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Özet: Bu çalışmada, farklı çizge kümeleme algoritmalarının performansları küçük ve orta 

ölçekli dört farklı veri seti üzerinde analiz edilmiştir. Veri setlerinden üçü (Karate Club, 

Dolphin Ağı ve PolBooks) gerçek dünya ağlarından alınırken, LFR Benchmark veri seti 

sentetik bir ağ olarak kullanılmıştır. Çalışmada MinCut, Kernighan-Lin, Girvan-

Newman, Spektral Kümeleme, Clique Percolation, Louvain, Leiden ve Spektral Gömme 

tabanlı k-means olmak üzere sekiz farklı algoritma karşılaştırılmıştır. Algoritmaların 

başarımı, Düzeltilmiş Rand İndeksi ve Normalize Edilmiş Karşılıklı Bilgi gibi dışsal 

metriklerin yanı sıra Kapsama ve Geçirgenlik gibi içsel metrikler aracılığıyla 

değerlendirilmiştir. Referans etiket bilgisinin mevcut olduğu veri setlerinde, Spektral 

tabanlı yöntemlerin ağ yapısını en iyi temsil ettiği görülmüştür. Gerçek etiketlerin 

bulunmadığı Dolphin Ağı veri setinde ise içsel metriklere odaklanılmış; Girvan-Newman 

ve modülerite tabanlı algoritmaların tutarlı topluluk yapıları sunduğu belirlenmiştir. 

Ayrıca, LFR Benchmark veri setinde Louvain algoritması yüksek dışsal uyum sağlarken, 

algoritma seçiminde ağın topolojik yapısının ve gürültü seviyesinin belirleyici olduğu 

gözlemlenmiştir. Bu çalışma, algoritmaların farklı karakteristiklere sahip ağlardaki 

davranışlarını karşılaştırarak, araştırmacılara veri seti yapısına uygun yöntem seçimi 

konusunda rehberlik etmeyi amaçlamaktadır. 
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Abstract: In this study, the performance of various graph clustering algorithms is 

evaluated on four distinct small and medium-sized datasets. Three of these datasets 

(Karate Club, Dolphin Network, and PolBooks) represent real-world networks, while the 

LFR Benchmark dataset constitutes a synthetic network structure. Eight different 

clustering algorithms were employed: MinCut, Kernighan-Lin, Girvan-Newman, 

Spectral Clustering, Clique Percolation, Louvain, Leiden, and Spectral Embedding-based 

k-means. The performance of these algorithms was assessed using both external metrics 

(Adjusted Rand Index, Normalized Mutual Information) and internal metrics (Coverage, 

Conductance). In datasets where ground-truth labels were available, Spectral-based 

methods demonstrated superior capability in capturing the global network structure. For 

the Dolphin Network, which lacks ground-truth labels, the analysis focused on internal 

metrics, revealing that Girvan-Newman and modularity-based algorithms provided more 

consistent community structures. Furthermore, on the LFR Benchmark dataset, the 

Louvain algorithm achieved high external validity. This study highlights the advantages 

and limitations of clustering methods by comparing their performances across datasets 

with varying topological characteristics, emphasizing the critical role of dataset structure 

and metric selection in algorithm preference.  
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1. GİRİŞ  

 
Çizge (Graph), düğümler ve bu düğümler arasındaki 

ilişkileri temsil eden kenarlardan oluşan, karmaşık 

sistemlerin modellenmesinde kullanılan temel bir veri 

yapısıdır [1]. Sosyal ağlardan biyolojik sistemlere, 

iletişim altyapılarından bilgi ağlarına kadar pek çok 

alanda, verinin altında yatan yapısal örüntüleri 

anlamlandırmak için çizgelerden yararlanılmaktadır [2]. 

Karmaşık ağların en belirgin özelliklerinden biri, 

düğümlerin rastgele dağılmak yerine kendi aralarında 

yoğun, diğer gruplarla ise seyrek bağlantılar kurarak 

"topluluk" (community) veya "küme" adı verilen modüler 

yapılar oluşturmasıdır. Ağlardaki bu modüler yapının 

anlaşılması; biyolojik ağlarda protein fonksiyonlarının 

keşfinden, sosyal ağlarda bilgi yayılımının kontrolüne ve 

öneri sistemlerinin iyileştirilmesine kadar kritik bir rol 

oynamaktadır [3]. Kümeleme algoritmaları, ağ 

topolojisindeki bu yoğun bağlantılı alt yapıları ortaya 

çıkararak analiz, öngörü ve modelleme süreçlerine katkı 

sağlamayı hedefler [4]. 

 

Ancak, her ağın topolojik karakteristiği (yoğunluk, 

düğüm sayısı, gürültü oranı) farklılık gösterdiği için, 

literatürde tek bir "en iyi" algoritmadan söz etmek 

mümkün değildir. Her algoritmanın farklı bir topolojik 

varsayıma (örn. modülerite maksimizasyonu veya 

spektral ayrışım) dayanması, performanslarının veri 

setine göre değişkenlik göstermesine neden olmaktadır. 

Örneğin, modülerite tabanlı yöntemler bazı ağlarda 

"çözünürlük sınırı" (resolution limit) nedeniyle aşırı 

parçalanmaya yol açabilirken, spektral yöntemler büyük 

ölçekli ağlarda yüksek hesaplama maliyeti 

yaratabilmektedir. Bu nedenle, algoritmaların farklı 

yapısal özelliklere sahip ağlar üzerindeki davranışlarının 

standart benchmark veri setleri ve metrikler (dışsal ve 

içsel) kullanılarak karşılaştırılması, literatürdeki önemli 

bir ihtiyaçtır [5, 6, 7]. 

