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Abstract 

Monkeypox, like many other epidemics diseases, has been spreading rapidly. Its transmission through both respiratory droplets and 

physical contact has significantly contributed to its fast dissemination. The emergence of the first major outbreaks in the African region in 

2022, followed by the disease spreading at an epidemic level, has raised global concerns. Although this potentially fatal disease can be partially 

detected through PCR methods, it often exhibits symptoms similar to other skin diseases, making accurate diagnosis challenging. At this point, 

computer-aided detection systems, particularly those based on image processing techniques, become crucial. The primary aim of this study is to 

enable the automatic diagnosis of monkeypox using deep learning methods by enhancing classification performance through the selection of 

the most significant features among multiple models. In this study, a hybrid deep learning approach is proposed that integrates transfer learning 

models such as ResNet50V2, NASNetMobile, and InceptionV3 with the mRMR (Minimum Redundancy Maximum Relevance) feature 

selection method. The features extracted from each model were concatenated to form a unified feature vector, from which the 10 most relevant 

features were selected using the mRMR algorithm. Finally, classification was performed based on these selected features. Experiments were 

conducted on three different datasets—MSLD, MSCI, and MSID—containing various skin lesion diseases. The proposed approach achieved 

accuracy rates of 92.00%, 92.50%, and 87.65%, respectively. Among these, the highest accuracy was observed on the MSCI dataset, with a rate 

of 92.50%. This hybrid approach demonstrated high performance across diverse datasets and significantly contributed to clinical diagnosis 

processes by enabling the accurate identification of not only monkeypox but also other visually similar skin lesions. 

Keywords: “Monkeypox, ResNet50V2, NASNetMobile, InceptionV3, mRMR.” 

1. Introduction 

Skin diseases, which can affect individuals of all ages due to environmental factors, are caused by various viruses [1]. In 

dermatological conditions, transmission through physical contact is common, and spread via bodily fluids and particles is almost 

inevitable [2]. Infected individuals significantly increase the risk of transmission in crowded environments such as public 

transportation, and international travel facilitates the spread of outbreaks across regions [3]. Monkeypox was first identified in 

humans in 1970 in the Democratic Republic of the Congo and has since become endemic in the dense forest regions of several 

Central and West African countries [4]. The primary reason for its prevalence in forested areas is that the disease was initially 

observed in rodent species and monkeys. Since 1970, the number of cases has steadily increased, with a notable surge after 2017, 

peaking in 2022 [5]. Mpox, a member of the Orthopoxvirus genus from the Poxviridae family, is a zoonotic virus with a broad 

host range, capable of infecting many mammalian species, including humans, and is characterized by a high rate of animal-to-

human transmission [6]. Figure 1 illustrates the replication cycle of the Mpox virus within a host cell following infection, as well 

as the mechanism of action of antiviral drugs. The virus can enter the cell in two different ways: either by endocytosis (being 

engulfed with fluid and particles) or through direct fusion with the cell membrane. After entry, the virus sheds its outer layers 

and releases enzymes into the host cell, targeting the DNA. Unlike many other viruses, Mpox replicates not in the cell nucleus 

but in specialized areas called “viral factories” [7]. Currently, diagnosis of the disease relies on identifying symptoms such as an 

incubation period of 7–14 days, fever, headache, fatigue, myalgia (characterized by tenderness, stiffness, and pain), swelling of 

lymph nodes, and skin lesions in infected patients. However, these symptoms are not sufficient for definitive diagnosis, as 

similar clinical signs may appear in various other skin diseases. Therefore, accurate diagnosis requires laboratory techniques such 

as virus isolation, electron microscopy, immunohistochemistry, and PCR (Polymerase Chain Reaction) [8]. Nonetheless, the 

similarity in clinical manifestations between Monkeypox (Mpox) and other dermatological lesion diseases poses challenges for 
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timely and accurate diagnosis using conventional medical approaches. Traditional diagnostic tools and methods often rely on 

time-consuming laboratory tests and expert interpretation, which can lead to delays in treatment and increase the risk of disease 

transmission through contact. Recent studies have demonstrated that machine learning (ML) and deep learning (DL) algorithms 

can effectively analyze images of skin lesions along with clinical data to enable rapid and accurate diagnosis of similar viral and 

bacterial skin diseases. This highlights the significant potential of applying ML/DL techniques in Mpox diagnosis and their 

capability to enhance clinical decision support systems. 

