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Abstract− This study investigates the nonlinear time-fractional Schrödinger model by
utilizing this prototype in fields like nonlinear optics, plasma physics, soliton theory, quantum
field theory, and dark matter/neural network modeling. It analyzes the equation to reveal key
insights into fundamental physical phenomena, advancing novel technological applications.
The paper presents fractional derivatives using M-truncated and Atangana-Baleanu operators.
The approach employs Bäcklund transformation and Wang’s direct mapping method to
derive soliton solutions, including exponential, sin-cos, sinh-cosh, rational, trigonometric, and
hyperbolic forms. The present study constructs the energy balance method via the problem’s
Hamiltonian and variational principle, offering a promising approach. It complements
analytical results with numerical simulations to enhance understanding of solution behavior.
The study provides foundations for further exploration, ensuring practical, reliable solutions
for complex nonlinear problems. The methods prove robust, efficient, and applicable to
diverse nonlinear PDEs.

Keywords − Bäcklund transformation-based approach, Wang’s direct mapping method, energy balance method, soliton
solutions

Mathematics Subject Classification (2020) 35A24, 35C08

1. Introduction

Fractional calculus plays a key role by offering a more detailed and accurate mathematical framework
for modeling, analyzing, and understanding complex systems and phenomena. It bridges the gap
between traditional calculus and the intricate dynamics observed in real-world applications, thereby
enabling advancements in technology, scientific research, and various applied fields. Considerable strides
have been made in fractional calculus to overcome the limitations of classical differential operators.
Consequently, researchers have developed new operators or modified existing ones. The non-singular
operator introduced by Caputo and Fabrizio [1] was proposed to resolve the singularity issues present
in traditional definitions. However, the Caputo–Fabrizio operator still exhibits non-local behavior,
which can be problematic in contexts requiring localized modeling. To simultaneously overcome both
singularity and non-locality challenges, Atangana and Baleanu [2] introduced a new fractional operator.
This operator forms provides an effective alternative by reducing non-local effects while eliminating
singularities.
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Fractional derivatives have a wide range of implications in various fields, such as physics, transport,
fluid motion, elastic media, robotics, mechanics, electromagnetic theory, engineering, geophysics, signal
processing, and biology. ecent advancements have shown that fractional derivatives can also be used to
describe financial [3] and economic systems [4]. Given that many complex problems can be expressed
as fractional differential equations (FDEs), the exploration of both analytical and numerical methods
for solving such equations is of significant interest [5,6]. These models are valuable for studying various
real-world nonlinear phenomena that arise across diverse disciplines, including engineering, physics,
and applied mathematics.

Classical definitions of fractional derivatives often face limitations regarding physical interpretability
and are highly sensitive to initial conditions. In contrast, the M-truncated and Atangana–Baleanu (AB)
fractional derivatives employed in this study offer significant advantages for modeling complex memory
effects and damping behaviors in physical systems. Notably, the Mittag–Leffler kernel associated
with the AB derivative enhances its ability to capture long-term effects more accurately than classical
approaches. On the other hand, the M-truncated derivative provides greater flexibility in analytical
treatment, making it more suitable for various solution strategies. Consequently, both operators serve
as effective modeling tools, capable of representing physical processes with both mathematical rigor
and practical relevance.

The Schrödinger equation is one of the fundamental models in quantum theory. In the Schrödinger
equation, Naber [7] included the time-fractional derivative. This equation is applied in a variety of
physics fields, including particle physics, biological systems, nuclear physics, atomic physics, molecular
chemistry, astrophysics, solid-state physics, quantum mechanics in nanostructures, condensed matter
physics, and quantum information and computing [8].

Several analytical methods have been used to obtain exact soliton solutions. These include the modified
generalized Riccati equation mapping method [9], the auxiliary equation method [10], the improved
modified Sardar sub-equation method [11], the new version of the generalized exponential rational
function method [12], the modified Kudryashov method [13], the sine-cose method [14], the modified
extended Tanh expansion method [15], the extended simplest equation method [16], and Lie symmetry
analysis and conservation laws [17]. In this study, a nonlinear time-fractional model with M-truncated
and AB fractional operators are used. These investigations include both singular and non-singular
operators. The Bäcklund transformation-based method, Wang’s direct mapping method, and the
energy balance method (EBM) are utilized to obtain the soliton solutions. Additionally, these methods
are novel in the literature for the investigated model.

