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Abstract. In this paper, a differential transform method (DTM) has been applied to
solve one-dimensional Burger’s and K(m,p,1) equations with initial conditions and exact
solutions have been obtained as same as [1-5]. The results show that DTM has got many
merits and much more advantages and it is also a powerful mathematical tool for solving
partial differential equations having wide applications in engineering and physics.
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1. Introduction

Most scientific problems in physics and other fields such as biology, chemistry, me-
chanics, etc., are modeled by nonlinear partial differential equations. Except a lim-
ited number of these problems, most of them do not have any analytical solution.
Some of them are solved by using numerical techniques and some by the analytical
perturbation method. In recent years, some researchers used many powerful meth-
ods for obtaining exact solutions of nonlinear partial differential equations, such
as inverse scattering method [6], Hirota’s bilinear method [7], Backlaund transfor-
mation [8], Painleve expansion [9], sine-cosine method [10], homogenous balance
method [11], homotopy perturbation method [12], variational method [13], asymp-
totic methods [14], nonperturbative methods [15], Adomian Pade approximation
[16], improved tanh function method [17], Jacobi elliptic function expansion method
[18], F - expansion method [19], Weierstrass semi-rational expansion method [20] and
so on.

The differential transform method (namely DTM) was first introduced by
Pukhov et al. [21] who solved linear and nonlinear initial value problems in electric
circuit analysis. It is a semi-numerical and semi-analytic technique that formulizes
Taylor series in totally different manner. With this technique, the given differential
equation and its related initial conditions are transformed into a recurrence equation
that finally leads to the solution of a system of algebraic equations as coefficients of
a power series solution. This method is useful to obtain the exact and approximate
solutions of linear and nonlinear differential equations. No need to linearization
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or discretization, large computational work and round-off errors are avoided [22].
Recently, this methods has been successfully applied to solve many types of nonlinear
problems in science and engineering by many authors ([23]-[30]).

The aim of this paper is to extend the differential transform method to obtain
exact solutions to the nonlinear dispersive one-dimensional Burger’s and K(m,p,1)
equation equation with initial condition, respectively:

ut + ux = vuxx (1.1)

ut + (um)x − (up)xxx + u5x = 0, m > 1, 1 ≤ p ≤ 3 (1.2)

u(x, 0) = f(x)

where v > 0 is the coefficient of kinematics.
In this letter, the basic idea of the DTM is introduced and then its applica-

tions in one-dimensional Burger’s, K(2,2,1) and K(3,3,1) equations are studied for
initial conditions. Closed form solutions are obtained as same as ([1]-[5]).

2. Two-Dimensional Differential Transform Method

The basic definitions and fundamental operations of the two-dimensional differential
transform are defined in ([27]-[33]) as follows:

If function u(x, y) is analytic and differentiated continuously with respect to
x and y in the domain of interest, then let

U(k, h) =
1

k!h!

[
∂k+hu(x, y)

∂xk∂yh

]
x=0
y=0

(2.1)

where the spectrum U(k, h) is the transformed function,which is also called T-
function in brief. In this paper, the lowercase u(x, y) represent the original function
while the uppercase U(k, h) stand for the transformed function (T-function ).

The differential inverse transform of U(k, h) is defined as follow:

u(x, y) =

∞∑
k=0

∞∑
h=0

U(k, h)xkyh (2.2)

Combining (2.1) and (2.2), it can be obtained that

u(x, y) =

∞∑
k=0

∞∑
h=0

1

k!h!

[
∂k+hu(x, y)

∂xk∂yh

]
x=0
y=0

xkyh (2.3)

In real applications, the function u(x, y) is estimated by a finite number of terms of
Eq. (2.2) or Eq. (2.3 ). Hence, Eq. (2.2) can be written as follow:

u(x, y) =

n∑
k=0

m∑
h=0

U(k, h)xkyh. (2.4)
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The Differential Transform Method

Usually, the values of n and m are decided by convergency of the series coefficients.
The fundamental operations of two-dimensional differential transform method

are listed in Table 1.

