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Anahtar Kelimeler: Ozet: Bu calismada, farkl gizge kiimeleme algoritmalarinin performanslari kiigiik ve orta

_ . Olcekli dort farkli veri seti lizerinde analiz edilmistir. Veri setlerinden {iigii (Karate Club,
Cizge Teorisi, . Dolphin Ag1 ve PolBooks) gergek diinya aglarindan alinirken, LFR Benchmark veri seti
Kiimeleme Algoritmalari,

Topluluk Tespiti, Newman, Spektral Kiimeleme, Clique Percolation, Louvain, Leiden ve Spektral Gomme
Performans Analizi, banl k Imak i Kiz farklt aloori K 1 ) Algori )
Sosyal Ag Analizi. tabanli k-means olmak uzere sekiz farkli algoritma karsilagtirilmistir. goritmalarin

basarimi, Diizeltilmis Rand Indeksi ve Normalize Edilmis Karsihkli Bilgi gibi dissal

sentetik bir ag olarak kullanilmistir. Calismada MinCut, Kernighan-Lin, Girvan-

metriklerin yani sira Kapsama ve Gegirgenlik gibi igsel metrikler araciligiyla
degerlendirilmigtir. Referans etiket bilgisinin mevcut oldugu veri setlerinde, Spektral
tabanli yontemlerin ag yapisini en iyi temsil ettigi gorilmiistiir. Gergek etiketlerin
bulunmadig1 Dolphin Ag1 veri setinde ise igsel metriklere odaklanilmis; Girvan-Newman

ve modiilerite tabanli algoritmalarin tutarli topluluk yapilari sundugu belirlenmistir.
Ayrica, LFR Benchmark veri setinde Louvain algoritmasi yiiksek digsal uyum saglarken,

algoritma sec¢iminde agin topolojik yapisimin ve giiriiltii seviyesinin belirleyici oldugu

gozlemlenmistir. Bu c¢alisma, algoritmalarin farkli karakteristiklere sahip aglardaki
davranislarin1 karsilastirarak, aragtirmacilara veri seti yapisina uygun yontem sec¢imi
konusunda rehberlik etmeyi amaglamaktadir.

(Research Article)

Comparative Performance Analysis of Graph Clustering Algorithms on Benchmark Datasets

Keywords: Abstract: In this study, the performance of various graph clustering algorithms is
evaluated on four distinct small and medium-sized datasets. Three of these datasets

Graph Theory , (Karate Club, Dolphin Network, and PolBooks) represent real-world networks, while the
Clustering Algorithms,

Community Detection,
Performance Evaluation,
Social Network Analysis.

clustering algorithms were employed: MinCut, Kernighan-Lin, Girvan-Newman,

LFR Benchmark dataset constitutes a synthetic network structure. Eight different

Spectral Clustering, Clique Percolation, Louvain, Leiden, and Spectral Embedding-based

k-means. The performance of these algorithms was assessed using both external metrics

(Adjusted Rand Index, Normalized Mutual Information) and internal metrics (Coverage,

Conductance). In datasets where ground-truth labels were available, Spectral-based
methods demonstrated superior capability in capturing the global network structure. For
the Dolphin Network, which lacks ground-truth labels, the analysis focused on internal
metrics, revealing that Girvan-Newman and modularity-based algorithms provided more
consistent community structures. Furthermore, on the LFR Benchmark dataset, the
Louvain algorithm achieved high external validity. This study highlights the advantages

and limitations of clustering methods by comparing their performances across datasets

with varying topological characteristics, emphasizing the critical role of dataset structure

and metric selection in algorithm preference.

*Sorumlu Yazar/Corresponding Author:ye_sdu@hotmail.com
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1. GIRIS

Cizge (Graph), diiglimler ve bu diigimler arasindaki
iligkileri temsil eden kenarlardan olusan, karmasik
sistemlerin modellenmesinde kullanilan temel bir veri
yapisidir [1]. Sosyal aglardan biyolojik sistemlere,
iletisim altyapilarindan bilgi aglarina kadar pek ¢ok
alanda, verinin altinda yatan yapisal Oriintiileri
anlamlandirmak i¢in ¢izgelerden yararlanilmaktadir [2].
Karmagik aglarin en belirgin 6zelliklerinden biri,
digimlerin rastgele dagilmak yerine kendi aralarinda
yogun, diger gruplarla ise seyrek baglantilar kurarak
"topluluk” (community) veya "kiime" ad1 verilen modiiler
yapilar olusturmasidir. Aglardaki bu modiiler yapinin
anlagilmasi; biyolojik aglarda protein fonksiyonlarinin
kesfinden, sosyal aglarda bilgi yayiliminin kontroliine ve
Oneri sistemlerinin iyilestirilmesine kadar kritik bir rol
oynamaktadir [3]. Kiimeleme algoritmalari, ag
topolojisindeki bu yogun baglantili alt yapilar1 ortaya
¢ikararak analiz, 6ngorii ve modelleme siireclerine katki
saglamay1 hedefler [4].

Ancak, her agin topolojik karakteristigi (yogunluk,
diigim sayisi, glirtiltii orani) farklilik gdsterdigi icin,
literatiirde tek bir "en iyi" algoritmadan s6z etmek
miimkiin degildir. Her algoritmanin farkli bir topolojik
varsayima (6rn. modiilerite maksimizasyonu veya
spektral ayrisim) dayanmasi, performanslarinin veri
setine gore degiskenlik gostermesine neden olmaktadir.
Ornegin, modiilerite tabanli yéntemler bazi aglarda
"¢Oziintirliik smir" (resolution limit) nedeniyle asir1
parcalanmaya yol agabilirken, spektral yontemler biiyiik
Olcekli  aglarda  yiiksek  hesaplama  maliyeti
yaratabilmektedir. Bu nedenle, algoritmalarin farkli
yapisal dzelliklere sahip aglar iizerindeki davraniglarinin
standart benchmark veri setleri ve metrikler (digsal ve
igsel) kullanilarak karsilastirilmasi, literatiirdeki 6nemli
bir ihtiyagtir [5, 6, 7].