The remaining sections of this paper are organized as follows: Section 2 describes the model used in
the study. Section 3 presents the preliminary definitions. Section 4 proposes the fractional model.
Section 5 uses the homogeneous balancing approach to obtain the Bäcklund transformation and the
ansatz function schemes to construct numerous exact solutions through symbolic computation. Section
6 investigates the various soliton solutions using Wang’s direct mapping method. Section 7 implements
the EBM. Section 8 provides comparisons. Section 9 presents the physical properties of the obtained
results in graphical form. Finally, Section 10 provides the conclusions.

2. A Summary of the Model

Consider the nonlinear time-fractional Schrödinger equation [18]:

iVt + a1Vxx + a2 |V |2 V = 0 (2.1)
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where V = V (x, t) represents a complex-valued function depend on both the spatial variable x and the
temporal variable t, where t > 0. The nonlinear Schrödinger equation is a fundamental equation in
quantum mechanics, playing a pivotal role in understanding various phenomena. The model presented
is of significant importance in contemporary scientific research and is regarded as a widely applicable
indirect model. It arises from diverse applied mathematics and physics areas, including astrophysics,
biophysics, plasma dynamics, quantum optics, fluid dynamics, chaos theory, nonlinear wave propagation,
and quantum information theory [19]. The specific form considered here is a well-known variant of the
classical Schrödinger equation, where the constant parameter a2 determines the type of soliton solution:
a positive a2 leads to bright solitons, while a negative a2 produces dark solitons [18]. Previous studies
have investigated this model using different fractional derivatives. For example, Gurefe [20] applied
Atangana’s conformable fractional derivative and obtained five exact solutions via the generalized
Kudryashov method. Ahmad et al. [21] used the unified method, and Asjad et al. [22] employed an
extended direct algebraic technique to construct multiple exact solutions for the same model.

3. Preliminaries

This section presents the AB fractional operator and the M-truncated operator, along with a description
of the operators used.

Definition 3.1. [2] Let g : [a, b] → R be a continuous function and 0 < ε < 1. Then, the AB-type
fractional operator in the sense of the Riemann–Liouville operator is defined by

ABR
0 𭟋ε

a+(g(t)) = AB(ε)
(1 − ε)

d

dt

∫ t

a
g(t)Eε

(−ε(t − t)ε

1 − ε

)
dt

where the normalization is represented by AB(ε), and the Mittag-Leffer function is shown by Eε.
Consequently,

ABR
0 𭟋ε

a+(g(t)) = AB(ε)
(1 − ε)

∞∑
j=0

( −ε

1 − ε

)j
RLIεj

α g(t)

Definition 3.2. [23] Let h : R+ → R be a differentiable function, 0 < ε < 1, γ > 0, and t > 0. Then,
the generalized fractional operator is defined by

ι𭟋ε,γ
M (h(t)) = lim

ε→0

h(t +ι Eγ(εt−ε)) − h(t)
ε

in which ιEγ(·) is a single-parameter Mittag-Leffer function.

Definition 3.3. [24] Let γ > 0, Z ∈ C, and ι ∈ N. Then, ιEγ is defined as follows:

ιEγ(Z) =
ι∑

j=0

Zj

Γ(γj + 1)

Theorem 3.4. Let h : R+ → R be a function that is continuous at t = 0, and differentiable at some
t0 > 0 both in the classical and fractional sense of order α ∈ (0, 1), with a fixed parameter γ > 0.
Then, the function h satisfies the required conditions for the application of the generalized fractional
operator.