For differential diagnosis, the following diseases should be considered due to their similarity in clinical signs [8]: 

• Measles, 

• Bacterial skin diseases, 

• Scabies, 

• Drug allergies, 

• Syphilis, 

• Rickettsial pox, 

• Smallpox, 

• Chickenpox. 

Considering that many of the above-mentioned skin diseases share similar characteristics, the use of machine learning (ML) 

and deep learning (DL) algorithms significantly accelerates the diagnosis process and plays a crucial role in preventing 

diagnostic errors by physicians [1]. 

 

Fig. 1. The effect of Mpox virus on cells after transmission [7] 

In recent years, research on deep learning-based diagnostic systems has gained remarkable momentum, especially for 

identifying monkeypox and other dermatological conditions. One noteworthy contribution in this domain is by Altun et al., who 

developed a hybrid model based on transfer learning using the MobileNetV3-s architecture. In this study, features were extracted 

using Convolutional Neural Networks (CNNs), yielding impressive results: an F1-score of 97.8%, AUC of 99%, and an overall 

accuracy of 96.8% [17]. The MonDiaL-CAD framework, proposed by Omneya Attallah, evaluated eight different CNN 

architectures, identifying the combination of Xception, ResNet-101, and ResNet-50 as the top performer. This hybrid 

architecture achieved an accuracy of 97.1% on the MSID dataset and 98.7% on the MSLD dataset [18]. Similarly, Khan et al. 

introduced the DNLR-NET model by combining DenseNet201 with Logistic Regression. This approach achieved a classification 
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accuracy of 97.60%, outperforming Random Forest and Support Vector Machine (SVM) models tested on the same data [19]. 

Asif et al. also adopted an ensemble strategy by merging DenseNet201, MobileNet, and DenseNet169 architectures. Their 

method achieved an accuracy of 97.78% [20]. Likewise, Sitaula and Shahi evaluated 13 pretrained deep learning models on the 

Monkeypox2022 dataset, achieving 87.13% accuracy using a combination of Xception and DenseNet169 validated through five-

fold cross-validation [21]. Another effective hybrid approach was proposed by Luong et al., who integrated MobileNet with 

Logistic Regression. Their system demonstrated 97% accuracy, highlighting the strength of combining deep learning with 

machine learning techniques for disease classification [22]. Gülmez designed the MonkeypoxHybridNet model by combining 

ResNet50, VGG19, and InceptionV3 architectures. The model achieved 84.2% accuracy, outperforming the individual networks. 

The addition of a dropout layer helped reduce overfitting and enhanced robustness [23]. Rampogu carried out a comprehensive 

study evaluating both deep learning and machine learning models using public datasets like ISIC. CNN models such as 

ResNet50, VGG19, EfficientNetB3, DenseNet121, MobileNetV2, and Xception were examined. Among them, ResNet18 

achieved the highest accuracy at 99.49% [24]. Saleh and Rabie proposed a hybrid framework combining Weighted Naive Bayes, 

Weighted KNN, and LSTM models. Their approach incorporated Few-Shot Learning (FSL) and Weakly Supervised Learning 

(WSL) layers, enhanced with a Confusion-Based Voting mechanism. On an imbalanced dataset with 500 samples, their model 

achieved a classification accuracy of 98.48% [25]. Fatih Uysal presented an innovative hybrid model that combined RepVGG 

and MnasNet with an LSTM layer to capture temporal dependencies, achieving an accuracy of 87% [26]. In a separate study, 

Tasci used the HAM10000 and Kaggle datasets to compare various CNN models. In his hybrid model, supported by the ReliefF 

feature selection algorithm, AlexNet and ResNet50 achieved 92.41% and 85.17% accuracy, respectively [27]. 