Original Function Transformed Function

w(x, y) = u(x, y) ± v(x, y) W (k, h) = U(k, h) ± V (k, h).

w(x, y) = λu(x, y) W (k, h) = λU(k, h),(λ is a constant).

w(x, y) = ∂u(x,y)
∂x

W (k, h) = (k + 1)U(k + 1, h)

w(x, y) = ∂u(x,y)
∂y

, W (k, h) = (h+ 1)U(k, h+ 1).

w(x, y) = ∂r+su(x,y)
∂xr∂ys

W (k, h) = (k + 1)(k + 2)...(k + r)

(h+ 1)(h+ 2)...(h+ s)U(k + r, h+ s).

w(x, y) = xmyn W (k, h) = δ(k −m,h− n) = δ(k −m)δ(h− n)

δ(k −m,h− n) =

{
1, k=m and h=n
0, otherwise

w(x, y) = u(x, y)v(x, y) W (k, h) =
k∑
r=0

h∑
s=0

U(r, h− s)V (k − r, s)

w(x, y) = u(x, y)v(x, y) ∂c
2(x,y)

∂x2
W (k, h) =

k∑
r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

(k − r − t+ 2)(k − r − t+ 1)

U(r, h− s− p)V (t, s)C(k − r − t+ 2, p)

w(x, y) = ∂u(x,y)
∂x

∂v(x,y)
∂x

W (k, h) =
k∑
r=0

h∑
s=0

(r + 1)(k − r + 1)U(r + 1, h− s)V (k − r + 1, s)

w(x, y) = u(x, y) ∂v
2(x,y)

∂x2
W (k, h) =

k∑
r=0

h∑
s=0

(k − r + 2)(k − r + 1)U(r, h− s)V (k − r + 2, s).

w(x, y) = u(x, y)v(x, y)q(x, y) W (k, h) =
k∑
r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

U(r, h− s− p)V (t, s)Q(k − r − t, p)

Table 1: The operations for the two-dimensional differential transform method

3. Differential Transform Method for One-Dimensional Burger’s
Equation

3.1. Here we consider the solution of Eq. (1.1) with the initial condition and
boundary conditions as follows,

u(x, 0) = u0(x) = u0 tan
π

l
x (3.1)

u(0, t) = u(l, t) = 0. (3.2)

where v > 0 is the coefficient of kinematic viscosity [1].
Taking two-dimensional transform of Eq. (1.1) by using the related definition

Table 1, we have

(h+ 1)U(k, h+ 1) +

k∑
r=0

h∑
s=0

(k − r + 1)U(r, h− s)U(k − r + 1, s) =

v(k + 1)(k + 2)U(k + 2, h) (3.3)
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By using the series form of Eq. (3.1), some of the initial transformation coefficients
U(k, 0) are listed in Table 2.

U(1, 0) =

(
2u0π

2

l2
−
u20π

l

)2

π

2l
U(3, 0) =

7

(
2u0π

2

l2
−
u20π

l

)2

π3

6l3

U(5, 0) =
47

(
2u0π

2

l2
−
u20π

l

)2

π5

30l5
U(7, 0) =

502

(
2u0π

2

l2
−
u20π

l

)2

π7

315l7

U(9, 0) =
553

(
2u0π

2

l2
−
u20π

l

)2

π9

405l9
U(11, 0) =

324419

(
2u0π

2

l2
−
u20π

l

)2

π11

31150l11

U(k, 0) = 0 if k = 0, 2, 4, ... U(11, 0) =
324419

(
2u0π

2

l2
−
u20π

l

)2

π11

31150l11

Table 2: Some values of U(k,0) of Ex 2.1.

By substituting U(k, 0) values in Table 2 into Eq. (3.3), we obtain some values
of U(k, h) in Table 3.

U(1, 1) =
(

2u0π
3t

l3
− u0π

3t
l2

)
U(3, 1) =

(
8u0π

5t
3l5

− 4u2
0π

4t

3l4

)
U(5, 1) =

(
34u0π

7t
15l7

− 17u2
0π

6t

15l6

)
U(7, 1) =

(
496u0π

9t
315l9

− 248u2
0π

8t

315l8

)
U(9, 1) =

(
276u0π

11t
2835l11

− 1382u2
0π

10t

2835l10

)
U(k, 1) = 0 if k = 0, 2, 4, ...