Theorem 3.5. [23] Let c1, c2, c3 ∈ R, 0 < ε ≤ 1, γ > 0, and g, h : R+ → R be differentiable functions
for t > 0. Then, the following properties hold for the fractional operator ι𭟋ε,γ

M :

ι𭟋ε,γ
M (c3) = 0

ι𭟋ε,γ
M (k(g(t))) = k ι𭟋ε,γ

M (g(t))
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ι𭟋ε,γ
M (c1(g(t)) + c2(h(t))) = c1 ι𭟋ε,γ

M (g(t)) + c2 ι𭟋ε,γ
M (h(t))

ι𭟋ε,γ
M (h(t) ∗ g(t)) = (h(t)) ι𭟋ε,γ

M (g(t)) ∗ (g(t)) ι𭟋ε,γ
M (h(t))

ι𭟋ε,γ
M

(
h(t)
g(t)

)
= (g(t)) ι𭟋ε,γ

M (h(t)) − (h(t)) ι𭟋ε,γ
M (g(t))

(g(t))2

ι𭟋ε,γ
M (tϑ) = T ϑ−ε, ϑ ∈ R

and
ι𭟋ε,γ

M (g(h))(t) = g
′(h ι𭟋ε,γ

M (h))

4. Fractional Representations of the Aforementioned Model

This section presents the fractional structure of the nonlinear partial differential equation (NLPDE)
using two different fractional operators, including both singular and nonsingular kernels.

i. The R-L sense form of (2.1) has the fractional operator AB as

ιAB
0 𭟋ε

t V + a1Vxx + a2 |V |2 V = 0

where the AB in the context of R-L operators with regard to t is represented by AB
0 𭟋ε

t .

ii. The modified M-truncated form of the fractional operator of (2.1) is

ι𭟋ε
M,tV + a1Vxx + a2 |V |2 V = 0

where the modified M-truncated operators based on t is represented by 𭟋ε
M,t.

4.1. Construction of the Operational Transformation Scheme

Consider the following wave transformation:

V = V (x, t) = L(ξ)eiΘ (4.1)

The analysis of the fractional derivatives will be carried out with respect to ξ and Θ.

i. For the M-truncated operator, we produce ξ and Θ as follows:

ξ = x − 2a4a5
ε

(
t + 1

Γ(ε)

)ε

and
Θ = xa3 + a4

ε

(
t + 1

Γ(ε)

)ε

+ θ (4.2)

ii. For the AB operator in RL sense, we produce ξ and Θ as follows:

ξ = x − (1 − ε)(2a4a5t−nε)

AB(ε)
∞∑

n=0

(
−ε
1−ε

)
Γ(1 − εn)

and
Θ = a3x + (1 − ε)(a4t−nε)

AB(ε)
∞∑

n=0

(
−ε
1−ε

)
Γ(1 − εn)

+ θ (4.3)
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5. Methodology

Consider the subsequent NLPDE:

P1(V, Vx, Vt, Vxx, Vxt,...) = 0 (5.1)

in which (5.1) is satisfied by V = V (x, t). By applying the transformation given in (4.1), where ξ is
defined accordingly, the formulation is considered both for the M-truncated operator as in (4.2) and
for the AB operator in the Riemann–Liouville sense as in (4.3). Consequently, (5.1) is transformed
into an nonlinear ordinary differential equation (NODE) as follows:

P2(L, L′, L′′, ...) = 0 (5.2)

Applying (4.1) into (2.1), the imaginary and real components are obtained as follows, respectively:

a5 = a1a3
a4

and
a1L

′′ −
(
a4 + a1a2

3

)
L + a2L3 = 0 (5.3)

5.1. Bäcklund Transformation and Implementing

Assume that (5.2) provides the subsequent solution form [25]:

L = A1
∂ϱℏ
∂ξϱ

+ A2 (5.4)

To calculate the value of the equilibrium parameter ϱ, we utilize (5.3) to balance L
′′ and L3. Thus,

ϱ = 1.