 

Literatürde bu ihtiyaca yönelik çeşitli çalışmalar 

mevcuttur. Watteau ve ark. (2024), geleneksel ve modern 

çizge kümeleme yaklaşımlarını inceleyerek özellikle 

Spektral Kümeleme ve Leiden algoritması gibi yöntemleri 

karşılaştırmıştır [8]. Shi ve Chen (2020), 70'ten fazla 

algoritmayı hem ağırlıksız hem de ağırlıklı çizgelerde 

değerlendirmiş; özellikle çözünürlük parametresinin 

topluluk yapısını belirlemedeki kritik rolünü 

vurgulamıştır [9]. Rodriguez vd. (2016), R dilinde mevcut 

olan 9 yaygın yöntemi normal dağılımlı verilerde 

kıyaslayarak, varsayılan değerlerde spektral yaklaşımın 

başarısına dikkat çekmiştir [10]. Benzer şekilde Liu vd. 

(2015); Louvain, METIS, Spectral kümeleme gibi 

tekniklerin özetleme gücünü gerçek veriler üzerinde 

analiz etmiştir [11]. 

 

Bu çalışmada, literatürdeki bu birikimin üzerine 

eklenerek; küçük ve orta ölçekli üç gerçek dünya veri seti 

(Karate Club, Dolphin Ağı, PolBooks) ve bir sentetik 

benchmark veri seti (LFR Benchmark) kullanılarak sekiz 

farklı çizge kümeleme algoritmasının performansı 

kapsamlı biçimde incelenmiştir. Algoritmaların başarısı, 

hem dışsal metrikler (Adjusted Rand Index, Normalized 

Mutual Information) hem de içsel metrikler (Coverage, 

Conductance) aracılığıyla çok boyutlu olarak analiz 

edilmiştir. Çalışmanın temel özgünlüğü, sadece 

algoritmaları kıyaslamakla kalmayıp; yer gerçekliği 

(ground-truth) bilgisi olmayan veri setlerinde (örn. 

Dolphin Ağı) içsel metriklerin ve metodolojik ön 

işlemlerin (örn. spektral normalizasyon) sonuçlar 

üzerindeki belirleyici etkisini ortaya koymasıdır. Bu 

bağlamda çalışma, veri seti yapısı ve etiket bilgisi gibi 

parametrelerin, kümeleme yöntemlerinin avantajları ve 

sınırlılıkları üzerindeki etkisini ölçmeyi amaçlamaktadır. 

2.  MATERYAL VE METOT  

 

2.1. Deneysel Kurulum ve Yazılım Ortamı 
 
Deneysel çalışmalar, yüksek hesaplama gücü ve 

erişilebilirlik sağlayan bulut tabanlı Google Colab 

ortamında, Python 3.x programlama dili kullanılarak 

gerçekleştirilmiştir. Çizge verilerinin işlenmesi, analizi ve 

görselleştirilmesi için şu temel kütüphanelerden 

yararlanılmıştır: 

 

• NetworkX: Çizge oluşturma, temel topolojik 

analizler ve klasik algoritmaların (Girvan-Newman, 

Kernighan-Lin) uygulanması için. 

• iGraph & Leidenalg: Büyük ölçekli ağlarda yüksek 

performanslı işlem yapabilmek ve Leiden 

algoritmasının özelleştirilmiş (RB-Configuration) 

implementasyonu için. 

• Scikit-learn: Spektral kümeleme, k-means 

algoritması ve performans metriklerinin (ARI, NMI) 

hesaplanması için. 

• Community-Louvain: Louvain algoritmasının 

Python implementasyonu için. 

• Matplotlib & Pandas: Sonuçların görselleştirilmesi 

ve veri manipülasyonu için. 

 

2.2. Metodolojik Yaklaşım ve Ön İşlemler 

 

Çalışmada, farklı topolojik varsayımlara (modülerite, 

spektral ayrışım, kesim tabanlı) dayanan 8 farklı 

kümeleme algoritması, yapısal özellikleri birbirinden 

farklı 4 veri seti (3 gerçek, 1 sentetik) üzerinde test 

edilmiştir. 

Algoritmaların uygulanması sırasında standart 

parametreler yerine, ağın yapısına uygun optimizasyonlar 

yapılmıştır. Çalışmanın metodolojik açıdan en kritik 

adımı, spektral tabanlı vektör kümeleme sürecinde 

uygulanmıştır. Spektral embedding aşamasında, 

Laplacian matrisinden elde edilen ham özvektörler (raw 

eigenvectors) doğrudan k-means algoritmasına 

beslenmemiştir. Bunun yerine, veri uzayındaki ölçek 

farklarını (scale invariance) elimine etmek ve kümeleme 

işleminin açısal yakınlığa dayalı yapılmasını sağlamak 

amacıyla, her bir düğümün embedding vektörü 

𝐿2normuna bölünerek birim uzunluğa (unit length) 

normalize edilmiştir. Kümeleme işlemi bu normalize 

edilmiş uzay üzerinde gerçekleştirilmiştir. 

Algoritma parametreleri ve uygulama detayları Tablo 2'de 

sunulmuştur. 
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2.3. Performans Değerlendirme Çerçevesi 

Önerilen yöntemlerin başarısını ölçmek ve algoritmaların 

farklı topolojik yapılardaki davranışlarını analiz etmek 

amacıyla, literatürde yaygın olarak kabul gören dışsal 

(external) ve içsel (internal) metrikler kullanılmıştır. 

 

2.3.1. Dışsal Metrikler (Ground-Truth Bilgisi Olan 

Durumlar) 

 

Gerçek etiket (Ground-truth) etiketlerinin mevcut olduğu 

veri setlerinde (Karate Club, PolBooks, LFR), 

algoritmalar tarafından bulunan kümeler ile gerçek 

sınıflar arasındaki uyum şu iki metrikle ölçülmüştür: 

 

Adjusted Rand Index (ARI): Bulunan kümeleme sonucu 

ile gerçek etiketlerin ne kadar örtüştüğünü, şans faktörünü 

(random chance) düzelterek ölçen istatistiksel bir 

metriktir. [-1, 1] aralığında değer alır; 1 değeri tam 

eşleşmeyi (mükemmel performans), 0 değeri rastgele bir 

atamayı, negatif değerler ise rastgeleden daha kötü bir 

performansı ifade eder [12]. 