Table 3: Some values of U(k,1) of Ex 2.1.

Hence, substituting sufficient number of computed U(k, h) values into Eq. (2.2),
we have series solution as follow:

u(x, t) = {

(
2u0π

2

l2 − u2
0π
l

)2
π

2l
x+

7
(

2u0π
2

l2 − u2
0π
l

)2
π3

6l3
x3

+
47
(

2u0π
2

l2 − u2
0π
l

)2
π5

30l5
x5 +

502
(

2u0π
2

l2 − u2
0π
l

)2
π7

315l7
x7

+
553

(
2u0π

2

l2 − u2
0π
l

)2
π9

405l9
x9 +

324419
(

2u0π
2

l2 − u2
0π
l

)2
π11

31150l11
x11 + ...}

+{
(

2u0π
3t

l3
− u0π

3t

l2

)
xt+

(
8u0π

5t

3l5
− 4u20π

4t

3l4

)
x3t

+

(
34u0π

7t

15l7
− 17u20π

6t

15l6

)
x5t+

(
496u0π

9t

315l9
− 248u20π

8t

315l8

)
x7t

+

(
276u0π

11t

2835l11
− 1382u20π

10t

2835l10

)
x9t+ ...}+ ... (3.4)

The closed form of the first curly bracket is u0 tan π
l x, the closed form of the second

curly bracket is ( 2u0π
2

l2 − u2
0π
l ) sec2(πl x) tan(πl x)t, and so on.

32



The Differential Transform Method

Letting ( 2u0π
2

l2 − u2
0π
l ) = C then Eq. (3.4) can be written as

u(x, t) = u0 tan
π

l
x+ C sec2(

π

l
x) tan(

π

l
x)t+ C sec4(

π

l
x) tan(

π

l
x)
t2

2
+ ...

= u0 tan
π

l
x

{
1 + C sec2(

π

l
x)t+ C sec4(

π

l
x)
t2

2
+ ...

}
(3.5)

This is also the same result with obtained by decomposition method and in a closed
form solution is given by Gorguis [1].

u(x, t) = u0 tan
π

l
x exp(C sec2(

π

l
x)t) (3.6)

3.2 Consider the solution of Eq. (1.1) the initial condition as in [1]

u(x, 0) = 2x. (3.7)

From the initial condition Eq. (3.7), we can write

U(k, 0) = 0 if k = 0, 2, 3, 4, 5, 6, ...,

U(1, 0) = 2. (3.8)

For each k, substituting Eq. (3.8) into Eq. (3.3 ), and by recursive method, the
result are listed as follows:

U(k, 1) = 0 if k = 0, 2, 3, 4, ..., U(1, 1) = −4,

U(k, 2) = 0 if k = 0, 2, 3, 4, ..., U(1, 2) = 8,

U(k, 3) = 0 if k = 0, 2, 3, 4, ..., U(1, 3) = −16. (3.9)

The rest of the terms of the series have been calculated using Maple. Substituting
all U(k, h) into Eq. (2.2), we have series solution as follow:

u(x, t) = 2x− 4xt+ 8xt2 − 16xt3 + 32xt4 − 64xt5 + ... (3.10)

The exact analytical solution of u(x, t) is given

u(x, t) =
2x

1 + 2t
(3.11)

which is exactly the same as those obtained by the Adomian decomposition method
[1].

