
1. Introduction

The quaternion number system was discovered by Hamilton [6], who was looking
for an extension of the complex number system to use in various areas of mathemat-
ics. Recently, quaternions have developed a wide-spread use in computer graphics
and robotics research because they are the simplest algebraic tool for describing
rotations in three and four dimensions. Certainly, the numbers have fallen short of
the early expectations of the quaternionists. The Euler’s and De-Moivre’s formulas
for the complex numbers are generalized for quaternions [3]. Using De Moivre’s for-
mula to find roots of a quaternion is more useful way. The Euler’s and De Moivre’s
formulas are also investigated for the case of dual, split and generalized quaternions
in [9, 11, 12, 14].
Some algebraic properties of Hamilton operators are considered in [2] where real

quaternions have been expressed in terms of 4×4 matrices by means of these opera-
tors. These matrices have applications in many fields, such as mechanics, quantum
physics and computer-aided geometric design [1]. Eigenvalues, eigenvectors and the
others algebraic properties of these matrices are studied by several authors [5, 17].
In addition to, Yaylıhas considered homothetic motions with aid of the Hamilton
operators in four-dimensional Euclidean space E4 [16]. Recently, we have derived
the De-Moivre’s and Euler’s formulas for matrices associated with real, dual and
generalized quaternions and every power of these matrices are immediately obtained
[7, 8, 10].
Some algebraic properties of semi-quaternions is investigated by Mortezaasl and

Jafari [13]. Euler and De-Moivre’s formulas for semi-quaternions are expressed in
[13] and the roots of a unit semi-quaternion are given. Here, after a review of some
properties of semi-quaternions, De Moivre’s and Euler’s formulas for the matrices
associated with these quaternions are studied. Furthermore, the n-th roots of these
matrices are derived. Finally, we give some examples for more clarification.

2. Preliminaries

We start with some information on the algebra of quaternions and semi-quaternions.
For detailed information about these concepts, we refer the reader to [13, 15].

Some Properties of Matrix Algebra of Semi-quaternions

Abstract: By representing semi-quaternions as four-dimensional vectors and
the multiplication of quaternions as matrix-by-vector product, we investigate prop-
erties of matrix associated with a semi-quaternion and examine De-Moivre’s formula
for this matrix, from which the n−th power of such a matrix can be determined.
Mathematics Subject Classification(2010): 11R52
Key words: De Moivre’s formula, Hamilton operator, semi-quaternion

2 University Technology Gazi Tabatabaei, P.O Box 57169-33959, Urmia, Iran

1 Department of Mathematics, University College of Science and Technology Elm O Fan, Urmia, Iran

http://dx.doi.org/10.17776/csj.04266

Mehdi JAFARI and Habib MOLAEI



Definition 2.1. A real quaternion is defined as

q = a◦ + a1i+ a2j + a3k

where a◦, a1, a2 and a3 are real numbers and 1, i, j, k of q may be interpreted as
the four basic vectors of Cartesian set of coordinates; and they satisfy the non-
commutative multiplication rules

i2 = j2 = k2 = ijk = −1
ij = k = −ji, jk = i = −kj

and

ki = j = −ik.

A quaternion may be defined as a pair (Sq, Vq) , where Sq = a◦ ∈ R is scalar part
and Vq = a1i+a2j+a3k ∈ R3 is the vector part of q. The quaternion product of two
quaternions p and q is defined as

pq = SpSq − 〈Vp, Vq〉+ SpVq + SqVp + Vp ∧ Vq
where”〈, 〉”and ”∧” are the inner and vector products in R3, respectively. The
norm of a quaternion is given by the sum of the squares of its components: Nq =
a2◦ + a21 + a22 + a23, Nq ∈ R. It can also be obtained by multiplying the quaternion
by its conjugate, in either order since a quaternion and its conjugate commute:
Nq = qq = qq. Every non-zero quaternion has a multiplicative inverse given by its
conjugate divided by its norm: q−1 = q

Nq
. The quaternion algebra H is a normed

division algebra, meaning that for any two quaternions p and q, Npq = NpNq, and
the norm of every non-zero quaternion is non-zero (and positive) and therefore
the multiplicative inverse exists for any non-zero quaternion. Of course, as is well
known, multiplication of quaternions is not commutative, so that in general for any
two quaternions p and q, pq 6= qp. This can have subtle ramifications, for example:
(pq)

2
= pqpq 6= p2q2.

