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 Traditional methods for 3D coordinate transformation often struggle with complex 
mathematical computations. This study presents a machine learning approach using Extreme 
Gradient Boosting (XGBoost) to achieve high-precision coordinate transformations between 
measurement systems. We developed three specialized XGBoost models (X, Y, Z axes) that 
learn the transformation rules directly from data, eliminating the need for predefined 
mathematical models. The framework processed raw coordinate measurements through 
careful data cleaning and splitting (80% training, 20% testing), intentionally avoiding 
normalization to preserve transformation relationships. Results demonstrated exceptional 
transformation accuracy, with R² scores of 0.9999 (X), 0.9996 (Y), and 0.9975 (Z), and RMSE 
values as low as 0.185 units. Error analysis showed maximum deviations under 1.5 units 
across all axes, while 3D visualization confirmed the model's ability to maintain geometric 
relationships during transformation. The independent axis modeling approach proved 
particularly effective for coordinate system conversions, capturing axis-specific 
transformation characteristics without cross-contamination. This work establishes XGBoost 
as a powerful alternative to conventional transformation methods, offering superior accuracy 
for applications in geodesy, photogrammetry, and CAD systems. Future enhancements could 
incorporate hybrid models that combine the strengths of parametric transformations with 
machine learning refinements. 
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1. Introduction  
 

Coordinate transformation is a critically important topic 
in land surveying, especially with the widespread use of 
the Global Positioning System (GPS). Since GPS data is 
often collected in a global system, it must be converted 
into the local coordinate system used by the end user. 
These transformations are inherently tied to how 
reference coordinate systems are defined [1], [2], [3], [4]. 
Historically, such transformations were derived by 
correlating photographic and terrestrial coordinate 
systems in photogrammetry. Additionally, earlier 

research has examined how arbitrary coordinate 
systems can be aligned with national systems for 
transformation purposes [5],[6],[7]. 
 The accurate geodetic transformation is 
important in geospatial science, it’s considered as a 
foundation for many applications such as land surveying, 
remote sensing, cadastral mapping, and satellite 
positioning systems [8], [9]. The conversion between 
global and local reference datums guarantees spatial 
consistency and accuracy when integrating multi-source 
geospatial data [10]. For example, the World Geodetic 
System 1984 (WGS84), used by the Global Positioning 
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System (GPS), and local systems such as the Addan 
Reference (used in parts of Africa including Sudan), show 
significant difference due to distinct origins, ellipses, and 
transformation parameters [11]. This difference shows 
systematic errors in site accuracy if not correctly 
transmitted [12]. Understanding and applying three-
dimensional coordinate transformations between these 
references is crucial for national mapping agencies, 
engineering projects, and scientific research based on 
high-resolution geospatial data [13]. 
 
1.1 Traditional 3D Coordinate Transformation 

Methods and Their Limitations 
 

Geodetic coordinate transformations are essential for 
converting coordinates between different reference 
systems (e.g., WGS84 to Adindan). Traditional methods 
rely on mathematical models with fixed parameters, but 
they struggle with non-linear distortions, tectonic 
deformations, and sparse control points. Below, we 
examine the most widely used models, their 
formulations, and key limitations. 
 
 
1.1.1 Helmert 7-Parameter Transformation 

(Bursa-Wolf Model) 
 

[
𝑋2

𝑌2

𝑍2

] = (1+s). R. [
𝑋1

𝑌1

𝑍1

]+ [
𝛥 𝑋
𝛥 𝑌
𝛥 𝑍

]                              (1) 

 
S = Scale Factor 

R = rotation matrix (from small angles 𝜀𝑋 , 𝜀𝑌, 𝜀𝑍) 
[𝛥𝑋, 𝛥𝑌, 𝛥𝑍]𝑇 = translation vector 

 
 

This method finds practical use in both global and 
regional datum transformations, such as converting data 
from the International Terrestrial Reference Frame 
(ITRF) to the North American Datum of 1983 (NAD83). 
To accurately estimate transformation parameters, it 
necessitates the presence of at least three control points 
that are spatially well-distributed. However, the 
approach comes with notable limitations. It operates 
under the assumption of linear behavior, meaning it only 
accommodates small rotational changes and uniform 
scaling. As a result, it becomes ineffective in regions 
experiencing tectonic activity, where crustal movement 
is complex and non-rigid. Additionally, the accuracy of 
the transformation can degrade significantly when 
control points are either sparsely located or unevenly 
spread, leading to error propagation across the network 
[10], [14]. 
 