Literatiirde bu ihtiyaca yonelik cesitli ¢alismalar
mevcuttur. Watteau ve ark. (2024), geleneksel ve modern
cizge kiimeleme yaklasgimlarin1 inceleyerek 0Ozellikle
Spektral Kiimeleme ve Leiden algoritmasi gibi yontemleri
karsilagtirmigtir [8]. Shi ve Chen (2020), 70'ten fazla
algoritmay1 hem agirliksiz hem de agirlikli ¢izgelerde
degerlendirmig; o&zellikle ¢oziiniirliik parametresinin
topluluk  yapisint  belirlemedeki  kritik  roliinii
vurgulamistir [9]. Rodriguez vd. (2016), R dilinde mevcut
olan 9 yaygin yontemi normal dagilimli verilerde
kiyaslayarak, varsayilan degerlerde spektral yaklasimin
basarisina dikkat ¢ekmistir [10]. Benzer sekilde Liu vd.
(2015); Louvain, METIS, Spectral kiimeleme gibi
tekniklerin &zetleme giiclinii gergek veriler iizerinde
analiz etmigtir [11].

Bu calismada, literatiirdeki bu birikimin {izerine
eklenerek; kiiciik ve orta 6lgekli i gercek diinya veri seti
(Karate Club, Dolphin Ag1, PolBooks) ve bir sentetik
benchmark veri seti (LFR Benchmark) kullanilarak sekiz
farkli ¢izge kimeleme algoritmasinin performansi
kapsamli bicimde incelenmistir. Algoritmalarin basarist,
hem digsal metrikler (Adjusted Rand Index, Normalized
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Mutual Information) hem de igsel metrikler (Coverage,
Conductance) araciliftyla cok boyutlu olarak analiz
edilmistir.  Caligmanin  temel Ozgiinligii, sadece
algoritmalar1 kiyaslamakla kalmayip; yer gergekligi
(ground-truth) bilgisi olmayan veri setlerinde (Orn.
Dolphin Ag1) igsel metriklerin ve metodolojik ©6n
islemlerin  (6rn. spektral normalizasyon) sonuglar
iizerindeki belirleyici etkisini ortaya koymasidir. Bu
baglamda calisma, veri seti yapist ve etiket bilgisi gibi
parametrelerin, kiimeleme yontemlerinin avantajlar1 ve
sturliliklar tizerindeki etkisini 6lgmeyi amaclamaktadir.

2. MATERYAL VE METOT

2.1. Deneysel Kurulum ve Yazilim Ortami

Deneysel c¢aligmalar, yiiksek hesaplama giicii ve
erigilebilirlik saglayan bulut tabanli Google Colab

ortaminda, Python 3.x programlama dili kullanilarak
gerceklestirilmistir. Cizge verilerinin islenmesi, analizi ve

gorsellestirilmesi  i¢in - su  temel kiitiiphanelerden
yararlanilmistir:
e NetworkX: Cizge olusturma, temel topolojik

analizler ve klasik algoritmalarin (Girvan-Newman,
Kernighan-Lin) uygulanmasi igin.

e iGraph & Leidenalg: Biiyiik 6l¢ekli aglarda yiiksek
performanslt  islem yapabilmek ve Leiden
algoritmasimin  6zellestirilmis (RB-Configuration)
implementasyonu i¢in.

o Scikit-learn:  Spektral  kiimeleme, k-means
algoritmasi ve performans metriklerinin (ARI, NMI)
hesaplanmasi igin.

e Community-Louvain: Louvain
Python implementasyonu i¢in.

e  Matplotlib & Pandas: Sonuglarin goérsellestirilmesi
ve veri manipiilasyonu igin.

algoritmasinin

2.2. Metodolojik Yaklasim ve On islemler

Caligmada, farkli topolojik varsayimlara (modiilerite,
spektral ayrisim, kesim tabanli)) dayanan 8 farkli
kiimeleme algoritmasi, yapisal ozellikleri birbirinden
farkli 4 veri seti (3 gercek, 1 sentetik) iizerinde test
edilmistir.

Algoritmalarin ~ uygulanmas:  sirasinda  standart
parametreler yerine, agin yapisina uygun optimizasyonlar
yapilmistir. Calismanin metodolojik a¢idan en kritik
adimi, spektral tabanli vektdr kiimeleme siirecinde
uygulanmistir.  Spektral ~ embedding  asamasinda,
Laplacian matrisinden elde edilen ham &zvektorler (raw
eigenvectors)  dogrudan  k-means  algoritmasina
beslenmemistir. Bunun yerine, veri uzayindaki o6lcek
farklarini (scale invariance) elimine etmek ve kiimeleme
isleminin agisal yakinliga dayali yapilmasini saglamak
amaciyla, her bir digimin embedding vektorii
Lonormuna boliinerek birim uzunluga (unit length)
normalize edilmistir. Kiimeleme islemi bu normalize
edilmis uzay tizerinde gergeklestirilmistir.

Algoritma parametreleri ve uygulama detaylar1 Tablo 2'de
sunulmustur.
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2.3. Performans Degerlendirme Cergevesi

Onerilen yontemlerin basarisin1 8lgmek ve algoritmalarm
farkli topolojik yapilardaki davranislarini analiz etmek
amaciyla, literatiirde yaygin olarak kabul géren dissal
(external) ve igsel (internal) metrikler kullanilmustir.