5.1.1. Type-I: Exponential Function

Assume that
ℏ(ξ) = ln (n1 exp(−ξ) + n0 + n2 exp(ξ)) (5.5)

where ni such that i ∈ {0, 1, 2} are real parameters. By putting (5.4) with (5.5) into (5.3) and taking
the coefficients of exp(ξ) as zero, an algebraic equation system is produced. The solutions of this
system are obtained as follows:

Set I.

n0 = n0, n1 = 0, n2 = n2, a1 = − 2a4
2a2

3 + 1
, A1 = −

√
4a4(

2a2a2
3 + a2

) , and A2 =
√

a4(
2a2a2

3 + a2
)

Combining (5.4), (5.5), and (4.1) with above results, the exponential function solution of (2.1) is
obtained as follows:

V1,1,1(x, t) = −

√
a4

a2(2a2
3+1) (n2 exp (ξ) − n0)

n0 + n2 exp (ξ) ei(Θ) (5.6)

Here, ξ and Θ are expressed in (4.2) for the M-truncated operator form and in (4.3) for the AB operator
form in RL sense, respectively.

Set II.

n0 = n0, n1 = n1, n2 = 0, a1 = − 2a4
2a2

3 + 1
, A1 =

√
4a4(

2a2a2
3 + a2

) , and A2 =
√

a4(
2a2a2

3 + a2
)
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Combining (5.4), (5.5), and (4.1) with above results, the exponential function solution of (2.1) is
obtained as follows:

V1,1,2(x, t) = −

√
a4

a2(2a2
3+1) (n1 exp (−ξ) − n0)

n0 + n1 exp (−ξ) ei(Θ)

Here, ξ and Θ are expressed in (4.2) for the M-truncated operator form and in (4.3) for the AB operator
form in RL sense, respectively.

Set III.

n0 = 2
√

n1n2, n1 = n1, n2 = n2, a1 = − 2a4
2a2

3 + 1
, A1 =

√
a4(

2a2a2
3 + a2

) , and A2 = 0

Combining (5.4), (5.5), and (4.1) with above results, the exponential function solution of (2.1) is
obtained as follows:

V1,1,3(x, t) = −

√
a4

a2(2a2
3+1) (n1 exp (−ξ) − n2 exp (ξ))

n1 exp (−ξ) + 2 √
n1n2 + n2 exp (ξ) ei(Θ)

Here, ξ and Θ are expressed in (4.2) for the M-truncated operator form and in (4.3) for the AB operator
form in RL sense, respectively.

Set IV.

n0 = 0, n1 = n1, n2 = n2, a1 = − a4
a2

3 + 2
, A1 =

√
4a4(

2a2a2
3 + a2

) , and A2 = 0

Combining (5.4), (5.5), and (4.1) with above results, the exponential function solution of (2.1) is
obtained as follows:

V1,1,4(x, t) = −

√
4a4

a2(2a2
3+1) (n1 exp (−ξ) − n2 exp (ξ))

n1 exp (−ξ) + n2 exp (ξ) ei(Θ)

Here, ξ and Θ are expressed in (4.2) for the M-truncated operator form and in (4.3) for the AB operator
form in RL sense, respectively.

5.1.2. Type-II: Sin-Cos Function

Assume that
ℏ(ξ) = ln (n0 cos(ξ) + n1 + n2 sin(ξ)) (5.7)

where ni such that i ∈ {0, 1, 2} are real parameters. By putting (5.4) with (5.7) into (5.3) and taking
the coefficients of cos(ξ) and sin(ξ) as zero, an algebraic equation system is produced. The solution of
this system is reached as follows:

Set I.

n0 = n0, n1 = n1, n2 = −a2n0
(
2a2

3 − 1
)

a4

√
− a4(

2a2a2
3 − a2

)√ a4(
2a2a2

3 − a2
) , a1 = − 2a4

2a2
3 − 1

A1 =
√

4a4(
2a2a2

3 − a2
) , and A2 =

√
− a4(

2a2a2
3 − a2

)
Combining (5.4), (5.7), and (4.1) with above results, the sin-cos function solution of (2.1) is obtained
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as follows:

V2,1,1(x, t) =

a4


sin (ξ) n0

√
a4

a2(2a2
3−1)

+ cos (ξ) n0
√

− a4
a2(2a2

3−1)
−
√

− a4
a2(2a2

3−1)n1


 (

2 sin (ξ) a2a2
3n0 − sin (ξ) a2n0

)√ a4
a2(2a2

3−1)
√

− a4
a2(2a2

3−1)
− cos (ξ) a4n0 − a4n1

ei(Θ) (5.8)

Here, ξ and Θ are expressed in (4.2) for the M-truncated operator form and in (4.3) for the AB operator
form in RL sense, respectively.