 
 
 

 
 

 
1.1.2. Molodensky Transformation (Direct Geographic Shift) 
 
 

𝛥𝜑 =  
−𝛥𝑋𝑠𝑖𝑛𝜑𝑐𝑜𝑠𝜆 − 𝛥𝑌𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜆 + 𝛥𝑍𝑐𝑜𝑠𝜑 + (𝑎𝛥𝑓 + 𝑓𝛥𝑎)𝑠𝑖𝑛2𝜑

𝜌 + ℎ
                                       (2) 

 

𝛥𝜆 =  
−𝛥𝑋𝑠𝑖𝑛𝜆 + 𝛥𝑌𝑐𝑜𝑠𝜆

(𝑁 + ℎ) cos 𝜑
                                                                                                                           (3) 

 

𝛥ℎ =  𝛥𝑋𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜆 + 𝛥𝑌𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜆 + 𝛥𝑍𝑠𝑖𝑛𝜑 − 𝛥𝑎 +  
𝑒2𝛥𝑎 sin2 𝜑

2
                                              (4) 

 
 

a , f = ellipsoid parameters 
𝜌 , N = radii of curvature 

           𝑋0 =  centroid of local control points. 
 
 
This method enables direct conversion between 

ellipsoidal coordinate systems like WGS84 and local 
datums, making it efficient for small-area 
transformations without using Cartesian coordinates. 
However, its accuracy declines over larger areas 
(beyond 100 km), it doesn’t handle rotational 
distortions, and it is sensitive to errors in ellipsoid 
parameters [15]. 

 
 
 

 
 
 
 
 
 

1.1.3. Molodensky-Badekas Model (Centroid-
Based Transformation) 
 

X′=T+R(X−𝑋0)+s(X−𝑋0)+𝑋0                           (5) 
 

This method is particularly well-suited for local geodetic 
networks, such as national coordinate systems, as it 
enhances accuracy by minimizing residual errors 
through referencing rotational parameters to a central 
point or centroid. This localized referencing approach 
improves the fit within the network area. However, it 
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retains a linear transformation model, which makes it 
inadequate for regions experiencing significant 
deformation or non-linear ground movement. 

Additionally, the method's reliability depends heavily on 
the availability and precision of high-quality local control 
points [16].

 
1.2. Key Limitations of Traditional Methods 

 
Traditional coordinate transformation methods, like 
Helmert and Molodensky, work well under ideal 
conditions but fall short in complex, real-world settings. 
They assume the Earth behaves in a simple, rigid way 
with small, uniform changes—an assumption that 
doesn't hold in areas with tectonic activity, such as 
Sudan’s rift zones or places affected by earthquakes. 
These models also rely heavily on well-placed and 
precise control points, which are often lacking in  
developing regions. As a result, errors creep in easily and 
tend to spread throughout the system. Additionally, 
these models can’t handle sudden local distortions, like 
ground shifts along fault lines or sinking land in mining 
areas. Even small mismatches between reference 
systems, like Adindan and WGS84, can further reduce 
accuracy [17],[18],[19]. 
 in Sudan, traditional topographic mapping has 
historically relied on the Adindan coordinate system, 
which is based on the Clarke 1880 Helge ellipsoid. 
However, with the widespread adoption of the Global 
Positioning System (GPS), which operates on the WGS84 
reference frame, a clear need arose to enable accurate 
transformation between the two systems to ensure 
consistency between legacy and modern geospatial data. 
A detailed analytical study was undertaken to evaluate 
the three-dimensional transformation parameters 
between WGS84 and Adindan. The research applied both 
the Bursa-Wolf and Molodensky-Badekas models using 
32 high-quality first-order control points that were 
common to both systems. The findings indicated that 
these transformation models delivered reliable accuracy 
suitable for geodetic applications in Sudan. Specifically, 
the results from least-squares solutions revealed that 
coordinate discrepancies after conversion remained 
within 0.5 meters, highlighting the practical effectiveness 
of both models for local surveying and mapping tasks in 
the region [20]. [21], [11]. 
 
1.3. Artificial Intelligence (AI) 

 
Artificial Intelligence (AI) involves designing 

computer systems that can carry out tasks traditionally 
associated with human cognition, such as reasoning, 
learning, problem-solving, and interpreting sensory 
input. A central component of AI is Machine Learning 
(ML), which focuses on creating algorithms that enable 
machines to learn from data and make informed 
predictions or decisions without being explicitly 
programmed [22],[23],[24],[25],[26]. 
 