2.3.1. Digsal Metrikler (Ground-Truth Bilgisi Olan
Durumlar)

Gergek etiket (Ground-truth) etiketlerinin mevcut oldugu
veri setlerinde (Karate Club, PolBooks, LFR),
algoritmalar tarafindan bulunan kiimeler ile gercek
smiflar arasindaki uyum su iki metrikle 6l¢tilmiistiir:

Adjusted Rand Index (ARI): Bulunan kiimeleme sonucu
ile gercek etiketlerin ne kadar ortiistiigiinii, sans faktoriinii
(random chance) diizelterek Olgen istatistiksel bir
metriktir. [-1, 1] araliginda deger alir; 1 degeri tam
eslesmeyi (mitkemmel performans), 0 degeri rastgele bir
atamay1, negatif degerler ise rastgeleden daha kotii bir
performansi ifade eder [12].

Normalized Mutual Information (NMI): Bilgi teorisine
dayali bu metrik, iki etiket dagilimi arasindaki "karsilikl1
bilgiyi" (mutual information) olger ve entropi degerine
gore normalize eder. [0, 1] araliginda deger alir; 1 tam
ortiisme anlamina gelirken, 0 iki dagilimin birbirinden
tamamen bagimsiz oldugunu gosterir [13]

2.3.2. i¢sel Metrikler (Topolojik Kalite Ol¢iimii)

Etiket bilgisinin bulunmadigi (6rn. Dolphins veri seti)
veya algoritmanin sadece yapisal basarisinin (modiilerite
kalitesinin) degerlendirildigi durumlarda su metrikler
kullanilmugtir:

Coverage (Kapsama): Kiimelerin cizgenin ne kadarini
"icerdigini" ifade eder. Matematiksel olarak, kiimelerin
kendi i¢lerinde (intra-cluster) kurduklar1 kenar sayisinin,
agdaki toplam kenar sayisina oramidir. Yiiksek coverage
degeri, kenarlarin g¢ogunun kiimeler iginde kaldigimni
gosterir.

Conductance (Gegirgenlik): Bir kiimenin dis diinya ile
olan baglantisinin, kiimenin toplam hacmine oranim
Olger. Cizge Olgegindeki basari, tim kiimelerin
conductance degerlerinin ortalamasi ile belirlenir. Bu
metrik [0, 1] araliginda deger alir. Literatiirdeki kabuliin
aksine, Conductance degerinin 0’a yaklasmasi, kiimelerin
disaridan  iyi izole edildigini ve darbogazlarin
(bottlenecks) dogru tespit edildigini gosterir (Diisiik
olmas iyidir) [14].

2.4. Kullanilan Veri Setleri

Python’da nx.karate club graph() ile yiiklenen 34
digimli, 78 kenarli klasik benchmark g¢izgesi, GML
formatinda GitHub kaynagindan indirilen 62 diigiim, 159
kenarli Dolphin ag1, NetworkX 6rnek deposundan GML
ile yiiklenen 105 diigiim, 441 kenar PolBooks ag1 ve 250
digiimli sentetik LFR Bencmark veri seti kullanilmistir.
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Tablo 1. Veri Seti Karakteristikleri

Veri Seti Diigiim Kenar  Ortalama Kiime Kaynak
N) (E) Derece Sayis1
(({9)] X)
Karate Club 34 78 4.6 2 (veya [21]
4)
Dolphins 62 159 5.1 - [22]
(Bilin
miyor)
PolBooks 105 441 8.4 3 [23]
LFR
Benchmark 250 (24]

2.5. Kiimeleme Algoritmalar:

Bu calismada, ag topolojisine farkli yaklasimlar (kesim
tabanli, modiilerite tabanli, spektral ve hiyerarsik) sunan
sekiz farkli algoritma incelenmistir.

Min-cut  yaklagimi, ¢izge  teorisindeki  klasik
problemlerden biri olup, ¢izgenin diigiimlerini iki ayrik
kiimeye ayiran bir "kesme" (cut) tanimlar. Algoritmanin
temel amaci, iki kiime arasinda kalan kenarlarin sayisini
veya (agirlikli ¢izgelerde) toplam kenar agirligini
minimize etmektir [15]. Bu yontem, Stoer-Wagner
algoritmast gibi deterministik yaklagimlarla global
optimum kesimi bulmay1 hedefler.

Kernighan-Lin algoritmasi, ¢izgeyi dnceden belirlenmis
(genellikle esit) biiyiikliikte iki parcaya ayirirken kenar-
kesit (cut size) maliyetini azaltmay1 amaglayan sezgisel
ve iteratif bir yontemdir. Algoritma, her iterasyonda iki
farkli kiimeden birer diigiim ¢iftini takas ederek (swap)
kazang (gain) hesabi yapar ve bu iglemi kiimiilatif kazang
pozitif oldugu siirece siirdiiriir. Yerel optimuma takilma
riski olsa da, dengeli boliimler {iretmede etkilidir [16].

Girvan-Newman Hiyerarsik ve boliicii (divisive) bir
yontem olan Girvan-Newman, topluluklart belirlemek
icin "kenar arasindalik" (edge betweenness) Olgiistinii
kullanir. Varsayima gore, farkli topluluklari birbirine
baglayan koprii kenarlari arasindaki degeri yiiksektir.
Algoritma, en yiiksek arasindaki degere sahip kenarlari
iteratif olarak kaldirarak ag1 kademeli olarak daha kiigiik
bilesenlere ayirir [2].

Clique Percolation (CPM) Clique-Percolation Metodu
(CPM), cizgenin yogun alt yapilarini (k-cliques) temel
alir. Bir "k-klik", her digiimiin diger tim diigiimlerle
baglt oldugu k digimli tam alt c¢izgedir. CPM
yonteminde, birbirleriyle k-1 diigiimii paylasan klikler
"bitisik" kabul edilir ve bu zincirleme yap1 bir toplulugu
olusturur. Bu yontem, o6zellikle ortiisen (overlapping)
topluluklarm tespitinde kullanilir [15]

Modiilerite Tabanli Yontemler (Louvain ve Leiden):
Louvain algoritmasi, biiyiik 6lgekli aglarda modiilerite
(modularity) maksimizasyonuna dayanan, hizli ve
hiyerarsik bir yontem olup yerel tasima ve ag kiicliltme
(aggregation) olmak iizere iki asamadan olusur [18].
Leiden algoritmasi ise Louvain’in baglantisiz topluluklar
iretme sorununu ¢dzmek amaciyla gelistirilmis bir
versiyonudur; modiilerite optimizasyonuna “refinement”
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(iyilestirme) ad1 verilen ek bir adim ekleyerek hem daha
hizli yakinsama saglar hem de elde edilen topluluklarin
matematiksel olarak baglantili (connected) olmasini
garanti eder.