3.3. We consider Eq. (1.1) with initial condition

u(x, 0) =
α+ β + (β − α) exp(γ)

1 + exp(γ)
, t > 0 (3.12)

where γ = (α/υ)(x− λ) and the parameters α, β and υ are arbitrary constants.
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U(0, 0) = α+β+(β−α) exp(µ)
1+exp(µ)

U(1, 0) = −2 exp(µ)α2

[1+exp(µ)]2υ

U(2, 0) = exp(µ)α3(−1+exp(µ))

[1+exp(µ)]3υ2

U(3, 0) = 1
3

exp(µ)α4(−1+4 exp(µ)−exp(2µ))

[1+exp(µ)]3υ2

U(4, 0) = 1
12

exp(µ)α5(−1+exp(3µ)−11 exp(2µ)+11 exp(µ))

[1+exp(µ)]5υ4

U(5, 0) = 1
60

exp(µ)α6(−1+26 exp(3µ)+26 exp(2µ)−exp(4µ)−66 exp(2µ))

[1+exp(µ)]6υ5

Table 4: Some values of U(k,0) of Ex 2.3. (µ = −αλ
υ

)

From the initial condition Eq. (3.12), some of the initial transformation coeffi-
cients U(k, 0) are listed in Table 4.

Hence, substituting U(k, 0) values in Table 4 into Eq. (3.3), and by recursive
method, some of the results are listed in Table 5. Substituting all U(k, h) into Eq.
(2.2), we have series solution as follow:

u(x, t) = {α+ β + (β − α) exp(µ)

1 + exp(µ)
− 2

exp(µ)α2

[1 + exp(µ)]2υ
+

exp(µ)α3(−1 + exp(µ))

[1 + exp(µ)]3υ2
x2 + ....}

{2 exp(µ)α2β

[1 + exp(µ)]2υ
− 2

exp(µ)α3β(−1 + exp(µ))

[1 + exp(µ)]3υ2
xt

−2
exp(µ)α4β(1 + 4 exp(µ) + exp(2µ))

[1 + exp(µ)]4υ3
x2t

+
1

3

exp(µ)α5β(1− exp(3µ) + 11 exp(2µ)− 11 exp(µ))

[1 + exp(µ)]5υ4
x3t+ ...}

+{2exp(µ)α3β2(−1 + exp(µ))

[1 + exp(µ)]3υ2
t2 +

exp(µ)α4β2(−1− 4 exp(µ) + exp(2µ))

[1 + exp(µ)]4υ3
xt2

+
exp(µ)α5β2(−1 + exp(3µ)− 11 exp(2µ) + 11 exp(µ))

[1 + exp(µ)]5υv4
x2t2

+
1

6

exp(µ)α6β2(26 exp(µ)− 66 exp(2µ) + 26 exp(3µ)− exp(4µ)− 1)

[1 + exp(µ)]6υ5
x3t2 + ...}

+{1

3

exp(µ)α4β3(1− 4 exp(µ) + exp(2µ))

[1 + exp(µ)]4υ3
t3

+
1

3

exp(µ)α5β3(1− exp(3µ) + 11 exp(2µ)− 11 exp(k))

[1 + exp(µ)]5υ4
xt3

+
1

6

exp(µ)α6β3(1− 26 exp(2µ) + 66 exp(2µ)− 26 exp(3k) + exp(4k))

[1 + exp(µ)]6υ5
x2t3

+
1

18

exp(µ)α7β3(1 + 302 exp(2µ)− 57 exp(µ) + 57 exp(4µ)− exp(5µ)− 302 exp(3k))

[1 + exp(µ)]7υ6

x3t3 + ...}+ ... (3.13)

The closed form of the first curly bracket is α+β+(β−α) exp(γ)
1+exp(γ) , the closed form of
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U(0, 1) = 2 exp(µ)α2β

(1+exp(µ))2v

U(1, 1) = −2 exp(µ)α3β(−1+exp(µ))

[1+exp(µ)]3v2

U(2, 1) = −2 exp(µ)α4β(1+4 exp(µ)+exp(2µ))

[1+exp(µ)]4v3

U(3, 1) = 1
3

exp(µ)α5β(1−exp(3µ)+11 exp(2µ)−11 exp(µ))

[1+exp(µ)]5v4

U(4, 1) = 1
12

exp(µ)α6β(1−exp(4µ)−26 exp(3µ)+66 exp(2µ)−26 exp(µ))

(1+exp(µ))6v5

U(5, 1) = 1
60

exp(µ)α7β(302 exp(3µ)+exp(5µ)−57 exp(4µ)+57 exp(µ)−302 exp(2µ)−1)

[1+exp(µ)]7v6

U(0, 2) = 2 exp(µ)α3β2(−1+exp(µ))