2. Materials and Methods 

In this study, feature selection based on the Minimum Redundancy Maximum Relevance (mRMR) algorithm was hybridly 

combined with transfer learning architectures. This approach enables faster and more accurate results in the medical diagnosis 

process of monkeypox. The goal was to facilitate the detection of the disease by doctors using this method. Figure 2 presents the 

experimental stages of the study. The experimental stages of the study and the methodology followed are detailed below: 

 

Fig. 2. Research methodology 
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2.1. Dataset and Preprocessing 

In this study, three different datasets—MSID, MSCI, and MSLD—are used, as shown in Table 1. The performance of the 

developed model was evaluated using these datasets. The data was split into training, validation, and testing sets in an 80-10-10 

ratio. To match the input dimensions of the model, the image data was rescaled to 224×224 pixels. The data augmentation 

techniques listed in Table 2 were applied only to the training data. Data augmentation helps prevent overfitting by ensuring the 

model does not memorize the training data excessively, thereby improving the general performance of the model. The 

hyperparameter values used in the study are presented in Table 3. The ReduceLROnPlateau callback reduces the learning rate by 

half when the performance plateaus. The categorical_crossentropy loss function used in this study is commonly preferred for 

multi-class classification problems. This function calculates the difference between the predicted probability for each class and 

the actual class label. To achieve high classification accuracy, the value of this loss function should be as low as possible. 

Table 1. Distribution of datasets used in the study 

Data Set Class Count 

MSLD 
Monkeypox 102 

Others 126 

MSID 

Monkeypox 279 

Normal 293 

Chickenpox 107 

Measles 91 

MSCI 

Monkeypox 100 

Normal 100 

Acne 100 

Chickenpox 100 

 

Table 2. Summary of preprocessing and data augmentation methods 

Augmentation Type Configuration Description 

Rotation Range 40° (Clockwise & Counterclockwise) Random image rotation up to ±40 degrees 

Width Shift 0.2 (20%) Horizontal shift up to 20% of image width 

Height Shift 0.2 (20%) Vertical shift up to 20% of image height 

Zoom Range 0.2 (20%) Random zoom in or out by up to 20% 

Shear Range 0.2 (20%) Shear transformation applied within 20% range 

Horizontal Flip Enabled (True) Random horizontal flipping 

Vertical Flip Not Applied No vertical flipping performed 

Brightness Range [0.8, 1.2] Adjust brightness between 80% and 120% 

Channel Shift Not Applied No shift in color channels 

Fill Mode Nearest Fill empty pixels using nearest neighbor method 

 

Table 3. Model training parameters 

Parameter Value 

Input Size (224, 224, 3) 

Batch Size 8 

Epochs 32 

Learning Rate 1e-4 

Optimizer Adam 

Learning Rate Scheduler ReduceLROnPlateau 

Loss Function categorical_crossentropy 

2.2. Transfer Learning Architectures 

In the developed model, the feature extraction capabilities of three different convolutional neural network (CNN) 

architectures—ResNet50V2, InceptionV3, and NASNetMobile—were combined to enhance overall performance. These pre-

trained models, initialized with ImageNet weights, were used exclusively for feature extraction by freezing all their layers during 

training to prevent weight updates. This approach allows the model to leverage learned representations while reducing the risk of 

overfitting given the dataset size. Compared to other deep CNN architectures, ResNet50V2 is more advantageous due to its 

easier training and higher accuracy performance. It includes various layers such as Dense, Flatten, and Dropout [9]. Through the 

use of residual blocks, the model enables information to pass through a "residual block" to another layer instead of directly 
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forwarding it to the next, allowing for the construction of more complex structures, increasing network depth, and supporting a 

healthier learning process [10]. The output feature map from ResNet50V2 is pooled using a Global Average Pooling layer, 

producing a 2048-dimensional feature vector. InceptionV3 is a deep neural architecture consisting of 42 layers. This architecture 

includes convolutional layers, batch normalization, and max pooling layers [11]. Unlike InceptionV2, InceptionV3 introduces 

convolutional factorization, which improves computational efficiency by decomposing 3×3 convolutions into 1×3 and 3×1 

convolutions, thereby reducing the number of parameters [12]. The output of InceptionV3 is similarly passed through a Global 

Average Pooling layer, resulting in a 2048-dimensional vector. NASNetMobile is a neural network model designed through a 

Deep Learning-based Neural Architecture Search (NAS) approach. Due to the significant difference in the number of parameters, 

NASNetMobile is considered much more reliable compared to NASNetLarge. It consists of cells that can be developed using 

reinforcement learning. These cells repeat convolution and pooling operations multiple times based on the network’s capacity 

[13]. The architecture of NASNet is formed by combining these cells. In addition, this approach includes a Recurrent Neural 

Network (RNN) component called the “Controller,” which acts as the parent AI, and evaluates the performance of a model called 

the “Child Network” within the CNN to optimize its architecture for better efficiency [14]. The Controller RNN optimizes the 

cells in blocks, making the structures adaptive rather than fixed, based on the dataset. Each block is treated as a functional 

module and can perform the following operations [15]: 

• Convolutions, 

• Max Pooling, 

• Average Pooling, 

• Separable Convolutions, 

• Identity Mapping and others. 