Among the various ML techniques, XGBoost 
(Extreme Gradient Boosting) is recognized for its high 
efficiency and scalability [27],[28]. It operates by 
combining multiple weak prediction models usually 
decision trees in a sequential manner to improve 
accuracy and reduce error. XGBoost excels in handling 
large and complex datasets, dealing with missing values, 

and capturing intricate feature relationships. Its speed 
and predictive strength make it a preferred choice for 
both classification and regression problems in data-
intensive applications [29][30],[31]. 

 
1.4. Study Area 

 
Sudan, the third-largest country in Africa, comprises 18 
states: Kassala, Northern State, Khartoum, Al Jazirah, 
Sennar, White Nile, Central Darfur, Blue Nile, North 
Darfur, East Darfur, South Darfur, West Darfur, Red Sea, 
Al Qadarif, North Kurdufan, River Nile, West Kurdufan, 
and South Kurdufan [10]. Located in northeastern Africa, 
it shares borders with South Sudan to the south, Egypt to 
the north, Libya to the northwest, Eritrea and Ethiopia to 
the east, the Red Sea to the northeast, Chad to the west, 
and the Central African Republic to the southwest. 
[32],[33],[34]. 
 
 The primary objective of this study is to 
implement a three-dimensional coordinate 
transformation between the WGS84 and Adindan 
geodetic systems using an artificial intelligence-based 
approach. Specifically, the study employs the XGBoost 
algorithm—a gradient boosting technique known for its 
robustness and high performance in geospatial 
regression tasks. This approach is adopted to overcome 
the limitations of traditional transformation models, 
which often struggle in regions with complex geodetic 
distortions and sparse control data. By leveraging 
XGBoost’s capability to capture non-linear relationships, 
handle large datasets efficiently, and maintain high 
predictive accuracy with reduced risk of overfitting, the 
study aims to deliver a more reliable and adaptive 
solution for coordinate conversion in the Sudanese 
geospatial context. 
 

2. Method 
 
 

2.1. Data Collection and Preprocessing 
 

The input and target 3D coordinates (X, Y, Z) used in 
this study are the geospatial or structural measurements. 
The measured values are the input coordinates, and the 
ground truth or transformed values are the target 
coordinates. To preprocess the data for modeling, a 
thorough preprocessing process was performed. The 
raw data entries, which had commas as thousand 
separators, were first cleaned to make all values 
consistent in numerical format. It was carefully verified 
that there were no corrupt or missing entries. The 
dataset was then divided into training (80%) and test 
(20%) sets using the train_test_split function from scikit-
learn with an arbitrary random seed 
(random_state=420) for reproducibility. Even though 
such normalization techniques as Min-Max scaling and Z-
score standardization were not applied in this study, 
their capability to promote model convergence is 
acknowledged and held in reserve for future research. 
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2.2. Model Selection and Training 

 
We chose the Extreme Gradient Boosting (XGBoost) 
Regressor because it's well-known for delivering top-
notch performance in regression problems. It’s 
especially good at capturing complex, non-linear 
patterns in data, and it has built-in tools to help 
prevent overfitting. All of these features make it a 
great choice for building accurate models that predict 
3D coordinates effectively. 
 

2.2.1 Architectural Modeling 
 
Three independent models—each in charge of 
forecasting one coordinate axis (X, Y, or Z)—were 
developed to maximize predictive performance. For 
every spatial dimension, this design promotes 
autonomous error minimization. Setting the number of 
estimators (n_estimators) to 8000, stating the learning 
objective as squared error regression (objective="reg: 
squarederror"), and keeping a constant random state 
(random_state=420) for repeatability were among the 
key hyperparameters. 
 
2.2.2. Training Process 
 
Each coordinate-specific model was trained separately 
on the corresponding target component of the training 
set (X_train and y_train[:, i]). Although early stopping 
mechanisms were not implemented in this study, their 
application could be beneficial for preventing overfitting, 
particularly when scaling to larger datasets. 
 