5.1.3. Type-III: Sinh–Cosh Function

Assume that
ℏ(ξ) = ln (n0 cosh(ξ) + n1 + n2 sinh(ξ)) (5.9)

where ni such that i ∈ {0, 1, 2} are real parameters. By putting (5.4) with (5.9) into (5.3) and taking
the coefficients of cos(ξ) and sin(ξ) as zero, an algebraic equation system is produced. The solution of
this system is attained as follows:

Set I.
n0 = n0, n1 = n1, n2 = −a2n0

(
2a2

3 + 1
)(

2a2a2
3 + a2

) , a1 = − 2a4
2a2

3 + 1
,

A1 =
√

4a4(
2a2a2

3 + a2
) , and A2 =

√
a4(

2a2a2
3 + a2

)
Combining (5.4), (5.9), and (4.1) with above results, the sinh–cosh function solution of (2.1) is obtained
as follows:

V3,1,1(x, t) = −

√
a4

a2(2a2
3+1) (sinh (ξ) n0 − cosh (ξ) n0 + n1)

(sinh (ξ) n0 − cosh (ξ) n0 − n1) ei(Θ)

Here, ξ and Θ are expressed in (4.2) for the M-truncated operator form and in (4.3) for the AB operator
form in RL sense, respectively.

5.1.4. Type-IV: Rational Function

Assume that
ℏ(ξ) = ln (n0 + n1(ξ)) (5.10)

where ni such that i ∈ {0, 1, 2} are real parameters. By putting (5.4) with (5.10) into (5.3) and taking
the coefficients of cos(ξ) and sin(ξ) as zero, an algebraic equation system is produced. The solution of
this system is gained as follows:

Set I.

n0 = n0, n1 = n1, n2 = n2, a1 = −a4
a2

3
, A1 =

√
2a4
a2

a3
, and A2 = 0

Combining (5.4), (5.10), and (4.1) with above results, the rational function solution of (2.1) is obtained
as follows:

V4,1,1(x, t) = −

√
a4

a2(2a2
3+1) (sinh (ξ) n0 − cosh (ξ) n0 + n1)

(sinh (ξ) n0 − cosh (ξ) n0 − n1) ei(Θ)
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Here, ξ and Θ are expressed in (4.2) for the M-truncated operator form and in (4.3) for the AB operator
form in RL sense, respectively.

6. Wang’s Direct Mapping Approach

In this section, (5.3) is addressed using Wang’s direct mapping approach. This approach gives the
auxiliary function listed below [25]:(

Λ′ (ξ)
)2

= φτ2Λ2 (ξ) + ϑτ2

ρ2 Λ4 (ξ)

where
Λ (ξ) = ρ sec h (τξ) , φ = 1 and ϑ = −1

Λ (ξ) = ρ csc h (τξ) , φ = 1 and ϑ = 1

Λ (ξ) = ρ sec (τξ) , φ = −1 and ϑ = 1

and
Λ (ξ) = ρ csc (τξ) , φ = −1 and ϑ = 1 (6.1)

If (5.3) is integrated with respect to ξ and the integral constant is set to zero, the following results are
obtained: (

L
′)2

= − a2
2a1

L4 +
(
a1a2

3 + a4
)

a1
L2 (6.2)

Using (6.2) to map (6.1), the solution are derived as follows:

Set I.