Spektral Kiimeleme (Spectral Clustering), verinin
benzerlik  matrisinin  (Laplacian)  dzdeger  ve
ozvektorlerini  (eigenvectors)  kullanarak  boyutsal
indirgeme yapar. Bu calismada, literatiirde yaygin olarak
kullanilan normallestirilmis Laplacian matrisi tercih
edilmis ve elde edilen Ozvektorler iizerinde, klasik k-
means baglatma sorunlarindan (initialization Dbias)
kaginmak amaciyla rotasyon tabanli ayriklastirma
(discretization) yontemi uygulanmigtir [17].

Spektral Gomme Tabanli k-means (Spectral Embedding
+ k-means) Calismada, scikit-learn kiitliphanesinin
yerlesik spektral kiimeleme yontemi ile "ham" vektor
tabanli yaklagimlarin farkin1 6lgmek amaciyla hibrit bir
yontem tasarlanmistir. Bu yontemde, diigiimler Laplacian
ozvektorleri kullanilarak k boyutlu 06znitelik uzayina
(embedding space) taginmistir. Standart k-means
algoritmasinin Oklid uzayindaki zaaflarin1 gidermek igin,
kiimeleme 6ncesinde her bir diigiim vektorii L, normuna
boliinerek birim hiperkiire izerine iz disiirilmiis
(normalization), ardindan k-means uygulanmistir [20].

Bu calismada kullanilan tiim algoritmalar, sonuclarin
tekrarlanabilirligini (reproducibility) saglamak amaciyla
Python tabanli agik kaynak kiitiiphaneler kullanilarak
uygulanmugtir. Algoritmalarin  hiperparametreleri,
literatiirdeki standart kabuller ve veri setlerinin yapisal
ozellikleri (sparsity, size) dikkate alinarak optimize
edilmistir. Ozellikle Leiden algoritmasinda modiilerite
¢cOziinlirliigli  (resolution parameter) ve k-means
algoritmasinda embedding normalizasyonu gibi kritik
ayarlar, deneysel performansi dogrudan etkiledigi igin
ozel olarak belirlenmigtir. Her bir algoritma igin
kullanilan kiitiphane bilgileri, kritik parametre degerleri
ve uygulanan 0On isleme adimlar1 Tablo 2’de
detaylandirilmistir.

Tablo 2. Algoritma Parametreleri ve Implementasyon Detaylari

Algoritma  Kiitiiphane /| Kritik Parametreler ve
implementasyon = On Islemler
Louvain community- Resolution=1.0, Random
louvain (Python) = State =42
Leiden leidenalg Objective=
(Python) RBConfiguration,
Resolution=0.5,
Iterations = 2
Spectral sklearn.cluster Affinity= 'precomputed’,
Clustering Assign Labels =
'discretize', k=K GT
k-means sklearn.manifold =~ Method=Spectral
(Spec. + sklearn.cluster =~ Embedding,
Emb.) Normalization=L,,
d=2, k=K;r
Girvan- networkx Criterion=Edge
Newman Betweenness,
Stop condition =k clusters
Min-Cut networkx Method = Stoer-Wagner
(Global Min-Cut)
Kernighan networkx Initial Partition =
-Lin Bisection (k=2)
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3. BULGULAR

3.1. Karete Club veri seti
algoritmalarimin Uygulanmasi

iizerine Kkiimeleme

Karete Club veri seti 34 diigiim,78 kenar yonsiiz,agirliksiz
bir iliski c¢izgesidir. Bu ¢izge iizerinde uygulanan
kiimeleme algoritmalarina ait grafik Sekil 1°de
performans verileri ise Tablo 3’te gosterilmektedir.

1.0

N ARI
NMI

0.8 4

0.6 q

0.4 4

0.2 4

0.0 -

MinCut
Kernighan-Lin
Girvan-Newman
Spectral
Clique-Percolation
Louvain

Leiden
k-means(emb)

Sekil 1. Karete club veri setinde kiimeleme
algoritmalarinin sonuglari

Karate Club ag1 iizerinde uygulanan topluluk tespiti
algoritmalarinin  performans metrikleri Tablo 1'de
Ozetlenmistir. Yapilan iyilestirmeler sonucunda, spektral
tabanli yontemlerin (Spectral Clustering ve Normalize
Edilmis Spektral Embedding iizerinde k-means) en
yliksek basariy1 gosterdigi gozlemlenmistir

Tablo 3. Karete club ¢izge i¢in performans verileri

Algoritma = ARI NMI Coverage = Conductance
MinCut 0.000 | 0.050 @ 0.974 0.506
Kernighan 0.771  0.677  0.871 0.128
-Lin

Girvan- 0.771 | 0.732  0.8717 0.1313
Newman

Spectral 0.882 | 0.837  0.8717 0.128
Clique- 0.007 | 0.031  0.858 0.261
Percolatio

n

Louvain 0.483 0427  0.833 0.171
Leiden 0.771 | 0.677  0.871 0.128
k-means 0.882 | 0.882  0.871 0.1128
(emb)

Caligmanin en ¢arpict bulgusu, k-means algoritmasinin
ham spektral 6znitelikler tizerinde basarisiz olurken (ARI
=0.07), L, normalizasyonu  uygulandiginda
performansinin Spectral Clustering ile esdeger diizeye
(ARI =0.88) yiikselmesidir.