3. semi-quaternions Algebra

Definition 3.1. A semi-quaternion q has a expression of form

q = a◦ + a1i+ a2j + a3k

where a◦, a1, a2 and a3 are real numbers and i, j, k are quaternionic units which
satisfy the equalities

i2 = −1, j2 = k2 = 0

ij = k = −ji , jk = 0 = kj

and
ki = j = −ik.

The set of all semi-quaternions are denoted by Hs. A semi-quaternion q is a
sum of a scalar and a vector, called scalar part, Sq = a◦, and vector part Vq =
a1i++a2j + a3k. Also, a semi-quaternion can be represented in the following way;
q = z1 + iz2, where z1 = a◦ + a2j, z2 = a1 + a3j.
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The addition rule for semi-quaternions is component-wise addition:

q + p = (a◦ + a1i+ a2j + a3k) + (b◦ + b1i+ b2j + b3k)

= (a◦ + b◦) + (a1 + b1)i + (a2 + b2)j + (a3 + b3)k.

This rule preserves the associativity and commutativity properties of addition. The
product of scalar and a semi-quaternion is defined in a straightforward manner. If c
is a scaler and q ∈ Hs,

cq = cSq + cVq = (ca◦)1 + (ca1)i+ (ca2)j + (ca3)k.

The multiplication rule for semi-quaternions is defined as

qp = SqSp − g(Vq, Vp) + SqVp + SpVq + Vp × Vq,
where

g(Vq, Vp) = a1b1, Vp × Vq = 0i+ (a3b1 − a1b3)j + (a1b2 − a2b1)k.
Also, this can be written as

pq =


a◦ −a1 0 0
a1 a◦ 0 0
a2 a3 a◦ −a1
a3 −a2 a1 a◦



b◦
b1
b2
b3

 .
Obviously, the quaternion multiplication is associative and distributive with respect
to addition and subtraction, but the commutativity law does not hold in general.

Corollary 3.1. Hs with addition and multiplication has all the properties of a
number field expect commutativity of the multiplication. It is therefore called the
skew field of quaternions.

4. De Moivre’s formula for semi-qauternions

In this section, we express the semi-quaternion q in polar form and look for also
De-Moivre’s formula for any semi-quaternions (see [13]).

Definition 4.1. Every nonzero semi-quaternion can be written in the polar form

q = a◦ + a1i+ a2j + a3k

q = r(cosϕ+−→w sinϕ), 0 ≤ ϕ ≤ 2π

where r =
√
Nq and

cosϕ =
a◦
r
, sinϕ =

√
a21
r

=
|a1|√
a2◦ + a

2
1

.

The unit vector −→w is given by

−→w =
1√
a21
(a1i+ a2j + a3k), a1 6= 0.
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Since −→w 2 = −1, We have a natural generalization of Euler’s formula for unit
semi-quaternions

e
−→wϕ = 1 +−→wϕ+ (

−→wϕ)2
2!

+
(−→wϕ)3
3!

+ ...

= 1− ϕ2

2!
+
ϕ4

4!
− ...+−→w (ϕ− ϕ3

3!
+
ϕ5

5!
− ...)

= cosϕ+−→w sinϕ.
for any real number ϕ.

Lemma 4.1. Let −→w be a unit vector, then we have

(cosϕ+−→w sinϕ)(cosψ +−→w sinψ) = cos(ϕ+ ψ) +−→w sin(ϕ+ ψ).

Theorem 4.2. (De-Moivre’s formula) Let q = e
−→wϕ = cosϕ + −→w sinϕ be a unit

semi-quaternion. Then for every integer n;

qn = cosnϕ+−→w sinnϕ.

Proof. We use induction on positive integers n. Assume that qn = cosnϕ+−→w sinnϕ
holds. Then

qn+1 = (cosϕ+−→w sinϕ)n(cosϕ+−→w sinϕ)
= (cosnϕ+−→w sinnϕ)(cosϕ+−→w sinϕ)
= cos(nϕ+ ϕ) +−→w sin(nϕ+ ϕ)

= cos(n+ 1)ϕ+−→w sin(n+ 1)ϕ.