 

Normalized Mutual Information (NMI): Bilgi teorisine 

dayalı bu metrik, iki etiket dağılımı arasındaki "karşılıklı 

bilgiyi" (mutual information) ölçer ve entropi değerine 

göre normalize eder. [0, 1] aralığında değer alır; 1 tam 

örtüşme anlamına gelirken, 0 iki dağılımın birbirinden 

tamamen bağımsız olduğunu gösterir [13] 

. 

2.3.2. İçsel Metrikler (Topolojik Kalite Ölçümü) 

 

Etiket bilgisinin bulunmadığı (örn. Dolphins veri seti) 

veya algoritmanın sadece yapısal başarısının (modülerite 

kalitesinin) değerlendirildiği durumlarda şu metrikler 

kullanılmıştır: 

 

Coverage (Kapsama): Kümelerin çizgenin ne kadarını 

"içerdiğini" ifade eder. Matematiksel olarak, kümelerin 

kendi içlerinde (intra-cluster) kurdukları kenar sayısının, 

ağdaki toplam kenar sayısına oranıdır. Yüksek coverage 

değeri, kenarların çoğunun kümeler içinde kaldığını 

gösterir. 

 

Conductance (Geçirgenlik): Bir kümenin dış dünya ile 

olan bağlantısının, kümenin toplam hacmine oranını 

ölçer. Çizge ölçeğindeki başarı, tüm kümelerin 

conductance değerlerinin ortalaması ile belirlenir. Bu 

metrik [0, 1] aralığında değer alır. Literatürdeki kabulün 

aksine, Conductance değerinin 0’a yaklaşması, kümelerin 

dışarıdan iyi izole edildiğini ve darboğazların 

(bottlenecks) doğru tespit edildiğini gösterir (Düşük 

olması iyidir) [14]. 

 

2.4. Kullanılan Veri Setleri 

 

Python’da nx.karate_club_graph() ile yüklenen 34 

düğümlü, 78 kenarlı klasik benchmark çizgesi, GML 

formatında GitHub kaynağından indirilen 62 düğüm, 159 

kenarlı Dolphin ağı, NetworkX örnek deposundan GML 

ile yüklenen 105 düğüm, 441 kenar PolBooks ağı ve 250 

düğümlü sentetik LFR Bencmark veri seti kullanılmıştır. 

 

 

 

 
Tablo 1. Veri Seti Karakteristikleri 

Veri Seti Düğüm 

(N) 

Kenar 

(E) 

Ortalama 

Derece 

(⟨k⟩) 

Küme 

Sayısı 

(K) 

Kaynak 

Karate Club 34 78 4.6 2 (veya 

4) 

[21] 

Dolphins 62 159 5.1 - 

(Bilin

miyor) 

[22] 

PolBooks 105 441 8.4 3 [23] 

LFR 

Benchmark 
250 ... ... ... [24] 

 

2.5. Kümeleme Algoritmaları 

 

Bu çalışmada, ağ topolojisine farklı yaklaşımlar (kesim 

tabanlı, modülerite tabanlı, spektral ve hiyerarşik) sunan 

sekiz farklı algoritma incelenmiştir. 

 

Min-cut yaklaşımı, çizge teorisindeki klasik 

problemlerden biri olup, çizgenin düğümlerini iki ayrık 

kümeye ayıran bir "kesme" (cut) tanımlar. Algoritmanın 

temel amacı, iki küme arasında kalan kenarların sayısını 

veya (ağırlıklı çizgelerde) toplam kenar ağırlığını 

minimize etmektir [15]. Bu yöntem, Stoer-Wagner 

algoritması gibi deterministik yaklaşımlarla global 

optimum kesimi bulmayı hedefler.  

 

Kernighan-Lin algoritması, çizgeyi önceden belirlenmiş 

(genellikle eşit) büyüklükte iki parçaya ayırırken kenar-

kesit (cut size) maliyetini azaltmayı amaçlayan sezgisel 

ve iteratif bir yöntemdir. Algoritma, her iterasyonda iki 

farklı kümeden birer düğüm çiftini takas ederek (swap) 

kazanç (gain) hesabı yapar ve bu işlemi kümülatif kazanç 

pozitif olduğu sürece sürdürür. Yerel optimuma takılma 

riski olsa da, dengeli bölümler üretmede etkilidir [16]. 

 

Girvan-Newman Hiyerarşik ve bölücü (divisive) bir 

yöntem olan Girvan-Newman, toplulukları belirlemek 

için "kenar arasındalık" (edge betweenness) ölçüsünü 

kullanır. Varsayıma göre, farklı toplulukları birbirine 

bağlayan köprü kenarları arasındaki değeri yüksektir. 

Algoritma, en yüksek arasındaki değere sahip kenarları 

iteratif olarak kaldırarak ağı kademeli olarak daha küçük 

bileşenlere ayırır [2]. 

 

Clique Percolation (CPM) Clique-Percolation Metodu 

(CPM), çizgenin yoğun alt yapılarını (k-cliques) temel 

alır. Bir "k-klik", her düğümün diğer tüm düğümlerle 

bağlı olduğu k düğümlü tam alt çizgedir. CPM 

yönteminde, birbirleriyle k-1 düğümü paylaşan klikler 

"bitişik" kabul edilir ve bu zincirleme yapı bir topluluğu 

oluşturur. Bu yöntem, özellikle örtüşen (overlapping) 

toplulukların tespitinde kullanılır [15] 

 

Modülerite Tabanlı Yöntemler (Louvain ve Leiden): 

Louvain algoritması, büyük ölçekli ağlarda modülerite 

(modularity) maksimizasyonuna dayanan, hızlı ve 

hiyerarşik bir yöntem olup yerel taşıma ve ağ küçültme 

(aggregation) olmak üzere iki aşamadan oluşur [18]. 