Spektral embedding tabanli kiimeleme asamasinda,
Laplacian matrisinden elde edilen ham 6zvektorler (raw
eigenvectors)  dogrudan  k-means  algoritmasina
beslenmemistir. Bunun yerine, veri uzayindaki ol¢ek
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farklarini (scale invariance) elimine etmek ve kiimeleme
isleminin agisal yakinliga dayali yapilmasini saglamak
amactyla, her bir diiglimiin embedding vektori L,
normuna béliinerek birim uzunluga (unit length)
normalize edilmistir. Kiimeleme islemi bu normalize
edilmis uzay tizerinde gergeklestirilmistir.

Bu durum, Ng, Jordan ve Weiss (2002) tarafindan
onerilen spektral kiimeleme algoritmasinin temel
prensibine dayanmaktadir. Graph Laplacian matrisinin
ozvektorleri (eigenvectors) ¢ikarildiginda, veri noktalari
R¥* uzaymda orijinden ¢ikan 1simnsal (radial) dogrultular
boyunca kiimelenir. Standart k-means algoritmas1 Oklid
mesafesini (Euclidean distance) temel aldig1r igin,
biiyilikliik (magnitude) farklarindan etkilenerek bu 1sinsal
yapiy1 ayirt etmekte zorlanmaktadir.

Bu ¢alismada, k-means uygulanmadan 6nce embedding
vektorleri (x;) birim hiperkiire (unit hypersphere) iizerine
su igslemle iz distirilmiistiir:

Xi
norm —

o iz

X

Bu normalizasyon iglemi, tim diigiim temsillerini birim
uzunluga getirmis ve Oklid mesafesinin aslinda vektorler
arasindaki agisal farki (cosine similarity) temsil etmesini
saglamistir. Sonug tablosunda k-means(emb) ve Spectral
algoritmalarinin birebir ayn1 ARI, NMI ve Conductance
degerlerini iiretmesi, bu teorik yaklasimin dogrulugunu ve
scikit-learn kiitliphanesinin SpectralClustering siifinin i¢
mekanizmasinin manuel olarak basartyla modellendigini
kanitlamaktadir [17].

Modern modiilarite tabanli yontemlerden Leiden
Algoritmas, diisiik ¢6ziiniirliik parametresi (gamma=0.5)
ile calistirlldiginda Kernighan-Lin algoritmasi ile birebir
ayn1 topolojik kesimi (Conductance 0.128) yakalamustir.
Bu bulgu, Leiden algoritmasinin sadece modiilariteyi

optimize etmekle kalmayip, uygun parametrelerle
gizgenin en dogal darbogazlarim1  (bottlenecks)
bulabildigini ve baglantiliik garantisi (guaranteed

connectivity) sagladigini gostermektedir [19].

Ote yandan, Louvain Algoritmas1 (ARI 0.48) beklenen
performansin altinda kalmistir. Fortunato ve Barthelemy
(2007) tarafindan oOne siirilen "Coziniirlik Smirt"
(Resolution Limit) problemi geregi, Louvain algoritmasi
agdaki daha kiigiik alt topluluklari (sub-communities)
tespit etme egilimindedir. Bu g¢alismada ikili (binary)
smiflandirma  zorunlulugu getirildiginde, Louvain'in
buldugu dogal alt kiimelerin birlestirilmesi sirasinda bilgi
kaybr yasandigr ve bunun digsal metrikleri diisiirdiigii
gbzlemlenmistir.

Dikkat cekici bir diger basarisizlik 6rnegi ise MinCut
yaklagimidir  (ARI=0.00). Algoritma, sadece kesilen
kenar sayisini minimize ederken kiimelerin hacim
dengesini (volume balance) g6z ardi etmis ve muhtemelen
agin g¢eperindeki tekil diigiimleri izole etmistir. Yiiksek
Conductance degeri (0.5065), bulunan kiimelerin
topolojik olarak iyi ayrismadigini kanitlar niteliktedir.

Caligmanin metodolojik derinligi agisindan en kritik
bulgulardan biri ise k-means algoritmasinin spektral
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Oznitelikler tizerindeki davramigidir. Baglangicta ham
spektral gobmmeler (raw embeddings) iizerinde uygulanan
k-means algoritmasi basarisiz olurken (ARI 0.07),
vektorlerin birim hiperkiire lizerine L, normalizasyonu
ile iz disiiriilmesi (projection) sonucunda performansin
Spectral Clustering algoritmasi ile esdeger diizeye (ARI
0.88) yiikseldigi tespit edilmistir. Bu durum, Ng, Jordan
ve Weiss (2002) teorisiyle uyumlu olarak, spektral
uzaydaki ayrismanimn Oklid mesafesinden ziyade acisal
(cosine) yakinliga dayandigini ve normalizasyonun
spektral yontemlerin basarisi igin bir 6n sart oldugunu
dogrulamaktadir.

Sonug olarak, verinin global yapisinin homojen olmadig1
ve net bir kutuplasmanin (polarization) bulundugu
aglarda, dogru on isleme adimlar1 (preprocessing)
uygulandiginda spektral tabanli ydntemlerin yerel
yogunluk tabanli yontemlere (Louvain gibi) kiyasla daha
tutarli sonuglar {irettigi tespit edilmistir.