The formula holds for all integer n, since

q−1 = cosϕ−−→w sinϕ,
q−n = cos(−nϕ) +−→w sin(−nϕ)

= cosnϕ−−→w sinnϕ.
�

Example 4.1. Let q = −1 + i − j + 2k =
√
2(cos 3π4 + −→w sin 3π4 ) be a semi-

quaternion. Every powers of this quaternion are found with the aid of the Theorem
4.1. For example, 10-th power is

q10 = 25[cos 10(
3π

4
) +−→w sin 10(3π

4
)]

= 25(0−−→w ).

Corollary 4.3. There are uncountably many unit semi-quaternions satisfying qn =
1 for every integer n ≥ 3.

Proof. For every unit vector −→w , the quaternion q = cos 2πn +
−→w sin 2πn is of order n.

For n = 1 or n = 2, the quaternion q is independent of −→w .
�
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Example 4.2. q = 1√
2
+ ( 1√

2
, 1,−1) = cos π4 +

−→w sin π4 is of order 8 and q =
1
2 + (

√
3
2 , 1, 1) = cos

π
3 +
−→w sin π3 is of order 6.

Theorem 4.4. Let q = cosϕ + −→w sinϕ be a unit semi-quaternion. The equation
xn = q has n roots

xk = cos
ϕ+ 2kπ

n
+−→w sin ϕ+ 2kπ

n
, k = 0, 1, ..., n− 1.

Proof. If xn = q, q will have the same unit vector as x. So, we assume that
x = cosκ + −→w sinκ is a root of the equation xn = q. From the Theorem 4.1, we
have

xn = cosnκ +−→w sinnκ,

Thus, we find

cosnκ = cosϕ & sinnκ = sinϕ.

So, the n−th roots of q are x = cos ϕ+2kπn +−→w sin ϕ+2kπn for k = 0, 1, ..., n−1. �

Example 4.3. Let q = 1+ i−2j+2k =
√
2(cosϕ+−→w sinϕ) be a semi-quaternion.

The equation x3 = q has 3 roots and these are

xk =
6
√
2(cos

ϕ+ 2kπ

3
+−→w sin ϕ+ 2kπ

3
), k = 0, 1, 2.

So, x0 =
6
√
2(cos π12 +

−→w sin π
12 ), x1 =

6
√
2(cos 3π4 +

−→w sin 3π4 ), x2 =
6
√
2(cos 17π12 +−→w sin 17π12 ) are the cube roots of q.

Theorem 4.5. Let q be a unit semi-quaternion with the polar form q = cosϕ +
−→w sinϕ. If m = 2π

ϕ ∈ Z
+ − {1}, then n ≡ p(mod m) is possible if and only if

qn = qp.

Proof. Let n ≡ p(mod m). Then we have n = am+ p, where a ∈ Z.

qn = cosnϕ+−→w sinnϕ
= cos(am+ p)ϕ+−→w sin(am+ p)ϕ

= cos(a
2π

ϕ
+ p)ϕ+−→w sin(a2π

ϕ
+ p)ϕ

= cos(pϕ+ 2πa) +−→w sin(pϕ+ 2πa)
= cos pϕ+−→w sin pϕ
= qp.

Now suppose qn = cosnϕ+−→w sinnϕ and qp = cos pϕ+−→w sin pϕ. Since qn = qp,
we have cosnϕ = cos pϕ and sinnϕ = sin pϕ, which means that nϕ = pϕ + 2πa,
a ∈ Z. Thus n = a 2πϕ + p, n ≡ p(mod m). �
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Example 4.4. Let q = 1
2 + (

√
3
2 ,−1, 2) be a unit semi-quaternion. From the The-

orem 4.3, m = 2π
π/3 = 6, so we have

q = q7 = q13 = ...

q2 = q8 = q14 = ...

q3 = q9 = q15 = ... = −1
...

q6 = q12 = q18 = ... = 1.

5. De Moivre’s Formula for Matrices of semi-Qauternions

In this section, we introduce the R-linear transformations representing left multi-
plication in Hs and look for also the De-Moiver’s formula for corresponding matrix
representation. Let q be a semi-quaternion, then ϕl : Hs → Hs defined as follows:

ϕl(x) = qx, x ∈ Hs.