[1+exp(µ)]3v2

U(1, 2) = exp(µ)α4β2(−1−4 exp(µ)+exp(2µ))

(1+exp(µ))4v3

U(2, 2) = exp(µ)α5β2(−1+exp(3µ)−11 exp(2µ)+11 exp(µ))

[1+exp(µ)]5v4

U(3, 2) = 1
6

exp(µ)α6β2(26 exp(µ)−66 exp(2µ)+26 exp(3µ)−exp(4µ)−1)

[1+exp(µ)]6v5

U(4, 2) = 1
24

exp(µ)α7β2(302 exp(3µ)+exp(5µ)−57 exp(4µ)+57 exp(µ)−302 exp(2µ)−1)

[1+exp(µ)]7v6

U(5, 2) = 1
120

exp(µ)α8β2(−120 exp(µ)−2416 exp(3µ)+1191 exp(2µ)−120 exp(5µ)+1191 exp(4µ)+exp(6µ)+1)

[1+exp(µ)]8v7

U(0, 3) = 1
3

exp(µ)α4β3(1−4 exp(µ)+exp(2µ))

[1+exp(µ)]4v3

U(1, 3) = 1
3

exp(µ)α5β3(1−exp(3µ)+11 exp(2µ)−11 exp(k))

[1+exp(µ)]5v4

U(2, 3) = 1
6

exp(µ)α6β3(1−26 exp(2µ)+66 exp(2µ)−26 exp(3k)+exp(4k))

[1+exp(µ)]6v5

U(3, 3) = 1
18

exp(µ)α7β3(1+302 exp(2µ)−57 exp(µ)+57 exp(4µ)−exp(5µ)−302 exp(3k))

[1+exp(µ)]7v6

Table 5: Some values of U(k, h) of Ex 3.3.

the second curly bracket is 2αβ exp(γ)
[1+exp(γ)]2v , the closed form of the third curly bracket is

α3β2 exp(γ)(−1+exp(γ))
[1+exp(γ)]3v2 and so on. Eq. (3.13) can be written as

u(x, t) =
α+ β + (β − α) exp(γ)

1 + exp(γ)
+

2α2β exp(γ)

[1 + exp(γ)]2υ
t (3.14)

+
α3β2 exp(γ)(−1 + exp(γ))

[1 + exp(γ)]3υ2
t2 +

α4β3 exp(γ)[1− 4 exp(γ) + exp(γ)2)

3[1 + exp(γ)]4υ3
t3 + ...

and so on, in the same manner the rest of components of the iteration formula were
obtained using the Maple Package. The solution of u(x, t) in closed form is

u(x, t) =
α+ β + (β − α) exp(ζ)

1 + exp(ζ)

where ζ = (α/υ)(x−βt−λ), which are exactly the same as obtained by Adomian
decomposition method [3] and variation iteration method [2]. The behavior of the
solutions obtained by the differential transform method is shown for different values
of times in Fig.1.

4. Differential Transform Method for K(2,2,1) Equation

4.1. Let we take m = 2, p = 2 in Eq. (1.2), hence we have
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Fig.1. The behavior of u(x, t) evaluates by the differential transform method versus x for

different values of time with fixed values α = 0.4, β = 0.6, v = 1, λ = 0.125.

ut + (u2)x − (u2)xxx + u5x = 0 (4.1)

Here we consider the solution of Eq.(4.1) with the initial condition as follow,

u(x, 0) =
16c− 1

12
cosh2(

x

4
) (4.2)

where c is an arbitrary constant.