Leiden algoritması ise Louvain’in bağlantısız topluluklar 

üretme sorununu çözmek amacıyla geliştirilmiş bir 

versiyonudur; modülerite optimizasyonuna “refinement” 
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(iyileştirme) adı verilen ek bir adım ekleyerek hem daha 

hızlı yakınsama sağlar hem de elde edilen toplulukların 

matematiksel olarak bağlantılı (connected) olmasını 

garanti eder. 

 

Spektral Kümeleme (Spectral Clustering), verinin 

benzerlik matrisinin (Laplacian) özdeğer ve 

özvektörlerini (eigenvectors) kullanarak boyutsal 

indirgeme yapar. Bu çalışmada, literatürde yaygın olarak 

kullanılan normalleştirilmiş Laplacian matrisi tercih 

edilmiş ve elde edilen özvektörler üzerinde, klasik k-

means başlatma sorunlarından (initialization bias) 

kaçınmak amacıyla rotasyon tabanlı ayrıklaştırma 

(discretization) yöntemi uygulanmıştır [17]. 

 

Spektral Gömme Tabanlı k-means (Spectral Embedding 

+ k-means) Çalışmada, scikit-learn kütüphanesinin 

yerleşik spektral kümeleme yöntemi ile "ham" vektör 

tabanlı yaklaşımların farkını ölçmek amacıyla hibrit bir 

yöntem tasarlanmıştır. Bu yöntemde, düğümler Laplacian 

özvektörleri kullanılarak k boyutlu öznitelik uzayına 

(embedding space) taşınmıştır. Standart k-means 

algoritmasının Öklid uzayındaki zaaflarını gidermek için, 

kümeleme öncesinde her bir düğüm vektörü  𝐿2 normuna 

bölünerek birim hiperküre üzerine iz düşürülmüş 

(normalization), ardından k-means uygulanmıştır [20]. 

 

Bu çalışmada kullanılan tüm algoritmalar, sonuçların 

tekrarlanabilirliğini (reproducibility) sağlamak amacıyla 

Python tabanlı açık kaynak kütüphaneler kullanılarak 

uygulanmıştır. Algoritmaların hiperparametreleri, 

literatürdeki standart kabuller ve veri setlerinin yapısal 

özellikleri (sparsity, size) dikkate alınarak optimize 

edilmiştir. Özellikle Leiden algoritmasında modülerite 

çözünürlüğü (resolution parameter) ve k-means 

algoritmasında embedding normalizasyonu gibi kritik 

ayarlar, deneysel performansı doğrudan etkilediği için 

özel olarak belirlenmiştir. Her bir algoritma için 

kullanılan kütüphane bilgileri, kritik parametre değerleri 

ve uygulanan ön işleme adımları Tablo 2’de 

detaylandırılmıştır. 

 
Tablo 2. Algoritma Parametreleri ve İmplementasyon Detayları 

Algoritma Kütüphane / 

İmplementasyon 

Kritik Parametreler ve 

Ön İşlemler 

Louvain community-

louvain (Python) 

Resolution=1.0, Random 

State = 42 

Leiden leidenalg 

(Python) 

Objective= 

RBConfiguration, 

Resolution=0.5, 

Iterations = 2 

Spectral 

Clustering 

sklearn.cluster Affinity= 'precomputed', 

Assign Labels = 
'discretize', k=K_GT 

k-means 

(Spec. 

Emb.) 

sklearn.manifold 
+ sklearn.cluster 

Method=Spectral 
Embedding, 

Normalization=𝐿2,  

d=2, k=𝐾𝐺𝑇 

Girvan-

Newman 

networkx Criterion=Edge 

Betweenness,  

Stop condition =k clusters 

Min-Cut networkx Method = Stoer-Wagner 

(Global Min-Cut) 

Kernighan 

-Lin 

networkx Initial Partition = 

Bisection (k=2) 

 

3. BULGULAR  

 

3.1. Karete Club veri seti üzerine kümeleme 

algoritmalarının Uygulanması 

 

Karete Club veri seti 34 düğüm,78 kenar yönsüz,ağırlıksız 

bir ilişki çizgesidir. Bu çizge üzerinde uygulanan 

kümeleme algoritmalarına ait grafik Şekil 1’de 

performans verileri ise Tablo 3’te gösterilmektedir.  

 

 

 
Şekil 1. Karete club veri setinde kümeleme 

algoritmalarının sonuçları 

 

Karate Club ağı üzerinde uygulanan topluluk tespiti 

algoritmalarının performans metrikleri Tablo 1'de 

özetlenmiştir. Yapılan iyileştirmeler sonucunda, spektral 

tabanlı yöntemlerin (Spectral Clustering ve Normalize 

Edilmiş Spektral Embedding üzerinde k-means) en 

yüksek başarıyı gösterdiği gözlemlenmiştir 

 
Tablo 3. Karete club çizge için performans verileri 

Algoritma ARI NMI Coverage Conductance 

MinCut 0.000 0.050 0.974 0.506 

Kernighan

-Lin        

0.771 0.677 0.871 0.128 

Girvan-

Newman        

0.771 0.732 0.8717 0.1313 

Spectral             0.882 0.837 0.8717 0.128 

Clique-

Percolatio

n   

0.007 0.031 0.858 0.261 

Louvain              0.483 0.427 0.833 0.171 

Leiden               0.771 0.677 0.871 0.128 

k-means 

(emb) 

0.882 0.882 0.871 0.1128 

 

Çalışmanın en çarpıcı bulgusu, k-means algoritmasının 

ham spektral öznitelikler üzerinde başarısız olurken (ARI 

≈0.07), 𝐿2  normalizasyonu uygulandığında 

performansının Spectral Clustering ile eşdeğer düzeye 

(ARI ≈0.88) yükselmesidir. 