The Hamilton’s operator ϕl, could be represented as the matrices;

Aϕl =


a◦ −a1 0 0
a1 a◦ 0 0
a2 a3 a◦ −a1
a3 −a2 a1 a◦

 .
We can express the matrix Aϕl in polar form. Let q be a unit semi-quaternion.
Since

q = a◦ + a1i+ a2j + a3k

= cosϕ+−→w sinϕ
= cosϕ+ (w1, w2, w3) sinϕ

= cosϕ+ (w1 sinϕ,w2 sinϕ,w3 sinϕ)

we have
a◦ −a1 0 0
a1 a◦ 0 0
a2 a3 a◦ −a1
a3 −a2 a1 a◦

 =


cosϕ −w1 sinϕ 0 0
w1 sinϕ cosϕ 0 0
w2 sinϕ w3 sinϕ cosϕ w1 sinϕ
w3 sinϕ −w2 sinϕ w1 sinϕ cosϕ

 .

Theorem 5.1. (De-Moivre’s formula for matrices) Let q = e
−→wϕ = cosϕ+−→w sinϕ

be a unit semi-quaternion. For an integer n

A =


cosϕ −w1 sinϕ 0 0
w1 sinϕ cosϕ 0 0
w2 sinϕ w3 sinϕ cosϕ w1 sinϕ
w3 sinϕ −w2 sinϕ w1 sinϕ cosϕ

 (1.1)

the n-th power of the matrix A reads

An =


cosnϕ −w1 sinnϕ 0 0
w1 sinnϕ cosnϕ 0 0
w2 sinnϕ w3 sinnϕ cosnϕ w1 sinnϕ
w3 sinnϕ −w2 sinnϕ w1 sinnϕ cosnϕ

 .
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Proof. The proof follows immediately from the induction.
�

Example 5.1. Let q = −1+i−j+2k =
√
2(cos 3π4 +

−→w sin 3π4 ) be a semi-quaternion.
The matrix corresponding to this quaternion is

A =


−1 −1 0 0
−1 −1 0 0
−1 2 −1 −1
2 1 1 −1


every powers of this matix are found to be with the aid of Theorem 5.1, for example,
10-th power is

A10 = 25


0 −1 0 0
−1 0 0 0
−1 2 0 −1
2 1 1 0


and 164-th power is

A164 = 282


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 = −282 I4.

6. Euler’s Formula for matrices accosiated semi-quaternions

Let A be a matrix. We choose

A =


0 −u1 0 0
u1 0 0 0
u2 u3 0 −u1
u3 −u2 u1 0


then one immediately finds A2 = −I. We have a netural generalization of Euler’s
formula for matrix A;

eAθ = I4 +Aϕ+
(Aϕ)2

2!
+
(Aϕ)3

3!
+
(Aϕ)4

4!
+ ...

= I4 +Aϕ

= cosϕ+A sinϕ,

=


cosϕ −u1 sinϕ 0 0
u1 sinϕ cosϕ 0 0
u2 sinϕ u3 sinϕ cosϕ u1 sinϕ
u3 sinϕ −u2 sinϕ u1 sinϕ cosϕ

 .
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7. n− th Root of Matrices of semi-quaternions

Let q = cosϕ+−→w sinϕ be a unit semi-quaternions. The matrix accossiated with
this quaternion q is of the form (1.1). In a more general case, we substitute the
matrix (1.1) by

A =


cos(θ + 2kπ) −u1 sin(θ + 2kπ) 0 0
u1 sin(θ + 2kπ) cos(θ + 2kπ) 0 0
u2 sin(θ + 2kπ) u3 sin(θ + 2kπ) cos(θ + 2kπ) u1 sin(θ + 2kπ)
u3 sin(θ + 2kπ) −u2 sin(θ + 2kπ) u1 sin(θ + 2kπ) cos(θ + 2kπ)

 ,
where k ∈ Z. The equation xn = A has n roots and they are as follows

A
1
n

k =


cos( θ+2kπn ) −u1 sin( θ+2kπn ) 0 0
u1 sin(

θ+2kπ
n ) cos( θ+2kπn ) 0 0

u2 sin(
θ+2kπ
n ) u3 sin(

θ+2kπ
n ) cos( θ+2kπn ) u1 sin(

θ+2kπ
n )

u3 sin(
θ+2kπ
n ) −u2 sin( θ+2kπn ) u1 sin(

θ+2kπ
n ) cos( θ+2kπn )

 .