2.3 Model Evaluation 
 
2.3.1 Performance Metrics 
 
Model performance was assessed using two primary 
metrics: Root Mean Squared Error (RMSE) and the R² 
Score (coefficient of determination). RMSE quantifies the 
average magnitude of prediction errors, while the R² 
Score measures the proportion of variance in the target 
variable that is captured by the model. RMSE was 
calculated using: 
 

𝑅𝑀𝑆𝐸 =  
1

𝑛
 ∑(𝑦𝑖 − 𝑦𝑖

^)2

𝑣

𝑖=1

                                 (6) 

 
and R² was computed as: 
 

𝑅2  =   1 −  
∑ (𝑦𝑖− 𝑦𝑖

−)2𝑛
𝑖=1

∑ (𝑦𝑖− 𝑦𝑖
−)2𝑛

𝑖=1

                         (7) 

 
2.4 Results 
 
The overall RMSE was calculated across all predicted 
coordinates, and separate R² Scores were reported for 
each axis (X, Y, and Z) to provide a more detailed 
understanding of model performance across spatial 
dimensions. 
 

 
2.5 Visualization Techniques 
 
In order to get a better understanding of what the model 
did and where it went wrong, we did a range of 
visualization techniques. For the entire dataset and test 
set, we plotted 3D scatter plots to see the relationship 
between the input points, the true values, and the 
predictions. We also plotted prediction vs. true values for 
each coordinate to see if we can find any patterns or 
systematic biases. In fact, we wanted to investigate these 
errors further. Thus, histograms showing their 
distribution were made and the plot of the absolute 
errors against sample indices was conducted to see if any 
trends were observed. The cumulative error analysis, in 
turn, made it clear to what extent the errors could be 
considered a regular deviation. 

Additionally, we utilized intrinsic feature importance 
of XGBoost to figure out which of the input dimensions 
were mostly influencing the model decisions. 
 
2.6. Validation and Robustness 
 
To test the robustness and generalizability of the model, 
it was validated against another unique test set. This was 
essential to confirm its performance to avoid bias. Next, 
after a perfect performance on the second test set, the 
model was evaluated against another unique set of data 
points that were not part of either the training or test 
sets. This was to confirm that the model does not rely on 
the original data provided for training and has a 
generalizable nature. Finally, standard error statistics 
i.e., mean error, maximum error, and standard deviation 
of the error, were calculated to check if the model is 
stable and accurate across different data distributions. 
Also, interactive 3D plots created using Plotly helped in 
studying the spatial statistics of the error and diagnosing 
the model prediction. 
 
2.7 Computational Tools 
 
The whole modeling pipeline was carried out in python 
programming language, and a set of special libraries was 
used during the modeling process. xgboost was used for 
the implementation of the regression model, while scikit-
learn was used for the splitting of the data and 
performance metrics, as well as preprocessing. Numpy 
and pandas were used for handling data. For 
visualization, plotly was used for the immediate 3D 
visualization of the data obtained and matplotlib was 
used for static plots. Outputs of the process were stored 
on a Google Drive and Google colab was used for carrying 
out the experiments in order to take advantage of the 
cloud computing. 
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Figure 1. Flowchart For Methdology  
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3. Results
 

When predicting 3D coordinates (X, Y, and Z) from the 
input dataset, the XGBoost model performs remarkably 
well. The ability of XGBoost to represent intricate 
nonlinear relationships is demonstrated by this 
achievement, which is especially helpful in spatial 
transformation problems where coordinate 
dependencies might not exhibit straightforward linear 
trends. The model demonstrates outstanding 
generalization capabilities by capturing complex 
patterns in all three spatial dimensions, which makes it 
ideal for geospatial positioning. 

With an R2 score of 0.9999, the actual and 
predicted values for the X coordinate nearly match as 
shown in Figure 2. This degree of accuracy shows that the 
model is almost perfect at predicting the X component of 
the 3D coordinates and has learned the patterns in the 
data very well. The model's high accuracy and resilience 
in this dimension are further supported by the plot's 
nearly complete overlap between the green solid line 
(actual) and the red dashed line (predicted). 

With an R2 score of 0.9996 for the Y coordinate 
as shown in Figure 3, the model likewise exhibits 
remarkable performance. The predictions are still very 
accurate even though there are small differences at some 
sample indices. These minor changes point to possible 
areas for model improvement, such as reducing noise, or 
fine-tuning hyperparameters. The prediction line still 
closely resembles the actual trajectory, though, and 
overall performance is still strong. 