 

Spektral embedding tabanlı kümeleme aşamasında, 

Laplacian matrisinden elde edilen ham özvektörler (raw 

eigenvectors) doğrudan k-means algoritmasına 

beslenmemiştir. Bunun yerine, veri uzayındaki ölçek 
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farklarını (scale invariance) elimine etmek ve kümeleme 

işleminin açısal yakınlığa dayalı yapılmasını sağlamak 

amacıyla, her bir düğümün embedding vektörü 𝐿2 

normuna bölünerek birim uzunluğa (unit length) 

normalize edilmiştir. Kümeleme işlemi bu normalize 

edilmiş uzay üzerinde gerçekleştirilmiştir. 

 

Bu durum, Ng, Jordan ve Weiss (2002) tarafından 

önerilen spektral kümeleme algoritmasının temel 

prensibine dayanmaktadır. Graph Laplacian matrisinin 

özvektörleri (eigenvectors) çıkarıldığında, veri noktaları 

𝑅𝑘  uzayında orijinden çıkan ışınsal (radial) doğrultular 

boyunca kümelenir. Standart k-means algoritması Öklid 

mesafesini (Euclidean distance) temel aldığı için, 

büyüklük (magnitude) farklarından etkilenerek bu ışınsal 

yapıyı ayırt etmekte zorlanmaktadır. 

Bu çalışmada, k-means uygulanmadan önce embedding 

vektörleri (𝑥𝑖) birim hiperküre (unit hypersphere) üzerine 

şu işlemle iz düşürülmüştür: 

𝑥𝑖
𝑛𝑜𝑟𝑚 =

𝑥𝑖

‖𝑥𝑖‖2
 

 

Bu normalizasyon işlemi, tüm düğüm temsillerini birim 

uzunluğa getirmiş ve Öklid mesafesinin aslında vektörler 

arasındaki açısal farkı (cosine similarity) temsil etmesini 

sağlamıştır. Sonuç tablosunda k-means(emb) ve Spectral 

algoritmalarının birebir aynı ARI, NMI ve Conductance 

değerlerini üretmesi, bu teorik yaklaşımın doğruluğunu ve 

scikit-learn kütüphanesinin SpectralClustering sınıfının iç 

mekanizmasının manuel olarak başarıyla modellendiğini 

kanıtlamaktadır [17]. 

 

Modern modülarite tabanlı yöntemlerden Leiden 

Algoritması, düşük çözünürlük parametresi (gamma=0.5) 

ile çalıştırıldığında Kernighan-Lin algoritması ile birebir 

aynı topolojik kesimi (Conductance 0.128) yakalamıştır. 

Bu bulgu, Leiden algoritmasının sadece modülariteyi 

optimize etmekle kalmayıp, uygun parametrelerle 

çizgenin en doğal darboğazlarını (bottlenecks) 

bulabildiğini ve bağlantılılık garantisi (guaranteed 

connectivity) sağladığını göstermektedir [19]. 

 

Öte yandan, Louvain Algoritması (ARI 0.48) beklenen 

performansın altında kalmıştır. Fortunato ve Barthelemy 

(2007) tarafından öne sürülen "Çözünürlük Sınırı" 

(Resolution Limit) problemi gereği, Louvain algoritması 

ağdaki daha küçük alt toplulukları (sub-communities) 

tespit etme eğilimindedir. Bu çalışmada ikili (binary) 

sınıflandırma zorunluluğu getirildiğinde, Louvain'in 

bulduğu doğal alt kümelerin birleştirilmesi sırasında bilgi 

kaybı yaşandığı ve bunun dışsal metrikleri düşürdüğü 

gözlemlenmiştir. 

 

Dikkat çekici bir diğer başarısızlık örneği ise MinCut 

yaklaşımıdır (ARI=0.00). Algoritma, sadece kesilen 

kenar sayısını minimize ederken kümelerin hacim 

dengesini (volume balance) göz ardı etmiş ve muhtemelen 

ağın çeperindeki tekil düğümleri izole etmiştir. Yüksek 

Conductance değeri (0.5065), bulunan kümelerin 

topolojik olarak iyi ayrışmadığını kanıtlar niteliktedir. 

 

Çalışmanın metodolojik derinliği açısından en kritik 

bulgulardan biri ise k-means algoritmasının spektral 

öznitelikler üzerindeki davranışıdır. Başlangıçta ham 

spektral gömmeler (raw embeddings) üzerinde uygulanan 

k-means algoritması başarısız olurken (ARI 0.07), 

vektörlerin birim hiperküre üzerine 𝐿2  normalizasyonu 

ile iz düşürülmesi (projection) sonucunda performansın 

Spectral Clustering algoritması ile eşdeğer düzeye (ARI 

0.88) yükseldiği tespit edilmiştir. Bu durum, Ng, Jordan 

ve Weiss (2002) teorisiyle uyumlu olarak, spektral 

uzaydaki ayrışmanın Öklid mesafesinden ziyade açısal 

(cosine) yakınlığa dayandığını ve normalizasyonun 

spektral yöntemlerin başarısı için bir ön şart olduğunu 

doğrulamaktadır. 

Sonuç olarak, verinin global yapısının homojen olmadığı 

ve net bir kutuplaşmanın (polarization) bulunduğu 

ağlarda, doğru ön işleme adımları (preprocessing) 

uygulandığında spektral tabanlı yöntemlerin yerel 

yoğunluk tabanlı yöntemlere (Louvain gibi) kıyasla daha 

tutarlı sonuçlar ürettiği tespit edilmiştir. 

 

3.2. Dolphin veri seti üzerine kümeleme 

algoritmalarının Uygulanması 

 

Dolphin veri seti, 62 düğüm ve 159 kenardan oluşan, 

ancak yer gerçekliği (ground-truth) etiketlerinin analiz 

sürecine dahil edilmediği (unsupervised) bir sosyal ağdır. 

