predictions,
the error between the predicted and true values was
plotted for each of the coordinates as shown in Figure 8.
These errors predominantly hovered near zero across all
dimensions and throughout the data points. The highest
absolute error recorded in the predictions was less than
1.5, which is incredibly small compared to the range of
coordinate values. There were slight fluctuations at
points 2 and 4 in both the X and Y directions, but this did
not have a major effect on the predictions.

The developed XGBoost model demonstrated
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exceptionally high accuracy in predicting 3D coordinates these outstanding results validate the model's
as shown in Figure 9, achieving near-perfect R? scores effectiveness, it's important to note that they were
(0.9999, 0.9996, and 0.9975 for X, Y, and Z axes achieved on a limited dataset size.

respectively) with minimal prediction errors. While

1e6 X Coordinate: Actual vs Predicted Values

o —8— Actual X
Predicted X
5.215 +

5.210

5.205 +

X Value

5.200 A

5.195 4

45

5.190 4

5.185 4

[

1 2 3 4 5 (9] 7
Point Number

Figure 5. Actual Vs Predicted for X Cordinate
Y Coordinate: Actual vs Predicted Values

leb
3.11 4 —®— Actual Y -
Predicted Y
3.10 A
]
3.09 A o
] o
= [ [
©
> 3.08 1
>_
3.07 1
o
3.06 1
[}
1 2 3 4 5 6 7

Point Number

Figure 6.Actual Vs Predicted for Y Cordinate
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1e6 Z Coordinate: Actual vs Predicted Values
& —@— Actual Z
Predicted Z
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2.06
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2.00 |
]
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Point Number

Figure 7. Actual Vs Predicted for Z Cordinate

Coordinate Errors by Dimension

Point

Figure 8. Cordinate Errore by Dimension
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3D Comparison of Actual vs Predicted Coordinates

Figure 9. Cordinate Errore by Dimension

5. Conclusion

This study developed an XGBoost-based regression
model to predict 3D coordinates (X, Y, Z) with
remarkable accuracy, achieving near-perfect R* scores
(0.9999 for X, 0.9996 for Y, and 0.9975 for Z) and low
RMSE values for tested data (RMSE -X: 0.775, Y: 0.620, Z:
0.185). The model’s ability to capture complex spatial
relationships was validated through extensive testing,
demonstrating strong generalization on unseen data.
Visualizations, including 3D scatter plots and error
distribution analyses, confirmed its robustness, with
prediction errors consistently below 1.5. The
independent modeling approach for each coordinate axis
ensured optimized performance while maintaining
computational efficiency.

5.1

100

@ Actual
A Predicted

2.10

Z Coordinata

Recommendations

Use More Points: Increasing the number of
control points can improve the accuracy and
generalization of the XGBoost model in
coordinate transformation tasks.

Try Other Methods: Future work should
compare XGBoost with other models like ANN,
ANFIS, SVM, or Random Forest to find the most
effective algorithm.

Develop Hybrid Models: Combining XGBoost
with models like ANN or ANFIS may enhance
performance and handle non-linear patterns
better.

Apply Deep Learning: Consider using deep
learning approaches (e.g., CNN, LSTM) for more
complex spatial and temporal data.
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