With an R2 score of 0.9975 as shown in Figure 4, 
the Z coordinate prediction is equally impressive. It 
shows very high model fidelity even though it is a little 
lower than for X and Y. It's possible that the Z component 
has more variability or is impacted by more intricate 
relationships in the data, as evidenced by the slight 
difference in predictions at some sample points. 
However, the model accurately depicts the broad 
patterns and oscillations, which is essential for 
applications where 3D accuracy is important. 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
           Figure 2. Actual Vs Predicted for X Cordinate  
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Figure 3. Actual Vs Predicted for Y Cordinate 
 

 
 

    Figure 4. Actual Vs Predicted for Z Cordinate 
 
 

4. Discussion 
 

After training the XGBoost model on the 3D 
transformation dataset, the model was used to predict X, 
Y, and Z coordinates on a set of seven new data points to 
determine the model's generalization capacity. 

The comparison between real vs predicted 
coordinate values are displayed for all the cases. In the 
case of X coordinate as shown in Figure 5, the prediction 
was found to be quite close to the truth with RMSE = 
0.775. The pattern of change due to both the increase in 
the trial number and the sharp and sudden changes was 
captured by the model. In my opinion, the model will also 
be accurate in the X dimension. 

Equally, for the Y coordinate predictions as 
shown in Figure 6, the model-predicted values were an 
exact match for the measured values with RMSE = 0.620. 
Furthermore, Post-hoc, the model was able to replicate 
significant jumps such as the drop at point 4 and resume 
the upward trends with minimal error, suggesting that 
the XGBoost model is an expert at characterizing and 
recording both linear and nonlinear relationships in the 

Y direction, even in the context of sudden jumps in 
values. 

The results of the Z coordinate as shown in 
Figure 7 were similar to the results of the other two 
dimensions with RMSE = 0.185. The predicted values 
closely followed the measured values throughout the test 
dataset, following the general downward trend as well as 
some small fluctuations. The lack of any major 
differences in the Z values between predicted and 
measured data further confirms the model’s ability to 
handle changes in this axis. 

To further study the accuracy of the predictions, 
the error between the predicted and true values was 
plotted for each of the coordinates as shown in Figure 8. 
These errors predominantly hovered near zero across all 
dimensions and throughout the data points. The highest 
absolute error recorded in the predictions was less than 
1.5 , which is incredibly small compared to the range of 
coordinate values. There were slight fluctuations at 
points 2 and 4 in both the X and Y directions, but this did 
not have a major effect on the predictions. 
 The developed XGBoost model demonstrated 
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exceptionally high accuracy in predicting 3D coordinates 
as shown in Figure 9, achieving near-perfect R² scores 
(0.9999, 0.9996, and 0.9975 for X, Y, and Z axes 
respectively) with minimal prediction errors. While 

these outstanding results validate the model's 
effectiveness, it's important to note that they were 
achieved on a limited dataset size. 
 

 
         Figure 5. Actual Vs Predicted for X Cordinate 

 
 

        Figure 6.Actual Vs Predicted for Y Cordinate 
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        Figure 7. Actual Vs Predicted for Z Cordinate 

 

 
          Figure 8. Cordinate Errore by Dimension 

 
 
 
 
 



Turkish Journal of Engineering – 2026, 10(1), 91-102 

  100  

 

 
          Figure 9. Cordinate Errore by Dimension 

 

 

5. Conclusion  
 

This study developed an XGBoost-based regression 
model to predict 3D coordinates (X, Y, Z) with 
remarkable accuracy, achieving near-perfect R² scores 
(0.9999 for X, 0.9996 for Y, and 0.9975 for Z) and low 
RMSE values for tested data (RMSE -X: 0.775, Y: 0.620, Z: 
0.185). The model’s ability to capture complex spatial 
relationships was validated through extensive testing, 
demonstrating strong generalization on unseen data. 
Visualizations, including 3D scatter plots and error 
distribution analyses, confirmed its robustness, with 
prediction errors consistently below 1.5. The 
independent modeling approach for each coordinate axis 
ensured optimized performance while maintaining 
computational efficiency. 

 
 
 

 
5.1 Recommendations 

 Use More Points: Increasing the number of 
control points can improve the accuracy and 
generalization of the XGBoost model in 
coordinate transformation tasks. 

 Try Other Methods: Future work should 
compare XGBoost with other models like ANN, 
ANFIS, SVM, or Random Forest to find the most 
effective algorithm. 

 Develop Hybrid Models: Combining XGBoost 
with models like ANN or ANFIS may enhance 
performance and handle non-linear patterns 
better. 

 Apply Deep Learning: Consider using deep 
learning approaches (e.g., CNN, LSTM) for more 
complex spatial and temporal data. 
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