Taking the two-dimensional transform of Eq.(4.1) by using the related definitions
in Table 1, we have

(h+ 1)U(k, h+ 1) = −2

k∑
r=0

h∑
s=0

(k + 1− r)U(r, h− s)U(k + 1− r, s)

+6

k∑
r=0

h∑
s=0

(r + 1)(k + 1− r)(k + 2− r)U(r + 1, h− s)U(k + 2− r, s)

+2

k∑
r=0

h∑
s=0

(k + 1− r)(k + 2− r)(k + 3− r)U(r, h− s)U(k + 3− r, s)

−(k + 1)(k + 2)(k + 3)(k + 4)(k + 5)U(k + 5, h) (4.3)

By using the series form of Eq. (4.2), some of the initial transformation coefficients
U(k, 0) can be written as bellows:
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U(k, 0) = 0 if k = 1, 3, 5, ...,

U(0, 0) =
4c

3
− 1

12
, U(2, 0) =

c

12
− 1

92
, U(4, 0) =

c

576
− 1

9216

U(6, 0) =
c

69120
− 1

1105920
, U(8, 0) =

c

15482880
− 1

247726080
, ... (4.4)

By substituting Eq.(4.4) into Eq.(4.3), we obtain some values of U(k, h) which
are none zero and given in Table 6.

U(1, 1) = c
96

− 1
6
c2 U(3, 1) = − 1

144
c2 + 1

2304
c

U(5, 1) = 1
11520

c2 + 1
184320

c U(7, 1) = − 1
1935360

c2 + 1
30965760

c

U(0, 2) = − 1
192

c2 + 1
12
c3 U(2, 2) = − 1

1536
c2 + 1

96
c3

U(4, 2) = − 1
73728

c2 + 1
4608

c3 U(6, 2) = − 1
8847360

c2 + 1
552960

c3

U(8, 2) = − 1
1981808640

c2 + 1
123863040

c3 U(10, 2) = − 1
713451110400

c2 + 1
44590694400

c3

U(1, 3) = − 1
144

c4 + 1
2304

c3 U(3, 3) = − 1
3456

c4 + 1
55296

c3

U(5, 3) = − 1
276480

c4 + 1
4423680

c3 U(7, 3) = − 1
46448640

c4 + 1
743178240

c3

U(9, 3) = − 1
13377208320

c4 + 1
214035333120

c3 U(0, 4) = 1
576

c5 − 1
9216

c4

U(2, 4) = 1
576

c5 − 1
9216

c4 U(4, 4) = 1
4608

c5 − 1
73728

c4

U(6, 4) = 1
221184

c5 − 1
3538944

c4 U(8, 4) = 1
26542080

c5 − 1
424673280

c4

Table 6: Some values of U(k, h) of Ex 3.1.

Hence, substituting sufficient number of computed U(k, h) values into Eq. (2.4),
we obtained three terms series solutions for each unknown functions as follow:

u(x, t) = {4

3
c− 1

12
+ (

1

12
c− 1

92
)x2 + (

1

576
c− 1

9216
)x4 + (

1

69120
c− 1

1105920
)x6 + ...}

+{(−1

6
c2 +

1

96
c)xt+ (− 1

144
c2 +

1

2304
c)x3t+ (− 1

11520
c2 +

1

184320
c)x5t

+(− 1

1935360
c2 +

1

3096576
c)x7t+ ...}

+{(− 1

192
c2 +

1

12
c3) + (− 1

1536
c2 +

1

96
c3)x2t2 + (− 1

73728
c2 +

1

4608
c3)x4t2(4.5)

+(− 1

8847360
c2 +

1

552960
c3)x6t2 + ...}+ ...

Approximating the series in Eq. (4.5) appropriately, u(x, t) in closed form are given
as follow:

u(x, t) =
16c− 1

12
cosh2(

ct− x
4

) (4.6)

which is like that obtained by Adomian decomposition method [4] and He’s
variational iteration method [5].

4.2. Now, we repeat the same procedure for obtaining DTM solution , but with
other initial conditions in the form of [4],
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u(x, 0) = −16c− 1

12
sinh2(

x

4
) (4.7)

u(x, t) = −16c− 1

12
sinh2(

ct− x
4

) (4.8)

5. Differential Transform Method for K(3,3,1) Equation

5.1. Let we take m = 3, p = 3 in Eq. (1.2), hence we have

ut + (u3)x − (u3)xxx + u5x = 0 (5.1)

Consider the solution of Eq. (5.1) with the initial conditions as in [4],

u(x, 0) =

√
81c− 1

54
cosh(

x

3
) (5.2)