Bu çizge üzerinde uygulanan kümeleme algoritmalarının 

performans metrikleri Tablo 4'te, görselleştirilmiş 

sonuçlar ise Şekil 2'de sunulmuştur. 

 
Şekil 2. Dolphin veri setinde kümeleme algoritmalarının 

sonuçları 
 

Sonuçlar incelendiğinde, algoritmaların "matematiksel 

optimum" ile "sosyolojik anlamlılık" arasında bir 

ödünleşim (trade-off) yaşadığı görülmektedir: 

 

Dengesiz Kesim (Trivial Solution) Problemi: Girvan-

Newman, Spectral Clustering ve k-means (emb) 

algoritmalarının tamamı, virgülden sonraki hassasiyete 

kadar birebir aynı skorları (Conductance ≈ 0.045) 

üretmiştir. İlk bakışta bu değerler "mükemmel ayrışma" 

gibi görünse de görselleştirme sonuçları bu algoritmaların 

ağın merkezindeki yoğun yapıyı bölmek yerine, ağın 

çeperindeki (periphery) zayıf bağlı birkaç düğümü izole 

ederek dengesiz bir kesim (trivial cut) yaptığını 

göstermektedir. Coverage değerlerinin çok yüksek (0.96) 

olması, ağın büyük kısmının tek bir dev kümede 

toplandığını doğrulamaktadır. 

 

Dengeli Dağılım: Kernighan-Lin algoritması, çizgeyi 

dengeli parçalara ayırma (bisection) kısıtlaması 
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nedeniyle, dengesiz kesim problemine düşmeden ağın ana 

omurgasını en iyi bölen yöntem olmuştur. 0.90 Kapsama 

ve 0.09 geçirgenlik değerleri, algoritmanın yunus 

popülasyonunu iki ana aile grubuna ayıran en kararlı 

(stable) kesimi bulduğunu işaret etmektedir. 

 

Modülerite ve Parçalanma: Louvain algoritması (Cov 

≈0.77), ağı ikili (binary) yapıdan ziyade daha küçük ve 

çoklu alt topluluklara ayırma eğilimi göstermiştir. Bu 

durum, yunus ağının içindeki daha sıkı arkadaşlık 

gruplarını (cliques) ortaya çıkarması açısından sosyolojik 

olarak anlamlıdır. 

 

Parametre Duyarlılığı: Leiden algoritmasının Dolphin 

ağında oldukça düşük bir Kapsama oranı (Cov ≈0.26) 

sergilemesi, kullanılan çözünürlük (resolution) 

parametresinin bu ağın seyrek (sparse) yapısı için agresif 

kaldığını ve ağın aşırı parçalanmasına (over-

segmentation) neden olduğunu göstermektedir. 

 

Sonuç olarak, Dolphin ağı gibi belirgin bir kutuplaşmanın 

olmadığı ancak yoğun alt grupların bulunduğu ağlarda, 

sadece Conductance metriğine odaklanmanın yanıltıcı 

olabileceği; dengeli kesim yöntemlerinin (Kernighan-

Lin) yapıyı daha iyi koruduğu tespit edilmiştir 

 
Tablo 4. Dolphin çizge için performans verileri 

Algoritma Coverage Conductance 

MinCut 0.993711      0.501577 

Kernighan-Lin        0.905660      0.096181 

Girvan-Newman        0.962264      0.045308 

Spectral             0.962264      0.045308 

Clique-Percolation   0.723270      0.399974 

Louvain              0.773585      0.293416 

Leiden               0.257862      0.768353 

k-means (emb) 0.962264      0.045308 

 

3.3. Polbooks veri seti üzerine kümeleme 

algoritmalarının Uygulanması 

 

Polbooks veri seti, 2004 ABD Başkanlık seçimleri 

sırasında Amazon.com üzerinde siyasi kitapların satış 

verilerinden Valdis Krebs tarafından derlenen; 105 

düğüm ve 441 kenardan oluşan orta ölçekli bir ağdır. 

Düğümler "Liberal", "Muhafazakâr" ve "Nötr" olmak 

üzere üç sınıfa ayrılmıştır. Bu ağ üzerinde uygulanan 

algoritmaların performans metrikleri Tablo 5’te, 

görselleştirilmiş kümeleme yapıları Şekil 3’te 

sunulmuştur. 

 

Polbooks ağı, Dolphin ağından farklı olarak çok güçlü bir 

yapısal kutuplaşma (polarization) içermektedir. Bu 

durum, algoritmaların davranışlarını doğrudan 

etkilemiştir: 

 

MinCut ve Kutuplaşma Başarısı: Dolphin ağında "aşikar 

çözüm" üreterek başarısız olan MinCut algoritması, 

Polbooks ağında en yüksek ikinci ARI skoruna (0.667) ve 

en iyi NMI skoruna (0.597) ulaşmıştır. MinCut'ın ürettiği 

çok düşük Conductance (0.0431) değeri, bu ağda Liberal 

ve Muhafazakâr kitaplar arasındaki bağlantının "pamuk 

ipliğine bağlı" olduğunu ve algoritmanın bu doğal 

darboğazı (bottleneck) mükemmel tespit ettiğini 

göstermektedir. Burada düşük conductance, trivial bir 

kesimi değil, gerçek kutuplaşmayı yansıtmaktadır. 

 

 
Şekil 3. Polbooks veri setinde kümeleme 

algoritmalarının sonuçları 
 

 

Tablo 5. Polbooks çizge için performans verileri 

Algoritma ARI NMI Coverage 
Conducta

nce 

MinCut 0.667 0.597 0.9569 0.0431 

Kernighan
-Lin 

0.518 0.418 0.9320 0.0680 

Girvan-
Newman 

0.630 0.548 0.9501 0.0499 

Spectral 0.427 0.492 0.8073 0.1927 

Clique-

Percolatio
n 

0.671 0.543 0.9093 0.0907 

Louvain 0.660 0.556 0.8934 0.1066 

Leiden 0.656 0.560 0.8889 0.1111 

k-means 

(emb) 

–

0.022 
0.018 0.2993 0.7007 

 

 

Clique-Percolation (CPM) Performansı: En yüksek ARI 

skorunu (0.671) elde eden CPM, kitapların birlikte satın 

alınma (co-purchasing) davranışındaki yoğun alt grupları 

(cliques) başarıyla yakalamıştır. Bu durum, benzer 

görüşteki okuyucuların oluşturduğu sıkı öbeklenmelerin, 

global kesim yöntemlerinden ziyade yerel yoğunluk 

yöntemleriyle daha iyi modellendiğini göstermektedir. 