3.2. Dolphin veri seti iizerine Kkiimeleme

algoritmalarimmin Uygulanmasi

Dolphin veri seti, 62 diigiim ve 159 kenardan olusan,
ancak yer gercekligi (ground-truth) etiketlerinin analiz
stirecine dahil edilmedigi (unsupervised) bir sosyal agdir.
Bu ¢izge tlizerinde uygulanan kiimeleme algoritmalarinin
performans metrikleri Tablo 4'te, gorsellestirilmis

sonuclar ise Sekil 2'de sunulmustur.
Dolphin Graph: Coverage & Conductance
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Sekil 2. Dolphin veri setinde kiimeleme algoritmalarinin
sonuglari
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Sonuglar incelendiginde, algoritmalarin "matematiksel
optimum" ile "sosyolojik anlamlilik" arasinda bir
odiinlesim (trade-off) yasadigi goriilmektedir:

Dengesiz Kesim (Trivial Solution) Problemi: Girvan-
Newman, Spectral Clustering ve k-means (emb)
algoritmalarinin tamami, virgiilden sonraki hassasiyete
kadar birebir aynmi skorlari (Conductance = 0.045)
tiretmistir. {lk bakista bu degerler "miikemmel ayrigma"
gibi goriinse de gorsellestirme sonuglar bu algoritmalarin
agm merkezindeki yogun yapiyr bdlmek yerine, agin
¢eperindeki (periphery) zayif bagh birka¢ diigiimii izole
ederek dengesiz bir kesim (trivial cut) yaptigim
gostermektedir. Coverage degerlerinin ¢ok yiiksek (0.96)
olmasi, agin biiylik kisminin tek bir dev kiimede
toplandigini dogrulamaktadir.

Dengeli Dagilim: Kernighan-Lin algoritmasi, ¢izgeyi
dengeli parcalara ayirma (bisection) kisitlamasi



Y. Erding ve E. Giilbandilar/ Cizge Kiimeleme Algoritmalarinin Karsilagtirmal Analizi

nedeniyle, dengesiz kesim problemine diismeden agin ana
omurgasint en iyi bolen yontem olmustur. 0.90 Kapsama
ve 0.09 gecirgenlik degerleri, algoritmanin yunus
popiilasyonunu iki ana aile grubuna ayiran en kararli
(stable) kesimi buldugunu isaret etmektedir.

Modiilerite ve Parcalanma: Louvain algoritmasi (Cov
~0.77), ag1 ikili (binary) yapidan ziyade daha kiigiik ve
¢oklu alt topluluklara ayirma egilimi gostermistir. Bu
durum, yunus agmin icindeki daha siki arkadashk
gruplarini (cliques) ortaya ¢ikarmasi agisindan sosyolojik
olarak anlamlidir.

Parametre Duyarhihigi: Leiden algoritmasinin Dolphin
aginda oldukc¢a diisiik bir Kapsama orant (Cov =0.26)
sergilemesi,  kullanilan  ¢dzlniirlik  (resolution)
parametresinin bu agin seyrek (sparse) yapisi igin agresif
kaldigmi  ve agin asir1  pargalanmasmna  (over-
segmentation) neden oldugunu gostermektedir.

Sonug olarak, Dolphin ag1 gibi belirgin bir kutuplagsmanin
olmadig1 ancak yogun alt gruplarin bulundugu aglarda,
sadece Conductance metrigine odaklanmanin yaniltict
olabilecegi; dengeli kesim yontemlerinin (Kernighan-
Lin) yapiy1 daha iyi korudugu tespit edilmistir

en iyi NMI skoruna (0.597) ulagmistir. MinCut'in tirettigi
cok diisiik Conductance (0.0431) degeri, bu agda Liberal
ve Muhafazakar kitaplar arasindaki baglantinin "pamuk
ipligine bagl" oldugunu ve algoritmanin bu dogal
darbogaz1 (bottleneck) milkemmel tespit ettigini
gostermektedir. Burada diisiik conductance, trivial bir
kesimi degil, ger¢ek kutuplagsmay1 yansitmaktadir.

PolBooks: Digsal Metrikler

0.7
N ARI

NMI

0.

o

0.

o

0.4

>

0.3 4

w

0.2 4

[N}

0.

=

0.0

5}

MinCut
Kernighan-Lin
Girvan-Newman
Spectral
CliquePerc
Louvain

Leiden
kmeansEmb

Sekil 3. Polbooks veri setinde kiimeleme

algoritmalarinin sonuglari

Tablo 5. Polbooks cizge i¢in performans verileri

Algoritma | ARI NMI Coverage Conducta
Tablo 4. Dolphin ¢izge i¢in performans verileri MnCat 0667 | 0397 0.9560 0 18231
Algoritma Coverage Conductance K;lni;han : : : :
MinCut 0.993711 0.501577 Lin 0.518 | 0.418 0.9320 0.0680
Kemighan-Lin 0.905660 0.096181 Girvan- 0.630 0.548 0.9501 0.0499
Newman
Girvan-Newman 0.962264 | 0.045308 Spectral 0.427 | 0.492 | 0.8073 0.1927
Clique-
Spectral 0.962264 0.045308 Percolatio | 0.671 | 0.543 0.9093 0.0907
n
Clique-Percolation | 0.723270 | 0.399974 Louvain 0.660 | 0.556 | 0.8934 0.1066
Leiden 0.656 | 0.560 0.8889 0.1111
Louvain 0.773585 0.293416 t(e':;lsz;ns 0 (;22 0.018 0.2993 0.7007
Leiden 0.257862 0.768353 ;
k-means (emb) 0.962264 0.045308
Clique-Percolation (CPM) Performansi: En yiliksek ARI
3.3. Polbooks veri seti iizerine kiimeleme skorunu (0.671) elde eden CPM, kitaplarin birlikte satin

algoritmalarimin Uygulanmasi

Polbooks veri seti, 2004 ABD Baskanlik secimleri
sirasinda Amazon.com {izerinde siyasi kitaplarin satig
verilerinden Valdis Krebs tarafindan derlenen; 105
diigim ve 441 kenardan olusan orta olgekli bir agdir.
Diigiimler "Liberal", "Muhafazakar" ve "Notr" olmak
lizere lic smifa ayrilmistir. Bu ag lizerinde uygulanan

algoritmalarin  performans metrikleri Tablo 5’te,
gorsellestirilmis  kiimeleme  yapilart  Sekil  3’te
sunulmustur.