φ = 1, ϑ = −1, τ2 = a1a2
3 + a4
a1

,
τ2

ρ2 = a2
2a1

, τ =

√
a1
(
a1a2

3 + a4
)

a1
, and ρ =

√
2a2

(
a1a2

3 + a4
)

a1

Applying the method’s steps together with the above results, the solution to (2.1) is obtained as follows:

V2,2,1(x, t) =

√
2a2

(
a1a2

3 + a4
)

sec h

(√
a1(a1a2

3+a4)
a1

ξ

)
a2

ei(Θ) (6.3)

Set II.

φ = 1, ϑ = 1, τ2 = a1a2
3 + a4
a1

,
τ2

ρ2 = − a2
2a1

, τ =

√
a1
(
a1a2

3 + a4
)

a1
, and ρ =

√
−2a2

(
a1a2

3 + a4
)

a1

Applying the method’s steps together with the above results, the solution to (2.1) is obtained as follows:

V2,2,2(x, t) =

√
−2a2

(
a1a2

3 + a4
)

csc h

(√
a1(a1a2

3+a4)
a1

ξ

)
a2

ei(Θ)

Set III.

φ = 1, ϑ = −1, τ2 = a1a2
3 + a4
a1

,
τ2

ρ2 = a2
2a1

, τ =

√
a1
(
a1a2

3 + a4
)

a1
, and ρ =

√
2a2

(
a1a2

3 + a4
)

a1

Applying the method’s steps together with the above results, the solution to (2.1) is obtained as follows:

V2,2,3(x, t) =

√
2a2

(
a1a2

3 + a4
)

sec
(√

a1(a1a2
3+a4)

a1
ξ

)
a2

ei(Θ)
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Set IV.

φ = 1, ϑ = −1, τ2 = a1a2
3 + a4
a1

,
τ2

ρ2 = a2
2a1

, τ =

√
a1
(
a1a2

3 + a4
)

a1
, and ρ =

√
2a2

(
a1a2

3 + a4
)

a1

Applying the method’s steps together with the above results, the solution to (2.1) is obtained as follows:

V2,2,4(x, t) =

√
2a2

(
a1a2

3 + a4
)

csc
(√

a1(a1a2
3+a4)

a1
ξ

)
a2

ei(Θ)

7. EBM

To apply the EBM, we refer to (5.3), as presented in [26]:

L
′′ −

(
a4 + a1a2

3
)

a1
L + a2

a1
L3 = 0 (7.1)

The subsequent is the expression for the relevant variational principle:

Y (L) =
∫ π

4

0

(
1
2L

′ +
(
a4 + a1a2

3
)

2a1
L2 − a2

4a1
L4
)

dξ

This implies that

Y (L) =
∫ π

4

0

(
1
2L

′ −
[

a2
4a1

L4 −
(
a4 + a1a2

3
)

2a1
L2
])

dξ =
∫ π

4

0
(R − P ) dξ

Here, R and P represents kinetic energy and potential energy and are expressed as follows, respectively:

R = 1
2L

′ and P = a2
4a1

L4 −
(
a4 + a1a2

3
)

2a1
L2

Therefore, the Hamiltonian invariant is given by

H = R + P = 1
2L

′ + a2
4a1

L4 −
(
a4 + a1a2

3
)

2a1
L2

The solution to (7.1) can be written as follows:

L (ξ) = K cos (φξ) (7.2)

Based on the EBM, the Hamiltonian invariant must remain constant, i.e.,

H = P + R = 1
2L

′ + a2
4a1

L4 −
(
a4 + a1a2

3
)

2a1
L2 = H0 (7.3)

For (7.2), the initial conditions are expressed as:

L
′ (0) = 0 and L(0) = K

By replacing these into (7.3),

L0 = a2
4a1

K4 −
(
a4 + a1a2

3
)

2a1
K2 (7.4)

Inserting the expressions from (7.4) and (7.2) into (7.3) leads to the following equality:

1
2 (−ζK cos (ζξ))2 + a2

4a1
(K cos (ζξ))4 −

(
a4 + a1a2

3
)

2a1
(K cos (ζξ))2 = a2

4a1
K4 −

(
a4 + a1a2

3
)

2a1
K2 (7.5)

After applying ζξ = π
4 to (7.5),

1
4ζ2K2 + a2

16a1
K4 −

(
a4 + a1a2

3
)