2.3. Minimum Redundancy Maximum Relevance (mRMR) Algorithm 

It is a feature selection method that filters the existing features to ensure maximum relevance to the target classes, rather than 

using all the features. Feature selection reduces computational costs, enabling the model to run faster, minimizes noise, increases 

the accuracy of class predictions in the dataset, and provides more useful features, thus allowing function types to be defined and 

traceable [16].  Using the combined feature vector obtained from the final dense layer (with 1024 features), the 10 most 

significant features were selected using the mRMR algorithm. For this purpose, a subset of 100 samples from the training data 

was extracted to compute feature relevance and redundancy efficiently. Figure 3 illustrates that the input images are processed 

through the three different CNN models (NASNetMobile, ResNet50V2, InceptionV3), and their extracted features are 

concatenated. The combined features are then subjected to the mRMR algorithm to select the most informative subset, which is 

subsequently passed to the classification layer for improved performance and reduced computational complexity. 

 

Fig. 3. The integration process of the mRMR algorithm in the proposed hybrid model 

3. Results and Discussion 

In this study, the PyCharm IDE was utilized. Python was chosen as the programming language, and the Keras and 

TensorFlow libraries were employed. The input dimensions of the model were set to 224×224, and the batch size and number of 

epochs were set to 8 and 32, respectively. The learning rate was defined as 1 × 10⁻⁴. To prevent overfitting and improve 

generalization performance, the ReduceLROnPlateau callback function was applied: if no improvement in validation accuracy 

was observed for three consecutive epochs, the learning rate was reduced by half. The fully connected (dense) layer before the 

output consisted of 1024 neurons, and a 50% dropout rate was applied. In this study, transfer learning architectures ResNet50V2, 

InceptionV3, and NASNetMobile were selected and integrated. The final layers of these architectures were used as feature 

extractors. The feature vectors obtained from the three models were concatenated to form a single unified feature vector. The 

Minimum Redundancy Maximum Relevance (mRMR) algorithm was applied to the combined feature vector extracted from the 

dense layer of the model to select the 10 most informative features, aiming to enhance classification performance. Additionally, 

data augmentation techniques, as presented in Table 3, were applied to the training data to improve the model’s robustness. The 
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classification results and related performance metrics obtained from the study are detailed in Table 4. Table 4 shows the 

classification performance of the proposed hybrid model applied to three different datasets (MSCI, MSLD, MSID), including 

accuracy, F1-score, precision, and sensitivity values. From the table, it can be observed that the accuracy percentages vary 

depending on the diversity of the datasets used. 

Table 4. Testing results 

Model Dataset Optimizer 
Accurac

y (%) 

F1-Score 

(%) 

Precisio

n 

Sensitivit

y 

Total Training 

Time (min) 

FLOPs 

(Billions) 

Proposed 

Hybrid 

Model 

MSCI Adam %92,50 %90,05 %94,25 %92,50 10 min 43 s 13.84 

MSLD Adam %92,00 %92,00 %92,50 %93,00 21 min 53 s 13.84 

MSID Adam %87,65 %85,26 %87,76 %85,00 6 min 0 s 13.84 

 

Fig. 4. Hybrid model performance success status and loss status for the MSCI dataset 

Figure 4 presents the accuracy and loss graph of the MSCI dataset, which achieved the highest performance among the 

datasets with an accuracy rate of 92.50%. Examining the graphical trend of the loss values, the training loss shows some 

fluctuating increases at certain points but eventually decreases to around 0.15. Although the validation loss initially exhibits 

fluctuations, it gradually stabilizes and levels off around 0.25 after the 15th epoch. These results indicate that the model has a 

strong generalization capability, as reflected by the achieved accuracy and loss values. The training accuracy initially starts at 

approximately 57–58% and increases rapidly, surpassing 90% after 10 epochs. Following the 10th epoch, it remains between 90–

95%, indicating high performance. The validation accuracy reaches around 95% in the early epochs and then stabilizes at 

approximately 92%, demonstrating the overall strong performance of the model and suggesting that overfitting is not evident. 