For k = 0, the first root is

A
1
n◦ =


cos( θn ) −u1 sin( θn ) 0 0
u1 sin(

θ
n ) cos( θn ) 0 0

u2 sin(
θ
n ) u3 sin(

θ
n ) cos( θn ) u1 sin(

θ
n )

u3 sin(
θ
n ) −u2 sin(

θ
n ) u1 sin(

θ
n ) cos( θn )

 ,
and for k = 1, the second root is

A
1
n
1 =


cos( θ+2πn ) −u1 sin( θ+2πn ) 0 0
u1 sin(

θ+2π
n ) cos( θ+2πn ) 0 0

u2 sin(
θ+2π
n ) u3 sin(

θ+2π
n ) cos( θ+2πn ) u1 sin(

θ+2π
n )

u3 sin(
θ+2π
n ) −u2 sin( θ+2πn ) u1 sin(

θ+2π
n ) cos( θ+2πn )

 ,
similarly, for k = n− 1, we obtain the n-th root.

Example 7.1. Let q = − 12 +
√
3
2 i+ j + k be a unit semi-quaternion. The matrix

corresponding to this quaternion is

A =


− 12 −

√
3
2 0 0√

3
2 − 12 0 0

1 1 − 12 −
√
3
2

1 −1
√
3
2 − 12

 .
The square roots of the matrix A can be calculated as follows:

A
1
2

k =


cos(

2kπ+ 2π
3

2 ) −u1 sin( 2kπ+
2π
3

2 ) 0 0

u1 sin(
2kπ+ 2π

3

2 ) cos(
2kπ+ 2π

3

2 ) 0 0

u2 sin(
2kπ+ 2π

3

2 ) u3 sin(
2kπ+ 2π

3

2 ) cos(
2kπ+ 2π

3

2 ) −u1 sin( 2kπ+
2π
3

2 )

u3 sin(
2kπ+ 2π

3

2 ) −u2 sin( 2kπ+
2π
3

2 ) u1 sin(
2kπ+ 2π

3

2 ) cos(
2kπ+ 2π

3

2 )

 .
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The first root for k = 0 is

A
1
2◦ =


1
2 −

√
3
2 0 0√

3
2

1
2 0 0

1 1 1
2 −

√
3
2

1 −1
√
3
2

1
2

 ,
and the second one for k = 1 is

A
1
2
1 =


− 12 −

√
3
2 0 0√

3
2 − 12 0 0

−1 −1 − 12
√
3
2

−1 1 −
√
3
2 − 12

 ,
Also, it is easy to see that A

1
2◦ +A

1
2
1 = 0.

8. Relations between powers of matrices

Some relations between the powers of matrices associated with a semi-quaternion
is sketched in the following theorem:

Theorem 8.1. Let q be a unit semi-quaternion with the polar form q = cosϕ +
−→w sinϕ, the matrix A correspondnto q and let m = 2π

ϕ ∈ Z
+−{1}. Then n ≡ p(mod

m) is true if and only if An = Ap.

Proof. The proof follows easily from the induction on n. �

Example 8.1. Let q =
√
3
2 + ( 12 ,−1, 2) be a unit semi-quaternion. From the The-

orem 8.1, m = 2π
π/6 = 12, so we have

A = A13 = A25 = ...

A2 = A14 = A26 = ...

...

A11 = A23 = A35 = ...

A12 = A24 = A36 = ... = I4.

Remark 8.1. The semi-quaternions are special cases of generalized quaternions if
α = 1, β = 0. (see [10, 11]).

9. Conclusion

In this paper, we gave some of algebraic properties of the semi-quaternions and
investigated the Euler’s and De Moivre’s formulae for these quaternions and also
for the matrices associated with semi-quaternions. We also obtained n-th root of
these matrices (Theorem 8.1).
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