4a1
K2 = a2

4a1
K4 −

(
a4 + a1a2

3
)

2a1
K2
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Consequently,

ζ =

√
a1
(
3K2a2 − 4a1a2

3 − 4a4
)

2a1

Therefore, the following statement is the outcomes to (5.2):

L (x, t) = K cos (ζξ)

After entering L’s value into (5.1),

V3,1,1(x, t) = K cos (ζξ) ei(Θ) (7.6)

8. Comparisons

In this paper, the Bäcklund transformation-based method, Wang’s direct mapping methodology, and
the EBM have been used to generate new soliton solutions for the mathematical and physical problems
describing by nonlinear fractional model. Gurefe [20] analyzed the model using Atangana’s conformable
fractional derivative. He produced only five results using the generalized Kudryashov technique. Ahmad
et al. [21] applied the unified technique. Asjad et al. [22] used the novel extended direct algebraic
technique to obtain several solutions for the model. Notably, the current study has yielded new
solutions with various physical properties, such as bright solitons and periodic-type wave structures.
The soliton solutions have a wide range of critical real-world applications in fields such as nonlinear
optics, phase evolution, chaos theory, condensed matter physics, astronomy, fluid mechanics, biology,
and nonlinear quantum field theory. The obtained solutions provide valuable insights into the physical
behaviors of the modal. Moreover, a visual depiction of the solutions, systematically derived through
analytical methods, is included.

9. Physical Interpretation

This section provides a graphical interpretation of some of the solutions derived from the nonlinear
fractional model. Various soliton solutions of the prototype were constructed using the Bäcklund
transformation-based method, Wang’s direct mapping approach, and EBM.

In Figures 1 and 2, the periodic waves behavior are investigated using M-truncated operators in
subfigures a, b, and c and AB fractional operators in subfigures d, e, and f. In Figures 3 and 4, the
dark-bright soliton behavior are investigated using M-truncated operators in subfigures a, b, and c and
AB fractional operators in subfigures d, e, and f. In Figure 1, the 3d, 2d, and contour plots for the real
part of V1,1,1(x, t) in (5.6) with fractional order ε = 0.5, by choosing the values a4 = 3, a2 = 2, a3 = 1,

n0 = 1.5, n2 = 7, a1 = 0.7, n = 0.5, and θ = 0. In Figure 2, the 3d, 2d, and contour plots for the real
part of V2,1,1(x, t) in (5.8) with fractional order ε = 0.5, by choosing the values a4 = 1.7, a2 = 0.9,

a3 = 0.2, n0 = 1, n1 = 2, a1 = 0.4, n = 1, and θ = 0. In Figure 3, the 3d, 2d, and contour plots for the
real part of V2,2,1(x, t) in (6.3) with fractional order ε = 0.5, by choosing the values a4 = 0.7, a2 = 1.2,

a3 = 0.5, a1 = 0.07, n = 0.5, and θ = 0. In Figure 4, the 3d, 2d, and contour plots for the real part of
V3,1,1(x, t) in (7.6) with fractional order ε = 0.5, by choosing the values a4 = 0.02, a2 = 4, a3 = 0.5,

a1 = 1.9, K = 1, n = 0.5, and θ = 0.

The parameters in the diagrams have distinct physical meanings. Whereas a2 describes the type and
degree of nonlinearity in the system, a1 is the dispersion coefficient that controls the wave spreading
behavior throughout space. Whether a solution covers a bright or dark soliton depends on the sign
of a2. Whereas a4 aids in the temporal phase evolution, a3 influences the spatial phase modulation.
The memory effect in the system is controlled by the parameter ε, which represents the order of
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the fractional derivative. Stronger nonlocal temporal effects are associated with lower levels of ε.
Together, these parameters determine the outcome of soliton structures’ propagation, shape, and
stability properties.