 

Fig. 5. Hybrid model performance success status and loss status for the MSLD dataset 
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Figure 5 shows the accuracy and loss graph of the MSLD dataset, which achieved the second-best performance among the 

datasets with an accuracy rate of 92.00%. The training loss starts at around 0.80 and decreases rapidly, reaching approximately 

0.20. Similar to the MSCI dataset, the validation loss gradually decreases and stabilizes around 0.25 after the 15th epoch. These 

results indicate that the model also performs well on this dataset, demonstrating strong generalization capability. The training 

accuracy initially ranges between approximately 60–65% and rapidly increases, surpassing 85% after the 5th epoch. After this 

point, the accuracy begins to fluctuate, continuing this pattern until the final epoch while maintaining a high-performance level 

between 90–95%. Validation accuracy initially reaches around 87% but then fluctuates, dropping to around 82%. After the 22nd 

or 23rd epoch, it stabilizes at 92%, indicating strong overall model performance and suggesting that overfitting is not present. 

Figure 6 presents the accuracy and loss graph for the MSID dataset, which achieved the lowest performance among the 

datasets with an accuracy rate of 87.65%. Observing the graphical trend of the loss values, the training loss, despite showing 

some fluctuations at certain points, decreased to approximately 0.10–0.15. Although the validation loss initially exhibited a 

fluctuating pattern, it stabilized around 0.26 after the 5th epoch. These results suggest that, despite a slightly lower accuracy, the 

model still demonstrates a strong generalization capability. The training accuracy initially starts below 70% and increases 

rapidly, reaching around 87% by the 5th epoch. It then continues to rise with fluctuations until the final epoch, maintaining a 

high-performance level between 90–95%. The validation accuracy reaches approximately 92% in the early stages but slightly 

drops to around 90%, continuing with minor fluctuations. After the 20th epoch, it stabilizes at around 90%, indicating strong 

overall model performance and providing evidence that overfitting is not observed.  

 

Fig. 6. Hybrid model performance success status and loss status for the MSID dataset 

Table 5. Confusion matrix of the hybrid model for the overall performance on the MSLD dataset 

  Predicted Class   

Actual Class 

 

Monkeypox 

Others 

Monkeypox 

11 (TP) 

2 (FP) 

Others 

0 (FN) 

12 (TN) 

Total 

11 

14 

 
Table 6. Confusion matrix of the hybrid model for the overall performance on the MCSI dataset 

    Predicted Class   

 
 

Acne 

Acne 

9 (TP) 

Chickenpox 

1 (FN) 

Monkeypox 

0 

Normal 

0 

Total 

10 

Actual Class Chickenpox 0 10 (TP) 0 0 10 

 Monkeypox 0 2 (FP) 8 (TP) 0 (FN) 10 

 Normal 0 0 0 10 (TP) 10 

 
Table 7.  Confusion matrix of the hybrid model for the overall performance on the MSID dataset 

    Predicted Class   

 
 

Chickenpox 

Chickenpox 

9 (TP) 

Measles 

0 

Monkeypox 

3 (FN) 

Normal 

0 

Total 

12 

Actual Class Measles 1 (FN) 7 (TP) 1 (FN) 1 (FN) 10 

 Monkeypox 2 (FN) 0 26 (TP) 1 (FN) 29 

 Normal 0 0 1 (FN) 29 (TP) 30 
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The confusion matrices of the datasets used in the study are presented above. Table 5 shows the confusion matrix for the 

MSLD dataset, which includes two classes: Monkeypox and Others (comprising other skin diseases and healthy images). All 

samples in the Monkeypox class were correctly classified, indicating that the developed model performs exceptionally well in 

this category. In the Others class, 2 out of 12 samples were misclassified as Monkeypox. This misclassification may stem from 

visual similarities between certain skin conditions and Monkeypox. Overall, the model's ability to accurately detect Monkeypox 

confirms the effectiveness of the developed hybrid model. In Table 6, the confusion matrix for the MSCI dataset involves four 

classes: Acne, Chickenpox, Monkeypox, and Normal. The model accurately classified all samples in the Chickenpox and Normal 

classes, demonstrating strong performance in these categories. In the Acne class, one sample was misclassified, and in the 