Polbooks ag1, Dolphin agindan farkl: olarak ¢ok giiclii bir

yapisal kutuplasma (polarization) igermektedir. Bu
durum, algoritmalarin davraniglarini dogrudan
etkilemistir:

MinCut ve Kutuplagma Basarisi: Dolphin aginda "asikar
¢Oziim" ireterek basarisiz olan MinCut algoritmasi,
Polbooks aginda en yiiksek ikinci ARI skoruna (0.667) ve

4

alimma (co-purchasing) davranigindaki yogun alt gruplari
(cliques) basartyla yakalamistir. Bu durum, benzer
goriisteki okuyucularin olusturdugu siki 6beklenmelerin,
global kesim yontemlerinden ziyade yerel yogunluk
yontemleriyle daha iyi modellendigini gostermektedir.

Louvain ve Leiden Kararliligi: Modiilerite tabanli bu iki
algoritma, hem yiiksek digsal basart (ARI = 0.66) hem de
dengeli igsel metrikler sunarak en gilivenilir yontemler
olduklarint kanitlamistir.

Spektral Yontemlerde Ayrigma: Standart Spectral
Clustering orta seviye bir basar1 (ARI=0.427) gosterirken;
k-means (emb) yaklasimi negatif ARI degeri (-0.022) ve
¢ok diisik Coverage (0.29) ile tamamen basarisiz
olmustur. Bu negatif bulgu, 3 smifli (Liberal-Notr-
Muhafazakar) ve heterojen yapilarda, basit spektral
goémme tekniklerinin yetersiz kaldigini; 6zellikle "Notr"
smifinin embedding uzayinda diger siniflarla karistigini
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(non-linearly  separable) ve k-means'in  kiiresel

varsayimlarinin ¢oktiigiinii isaret etmektedir.

Sonu¢ olarak, Polbooks gibi net kutuplagmaya sahip
aglarda MinCut gibi kesim tabanli algoritmalar ile CPM
gibi yogunluk tabanli algoritmalarin, genel amacgh
yontemlerden daha iyi sonug verebildigi goriilmiistiir.

3.4. LFR Benchmark veri seti iizerine kiimeleme
algoritmalarimin Uygulanmasi

LFR (Lancichinetti-Fortunato-Radicchi) Benchmark,
topluluk tespit algoritmalarinin performansini 6lgmek igin
literatiirde standart kabul edilen sentetik bir ag modelidir.
Bu c¢alismada kullanilan 250 diigiimlii LFR ag1; diigiim
derecelerinin ve topluluk biiyiikliiklerinin gii¢ yasasina
(power-law) gore dagildigi, giiriilti parametresinin
(mixing parameter, $\mu$) kontrol altinda tutuldugu
heterojen bir yapiya sahiptir. Algoritmalarin bu kontrolli
ortamdaki performans verileri Tablo 6’da, gorsel
sonuglar ise Sekil 4’te sunulmustur.

LFR Benchmark: ARI & NMI
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Sekil 4. LFR Benchmark veri setinde kiimeleme
algoritmalarinin sonuglari
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LFR veri seti lizerindeki sonuglar, algoritmalarin "yapisal
giiriiltiiye" ve "parametre optimizasyonuna" verdikleri
tepkileri net bir sekilde ayristirmustir:

Modiilerite ve Global Optimizasyonun Zaferi: Louvain
algoritmasi, ARI=1.000 ve NMI=1.000 skorlarina
ulasarak, sentetik olarak olusturulan yer gercekligi
(Ground-Truth) yapisint hatasiz bir sekilde tespit etmistir.
Benzer sekilde Spectral Clustering (ARI=0.952) ve
normalize edilmis k-means (emb) (ARI=0.908)
yontemleri de ¢ok yiiksek basar1 gostermistir. Bu durum,
agdaki topluluklarin lineer olmayan uzayda (manifold)
veya modiilerite diizleminde net sinirlarla ayristigini
kanitlamaktadir.

Leiden Paradoksu ve Parametre Duyarliligi: Karate Club
verisinde basarili olan Leiden algoritmasi, bu veri setinde
dramatik bir performans diisiisii (ARI=0.006) yasamustir.
Cok diisiik Coverage (0.14) ve ¢ok yiiksek Conductance
(0.85) degerleri, algoritmanin ag1 atomize ettigini (asir1
parcaladigini) gdstermektedir. Bu basarisizligin temel
nedeni, Karate Club icin optimize edilen disiik
¢ozliniirlik  parametresinin  (resolution=0.5), daha
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karmagik ve giiriiltiilii LFR yapisina uymamasidir. Bu
bulgu, Leiden gibi gelismis algoritmalarin varsayilan
veya  statik  parametrelerle her veri  setinde
¢alismayacagini, hiperparametre optimizasyonunun (grid
search) zorunlu oldugunu ortaya koymaktadir.

Dengessz Coziim Tekrari: MinCut algoritmasi, 0.998 gibi
neredeyse tam Coverage degerine ragmen 0.001 ARI
skoru iiretmistir. Bu, algoritmanin yine agin %99'unu tek
bir kiime yapip, sadece 1-2 diigiimii keserek (trivial cut)
"matematiksel hile" yaptigini gosterir.

Hiyerarsik Yontemlerin Yetersizligi: Girvan-Newman
(ARI=0.066) ve Kernighan-Lin (ARI=0.226) gibi klasik
yontemler, LFR aginin karmasik topolojisi ve giiriiltii
seviyesi karsisinda yetersiz kalarak, modern spektral ve
modiilerite tabanli yontemlerin gerisinde kalmistir.
Sonu¢ olarak; LFR gibi iyi tanimlanmis yapilarda
Louvain ve Spectral yontemler "altin standart”
performans gdsterirken, parametreleri veriye 06zel
ayarlanmayan yontemlerin (Leiden oOrnegi) yaniltici
sonuglar dogurabilecegi gdzlemlenmistir.