By taking the two-dimensional transform of Eq. (5.1) by using the related definitions
from Table 1, we have

(h+ 1)U(k, h+ 1) = −3

k∑
r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

(k − r − t+ 1)U(r, h− s− p)U(t, s)U(k − r − t+ 1, p)

+6

k∑
r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

(r + 1)(t+ 1)(k − r − t+ 1)U(r + 1, h− s− p)

U(t+ 1, s)U(k − r − t+ 1, p)

+18

k∑
r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

(t+ 1)(k − r − t+ 1)(k − r − t+ 2)U(r, h− s− p)

U(t+ 1, s)U(k − r − t+ 2, p)

+3

k∑
r=0

k−r∑
t=0

h∑
s=0

h−s∑
p=0

(k − r − t+ 1)(k − r − t+ 2)(k − r − t+ 3)U(r, h− s− p)

U(t, s)U(k − r − t+ 3, p)

−(k + 1)(k + 2)(k + 3)(k + 4)(k + 5)U(k + 5, t) (5.3)

From the initial conditions Eq. (5.2), we can write

U(k, 0) = 0 if k = 1, 3, 5, ..., U(0, 0) =

√
486c− 6

18
, U(2, 0) =

√
486c− 6

324
,

U(4, 0) =

√
486c− 6

34992
, U(6, 0) =

√
486c− 6

9447840
, U(8, 0) =

√
486c− 6

4761711360
, ... (5.4)

Hence, substituting Eq.(5.4) into Eq.(5.3) , and by recursive method, some of the
results are listed in Table 7.
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U(1, 1) = −
√
486c−6c
162

U(3, 1) = −
√
486c−6c
8748

U(5, 1) = −
√
486c−6c
1574640

U(7, 1) = −
√
486c−6c

595213920
U(0, 2) =

√
486c−6c2

324
U(2, 2) =

√
486c−6c2

5832

U(4, 2) =
√
486c−6c2

629856
U(6, 2) =

√
486c−6c2

170061120
U(8, 2) =

√
486c−6c2

85710804480

U(1, 3) = −
√
486c−6c3

8748
) U(3, 3) = −

√
486c−6c3

472392
U(5, 3) = −

√
486c−6c3

85030560

U(7, 3) = −
√

486c−6c3

32141551680
U(9, 3) = −

√
486c−6c3

20827725488640
U(11, 3) = −

√
486c−6c3

20619448233753600

Table 7: Some values of U(k, h) of Ex 4.1.

Consequently, substituting sufficient number of U(k, h) values into Eq.(2.2), we
have series solution as follow:

u(x, t) = {
√

486c− 6

18
+

√
486c− 6

324
x2 +

√
486c− 6

34992
x4 +

√
486c− 6

9447840
x6 + ...}

+{−
√

486c− 6c

162
xt−

√
486c− 6c

8748
x3t−

√
486c− 6c

1574640
x5t

−
√

486c− 6c

595213920
x7t+ ...}

+{
√

486c− 6c2

324
t2 +

√
486c− 6c2

5832
x2t2 +

√
486c− 6c2

629856
x4t2 (5.5)

+

√
486c− 6c2

170061120
x6t2 + ...}+ ...

Approximating the series in Eq.(5.5) appropriately, u(x, t) in closed form is given

u(x, t) =

√
81c− 1

54
cosh(

ct− x
3

). (5.6)

which is like that obtained by Adomian decomposition method [4] and He’s varia-
tional iteration method [5].

5.2. As a conclusive work, now, we repeat the solution steps of the same problem,
but with other initial conditions as in the form [4].

u(x, 0) = −
√

81c− 1

54
cosh(

x

3
) (5.7)

u(x, t) = −
√

81c− 1

54
cosh(

ct− x
3

)

6. Conclusion

In this paper, the differential transform method has been successfully applied to
finding the solution of a Burger’s and K(m, p, 1) equations. The solution obtained
by the differential transform method is an infinite power series for appropriate initial
condition, which can, in turn, be expressed in a closed form, the exact solution. The
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results show that, the differential transform method is a powerful mathematical tool
to solving Burger’s and K(m,p,1) equations.
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