In particular, the effect of the fractional order ε changes depending on whether the M-truncated or AB
fractional operators are used. By changing the fractional order ε, the impact of previous states on the
system’s current behavior is directly changed. In the AB operator situation, the dispersive smoothing
in the wave propagation is improved by decreasing ε because it increases the nonlocal interactions
caused by the Mittag-Leffler kernel. Energy spreads throughout a greater area, making solutions
smoother and broader. In contrast, because the influence range is bounded and the kernel is truncated
for the M-truncated operator, the fractional order has a more localized mathematical effect. Sharp,
high-amplitude solitons can appear for small ε because of increased nonlinearity and limited dispersion,
but solutions shift to more classical waveforms as ε grows. This shows that the two operators are
not affected by the same fractional order ε in the same way; the M-truncated derivative shows more
sensitive and localized alterations, whilst the AB derivative reacts more slowly and universally.

By assigning specific values to the parameters, periodic waves and dark-bright soliton solutions were
obtained from these results. Periodic solitons are wave structures that continuously repeat in a specific
pattern and are often observed in media, such as optical fibers, water waves, or plasma. They enable
the undistorted and stable propagation of energy-carrying waves through a medium. Dark-bright
solitons combine structures in which the intensity decreases in one part of a wave packet dark soliton,
and increases in the other part, a bright soliton. Such solutions have critical applications, particularly
in optical systems and atomic physics, because combining two opposite interactions offers opportunities
for innovative applications in areas such as energy and information transport, lasers, or quantum
computing. These solutions are fundamental tools for understanding and controlling physical processes
described by nonlinear equations. It is important to emphasize that the findings and solutions presented
in this paper are novel and have not been previously documented.

(a)
(b)

(c)

(d)
(e)

(f)
Figure 1. Effects of (a)-(c) the M-truncated and (d)-(f) AB fractional operators of V1,1,1(x, t)
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(a) (b) (c)

(d) (e) (f)
Figure 2. Effects of (a)-(c) the M-truncated and (d)-(f) AB fractional operators of V2,1,1(x, t)

(a) (b) (c)

(d) (e) (f)
Figure 3. Effects of (a)-(c) the M-truncated and (d)-(f) AB fractional operators of V2,2,1(x, t)
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(a) (b) (c)

(d) (e) (f)
Figure 4. Effects of (a)-(c) the M-truncated and (d)-(f) AB fractional operators of V3,1,1(x, t)

10. Conclusion

This study investigated the nonlinear time-fractional Schrödinger model’s wave propagation, which
arises in different fields of physics and mathematics. Fractional transformations for the wave variables
ξ and θ using M-truncated and AB fractional operators were applied to the prototype and converted
to a nonlinear ordinary differential equation. Two new approaches, the Bäcklund transformation-based
method and Wang’s direct mapping method, were used to find a wide range of optical soliton solutions.
The solutions for a wide range of solitons were obtained by expressing them as exponential wave
solutions, sin-cos wave solutions, sinh-cosh wave solutions, rational wave solutions, trigonometric
functions, and hyperbolic function solutions. The EBM was also used, providing an efficient approach
by deriving the Hamiltonian and applying the variational principle to the problem. In addition, 3d, 2d,
and contour plots were used to illustrate the profiles of different soliton solutions. The findings obtained
by the investigated techniques demonstrate that these techniques effectively examine nonlinear wave
equations, enhancing the comprehension of their complicated structures and expanding the potential
for theoretical investigation. The applied methods are adaptable and applicable to many different
types of NLPDEs. Although the methods are pretty flexible, they can not be suitable for all NLPDEs,
particularly those that do not satisfy the predetermined criteria or structures that these methods
can handle. Future research could concentrate on analyzing these solutions’ behavior under various
circumstances and investigating their physical effects. This will help to improve science in physics and
its broader applications while offering a greater knowledge of nonlinear wave processes.

Author Contributions

The author read and approved the final version of the paper.
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[13] M. Mirzazadeh, L. Akinyemi, M. Şenol, K. Hosseini, A variety of solitons to the sixth-order
dispersive (3+1)-dimensional nonlinear time-fractional Schrödinger equation with cubic-quintic-
septic nonlinearities, Optik 241 (2021) 166318.
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