Tablo 6. LFR Benchmark Cizge i¢in Performans Verileri

Algoritma | ARI NMI Coverage Conduc
tance

MinCut 0.001 | 0.008 | 0.9980 | 0.3333
E;mlghan' 0.226 | 0.438 | 0.9590 | 0.0427
Girvan- 0.066 | 0.284 | 0.9922 | 0.0476
Newman
Spectral 0.952 | 0.956 | 0.9239 | 0.0720
Clique- 16574 | 0732 | 0.6666 | 05119
Percolation
Louvain 1.000 | 1.000 | 0.9356 | 0.0618
Leiden 0.006 | 0.062 | 0.1423 | 0.8581
k-means 0.908 | 0.925 | 0.9025 | 0.0922
(emb)

4. TARTISMA VE SONUC

Bu calismada, ¢izge kiimeleme (graph clustering)

probleminin karmagikligini ve algoritmik cesitliligini
analiz etmek amaciyla; topolojik &zellikleri birbirinden
farkli dort veri seti (Karate Club, Dolphin Agi, PolBooks
ve LFR Benchmark) iizerinde sekiz farkli algoritmanin
(MinCut, Kernighan-Lin, Girvan-Newman, Spektral,
Clique Percolation, Louvain, Leiden ve k-means
embedding)  performansi  karsilagtirmali  olarak
degerlendirilmistir.

Elde edilen deneysel bulgular, algoritmalarin basarisinin
tek bir metrikle Ol¢iilemeyecegini, veri setinin yapisal
karakteristiginin (kutuplasma, modiilerite, giiriiltii orant)
en belirleyici faktor oldugunu ortaya koymustur:

Global Kutuplagsma ve Spektral Yontemler: Net bir
kutuplagmanin (polarization) bulundugu Karate Club
agida, Spektral Kiimeleme yontemi (ARI = 0.88) yerel
yontemlere kiyasla daha basarili olmustur. Bu durum,
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gizgenin Laplacian 6zvektorlerine dayali  global
optimizasyonun, agdaki cebirsel kopus noktalarmni
(algebraic connectivity) tespit etmede listiin oldugunu
gostermektedir.

Dengesiz Kesim (Trivial Solution) Riski: Yer gergekligi
etiketinin bulunmadigi Dolphin aginda, MinCut ve
Spektral gibi yontemlerin ¢ok diisik Conductance
degerlerine ulagsmasma ragmen, gorsel analizde agin
sadece ug¢ noktalarint (outliers) kestigi ve "dengesiz
kesime ¢Oziim" iirettigi tespit edilmistir. Buna karsilik,
dengeli bdlme (partitioning) kisitlamasina  sahip
Kernighan-Lin algoritmasi (Cov = 0.91), agin sosyolojik
yapisini en iyi yansitan yontem olarak 6ne ¢ikmustir.

Yogun Alt Yapilarin Tespiti: Siyasi kitaplardan olusan
PolBooks aginda, Clique-Percolation (ARI = 0.67) ve
Louvain/Leiden (ARI =~ 0.66) algoritmalari, benzer
goriisteki  siki Obeklenmeleri  (dense  subgraphs)
yakalamada basgarili olmustur.

Parametre Duyarlilig1 ve Modiilerite: Kontrollii bir deney
ortami sunan sentetik LFR Benchmark veri setinde,
Louvain algoritmasi (ARI=1.0) kusursuz bir performans
sergilerken; parametreleri Karate Club agina gore (diisiik
¢ozliniirliik) ayarlanan Leiden algoritmasinin performansi
dramatik sekilde diismiistir (ARI ~0.006). Bu bulgu,
modern algoritmalarin varsayilan ayarlarla her veride
calismayacagmi ve hiperparametre optimizasyonunun
(grid search) kritik 6nemini kanitlamaktadir.

Caligmanin en 6zgiin bulgularindan biri, spektral gdbmme
(embedding) tabanli k-means yaklasiminda yapilan
iyilestirmedir. Ham 6zvektorler tizerinde basarisiz olan k-
means algoritmasi, diigiim vektorlerinin L, normu ile
birim hiperkiireye normalize edilmesi sonucunda,
Spektral Kiimeleme algoritmast ile esdeger (ARI =0.88)
ve yliksek performansa ulasmigtir. Bu sonug, vektor
uzayimdaki ayrismanin Oklid mesafesinden ziyade agisal
(cosine) yakinliga dayandigini  deneysel olarak
dogrulamaktadir.

Sonug olarak bu calisma; ag analizinde "tek bir en iyi
algoritma" olmadigini, algoritma se¢iminin verinin
biiyiikliigiine, etiket bilgisinin varligina ve aranilan
yapinin (dengeli kesim vs. yogun topluluk) niteligine gore
yaptlmasi  gerektigini  gostermektedir. Gelecek
caligmalarda, sadece topolojik yapiyr degil, digim
Ozniteliklerini de 6grenme siirecine dahil eden Cizge Sinir
Aglart  (Graph Neural Networks- GNN) tabanh
yontemlerin bu veri setleri tzerindeki basarisinin
incelenmesi hedeflenmektedir.

Etik Hususlar
Etik kurallara uyum

Yazar olarak insan goniilliileri ve deneysel hayvan igeren
calismalarda gerceklestirilen tiim prosediirleri, kurumsal
ve / veya ulusal aragtirma komitesinin etik standartlarina
ve 1964 Helsinki deklarasyonuna ve daha sonraki
degisikliklerine veya karsilagtirilabilir etik standartlara
uygun ¢alistigimizi deklare ederiz.
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Finansman

Bu ¢alisma i¢in herhangi bir finansal destek alinmamustir.
Cikar catismasi

Yazar ¢aligsma ile ilgili herhangi bir kurum ya da kisilerle
¢ikar ¢atigmasinin olmadigini beyan eder.
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