 

Louvain ve Leiden Kararlılığı: Modülerite tabanlı bu iki 

algoritma, hem yüksek dışsal başarı (ARI ≈ 0.66) hem de 

dengeli içsel metrikler sunarak en güvenilir yöntemler 

olduklarını kanıtlamıştır. 

 

Spektral Yöntemlerde Ayrışma: Standart Spectral 

Clustering orta seviye bir başarı (ARI=0.427) gösterirken; 

k-means (emb) yaklaşımı negatif ARI değeri (-0.022) ve 

çok düşük Coverage (0.29) ile tamamen başarısız 

olmuştur. Bu negatif bulgu, 3 sınıflı (Liberal-Nötr-

Muhafazakâr) ve heterojen yapılarda, basit spektral 

gömme tekniklerinin yetersiz kaldığını; özellikle "Nötr" 

sınıfının embedding uzayında diğer sınıflarla karıştığını 
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(non-linearly separable) ve k-means'in küresel 

varsayımlarının çöktüğünü işaret etmektedir. 

 

Sonuç olarak, Polbooks gibi net kutuplaşmaya sahip 

ağlarda MinCut gibi kesim tabanlı algoritmalar ile CPM 

gibi yoğunluk tabanlı algoritmaların, genel amaçlı 

yöntemlerden daha iyi sonuç verebildiği görülmüştür. 

 

 

3.4. LFR Benchmark veri seti üzerine kümeleme 

algoritmalarının Uygulanması 

 

LFR (Lancichinetti-Fortunato-Radicchi) Benchmark, 

topluluk tespit algoritmalarının performansını ölçmek için 

literatürde standart kabul edilen sentetik bir ağ modelidir. 

Bu çalışmada kullanılan 250 düğümlü LFR ağı; düğüm 

derecelerinin ve topluluk büyüklüklerinin güç yasasına 

(power-law) göre dağıldığı, gürültü parametresinin 

(mixing parameter, $\mu$) kontrol altında tutulduğu 

heterojen bir yapıya sahiptir. Algoritmaların bu kontrollü 

ortamdaki performans verileri Tablo 6’da, görsel 

sonuçlar ise Şekil 4’te sunulmuştur. 

 

 
Şekil 4. LFR Benchmark veri setinde kümeleme 

algoritmalarının sonuçları 

 

LFR veri seti üzerindeki sonuçlar, algoritmaların "yapısal 

gürültüye" ve "parametre optimizasyonuna" verdikleri 

tepkileri net bir şekilde ayrıştırmıştır: 

 

Modülerite ve Global Optimizasyonun Zaferi: Louvain 

algoritması, ARI=1.000 ve NMI=1.000 skorlarına 

ulaşarak, sentetik olarak oluşturulan yer gerçekliği 

(Ground-Truth) yapısını hatasız bir şekilde tespit etmiştir. 

Benzer şekilde Spectral Clustering (ARI=0.952) ve 

normalize edilmiş k-means (emb) (ARI=0.908) 

yöntemleri de çok yüksek başarı göstermiştir. Bu durum, 

ağdaki toplulukların lineer olmayan uzayda (manifold) 

veya modülerite düzleminde net sınırlarla ayrıştığını 

kanıtlamaktadır. 

 

Leiden Paradoksu ve Parametre Duyarlılığı: Karate Club 

verisinde başarılı olan Leiden algoritması, bu veri setinde 

dramatik bir performans düşüşü (ARI=0.006) yaşamıştır. 

Çok düşük Coverage (0.14) ve çok yüksek Conductance 

(0.85) değerleri, algoritmanın ağı atomize ettiğini (aşırı 

parçaladığını) göstermektedir. Bu başarısızlığın temel 

nedeni, Karate Club için optimize edilen düşük 

çözünürlük parametresinin (resolution=0.5), daha 

karmaşık ve gürültülü LFR yapısına uymamasıdır. Bu 

bulgu, Leiden gibi gelişmiş algoritmaların varsayılan 

veya statik parametrelerle her veri setinde 

çalışmayacağını, hiperparametre optimizasyonunun (grid 

search) zorunlu olduğunu ortaya koymaktadır. 

 

Dengesşz Çözüm Tekrarı: MinCut algoritması, 0.998 gibi 

neredeyse tam Coverage değerine rağmen 0.001 ARI 

skoru üretmiştir. Bu, algoritmanın yine ağın %99'unu tek 

bir küme yapıp, sadece 1-2 düğümü keserek (trivial cut) 

"matematiksel hile" yaptığını gösterir. 

 

Hiyerarşik Yöntemlerin Yetersizliği: Girvan-Newman 

(ARI=0.066) ve Kernighan-Lin (ARI=0.226) gibi klasik 

yöntemler, LFR ağının karmaşık topolojisi ve gürültü 

seviyesi karşısında yetersiz kalarak, modern spektral ve 

modülerite tabanlı yöntemlerin gerisinde kalmıştır. 

Sonuç olarak; LFR gibi iyi tanımlanmış yapılarda 

Louvain ve Spectral yöntemler "altın standart" 

performans gösterirken, parametreleri veriye özel 

ayarlanmayan yöntemlerin (Leiden örneği) yanıltıcı 

sonuçlar doğurabileceği gözlemlenmiştir. 

 

Tablo 6. LFR Benchmark Çizge için Performans Verileri 

Algoritma ARI NMI Coverage 
Conduc

tance 

MinCut 0.001 0.008 0.9980 0.3333 

Kernighan-

Lin        
0.226 0.438 0.9590 0.0427 

Girvan-

Newman        
0.066 0.284 0.9922 0.0476 

Spectral             0.952 0.956 0.9239 0.0720 

Clique-

Percolation   
0.574 0.732 0.6666 0.5119 

Louvain              1.000 1.000 0.9356 0.0618 

Leiden               0.006 0.062 0.1423 0.8581 

k-means 

(emb) 
0.908 0.925 0.9025 0.0922 

 

4. TARTIŞMA VE SONUÇ  

 
Bu çalışmada, çizge kümeleme (graph clustering) 

probleminin karmaşıklığını ve algoritmik çeşitliliğini 

analiz etmek amacıyla; topolojik özellikleri birbirinden 

farklı dört veri seti (Karate Club, Dolphin Ağı, PolBooks 

ve LFR Benchmark) üzerinde sekiz farklı algoritmanın 

(MinCut, Kernighan-Lin, Girvan-Newman, Spektral, 

Clique Percolation, Louvain, Leiden ve k-means 

embedding) performansı karşılaştırmalı olarak 

değerlendirilmiştir. 

 

Elde edilen deneysel bulgular, algoritmaların başarısının 

tek bir metrikle ölçülemeyeceğini, veri setinin yapısal 

karakteristiğinin (kutuplaşma, modülerite, gürültü oranı) 

en belirleyici faktör olduğunu ortaya koymuştur: 

 

Global Kutuplaşma ve Spektral Yöntemler: Net bir 

kutuplaşmanın (polarization) bulunduğu Karate Club 

ağında, Spektral Kümeleme yöntemi (ARI ≈ 0.88) yerel 

yöntemlere kıyasla daha başarılı olmuştur. Bu durum, 
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çizgenin Laplacian özvektörlerine dayalı global 

optimizasyonun, ağdaki cebirsel kopuş noktalarını 

(algebraic connectivity) tespit etmede üstün olduğunu 

göstermektedir. 

 

Dengesiz Kesim (Trivial Solution) Riski: Yer gerçekliği 

etiketinin bulunmadığı Dolphin ağında, MinCut ve 

Spektral gibi yöntemlerin çok düşük Conductance 

değerlerine ulaşmasına rağmen, görsel analizde ağın 

sadece uç noktalarını (outliers) kestiği ve "dengesiz 

kesime çözüm" ürettiği tespit edilmiştir. Buna karşılık, 

dengeli bölme (partitioning) kısıtlamasına sahip 

Kernighan-Lin algoritması (Cov ≈ 0.91), ağın sosyolojik 

yapısını en iyi yansıtan yöntem olarak öne çıkmıştır. 

 

Yoğun Alt Yapıların Tespiti: Siyasi kitaplardan oluşan 

PolBooks ağında, Clique-Percolation (ARI ≈ 0.67) ve 

Louvain/Leiden (ARI ≈ 0.66) algoritmaları, benzer 

görüşteki sıkı öbeklenmeleri (dense subgraphs) 

yakalamada başarılı olmuştur. 

 

Parametre Duyarlılığı ve Modülerite: Kontrollü bir deney 

ortamı sunan sentetik LFR Benchmark veri setinde, 

Louvain algoritması (ARI=1.0) kusursuz bir performans 

sergilerken; parametreleri Karate Club ağına göre (düşük 

çözünürlük) ayarlanan Leiden algoritmasının performansı 

dramatik şekilde düşmüştür (ARI ≈0.006). Bu bulgu, 

modern algoritmaların varsayılan ayarlarla her veride 

çalışmayacağını ve hiperparametre optimizasyonunun 

(grid search) kritik önemini kanıtlamaktadır. 

 

Çalışmanın en özgün bulgularından biri, spektral gömme 

(embedding) tabanlı k-means yaklaşımında yapılan 

iyileştirmedir. Ham özvektörler üzerinde başarısız olan k-

means algoritması, düğüm vektörlerinin 𝐿2 normu ile 

birim hiperküreye normalize edilmesi sonucunda, 

Spektral Kümeleme algoritması ile eşdeğer (ARI ≈0.88) 

ve yüksek performansa ulaşmıştır. Bu sonuç, vektör 

uzayındaki ayrışmanın Öklid mesafesinden ziyade açısal 

(cosine) yakınlığa dayandığını deneysel olarak 

doğrulamaktadır. 

 

Sonuç olarak bu çalışma; ağ analizinde "tek bir en iyi 

algoritma" olmadığını, algoritma seçiminin verinin 

büyüklüğüne, etiket bilgisinin varlığına ve aranılan 

yapının (dengeli kesim vs. yoğun topluluk) niteliğine göre 

yapılması gerektiğini göstermektedir. Gelecek 

çalışmalarda, sadece topolojik yapıyı değil, düğüm 

özniteliklerini de öğrenme sürecine dahil eden Çizge Sinir 

Ağları (Graph Neural Networks- GNN) tabanlı 

yöntemlerin bu veri setleri üzerindeki başarısının 

incelenmesi hedeflenmektedir. 

 

Etik Hususlar   

Etik kurallara uyum  

Yazar olarak insan gönüllüleri ve deneysel hayvan içeren 

çalışmalarda gerçekleştirilen tüm prosedürleri, kurumsal 

ve / veya ulusal araştırma komitesinin etik standartlarına 

ve 1964 Helsinki deklarasyonuna ve daha sonraki 

değişikliklerine veya karşılaştırılabilir etik standartlara 

uygun çalıştığımızı deklare ederiz. 

Finansman  

Bu çalışma için herhangi bir finansal destek alınmamıştır. 

Çıkar çatışması  

Yazar çalışma ile ilgili herhangi bir kurum ya da kişilerle 

çıkar çatışmasının olmadığını beyan eder. 
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