Monkeypox class, two samples were confused with Chickenpox. This confusion may be attributed to visual similarities between 

different types of rashes. Overall, the model provides reliable predictions across all classes, particularly for Monkeypox 

detection. In Table 7, the confusion matrix for the MSID dataset includes four classes: Chickenpox, Measles, Monkeypox, and 

Normal (healthy). Within the Monkeypox class, 26 samples were correctly classified, and only 3 were misclassified into other 

classes, indicating robust model performance in this category. In the Normal class, only one sample was incorrectly labeled as 

Monkeypox. Some confusion was observed between the Chickenpox and Measles classes, likely due to visual resemblance. In 

general, the model achieves high accuracy across all classes and delivers dependable results, especially for identifying 

Monkeypox.About Title, Abstract, Author’s Information 

 

(a)      (b) 

 

      (c) 

Fig. 7. Class-wise precision, recall, and f1-score values: (a) MSLD, (b) MCSI, (c) MSID 
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Figure 7 presents a comparative analysis of the model’s performance on the classes within the used datasets using Precision, 

Recall, and F1-score metrics. 

4. Conclusions 

In this study, Monkeypox disease was detected with accuracy rates of 92.50%, 92.00%, and 87.65% on three different 

datasets, namely MSCI, MSLD, and MSID, respectively. The datasets used in the study consist of images representing various 

skin lesions, including Monkeypox, Chickenpox, Measles, Acne, and healthy skin. Upon analyzing the results obtained from the 

developed hybrid model, it was observed that factors such as class imbalance, diversity of classes, and visual similarities between 

the skin diseases in the datasets significantly influenced the accuracy rates. This indicates that even with the application of image 

processing techniques, diseases with similar visual characteristics—particularly clinically important conditions like 

Monkeypox—can still be misclassified. Therefore, it is crucial to enrich the datasets as much as possible and to continuously 

improve image processing methods. In this study, a hybrid architecture was developed by combining three different transfer 

learning models (NASNetMobile, ResNet50V2 and InceptionV3), and feature selection was applied using the mRMR (Minimum 

Redundancy Maximum Relevance) algorithm. mRMR reduced the number of features derived from the combined transfer 

learning models, ensuring that only the most meaningful and relevant features were included in the final model. This led to a 

simplified learning process and improved model performance. The highest accuracy rate, 92.50%, was achieved on the MSCI 

dataset, which includes four balanced classes with 100 images each. The balanced distribution of classes provided an advantage 

in terms of class representation and contributed to the higher accuracy achieved. In contrast, the other datasets contained a 

varying number of classes and imbalanced distributions, which led to comparatively lower performance. An analysis of the 

confusion matrices and performance graphs for the three datasets demonstrated that the model exhibited strong discriminative 

performance, particularly in identifying Monkeypox cases. Furthermore, the correct and systematic application of data 

augmentation techniques had a positive impact on the overall performance of the model. In conclusion, the developed hybrid 

model achieved high accuracy across all three datasets and delivered reliable and effective results, especially in the identification 

of Monkeypox disease. In this study, successful results were achieved by combining the strengths of different transfer learning 

architectures and selecting the most relevant features using the mRMR algorithm. The use of multiple datasets revealed that 

higher performance was obtained particularly in those with balanced class distributions, emphasizing the influence of image 

quality and class representation on model performance. The developed model enables accurate and rapid diagnosis, reducing the 

reliance on costly and time-consuming laboratory tests such as PCR. This is especially important in low-resource settings—such 

as regions in Africa with limited healthcare infrastructure—where early detection and timely intervention are critical. 

The observed performance differences across datasets are primarily attributed to variations in content diversity and data 

distribution. While the limitations of the datasets led to decreased model performance in some real-world scenarios, the use of 

multiple datasets allowed the model to generalize well, even in the presence of imbalanced classes and visually similar disease 

categories. These contributions support the development of more efficient and interpretable diagnostic systems. This study 

demonstrates practical usability, especially in real-world clinical settings with limited resources. These contributions distinguish 

our work from existing studies and highlight its value as a robust and innovative tool for diagnosing Monkeypox and other 

visually similar skin diseases. 

5. Limitations and Future Work 

Although the proposed hybrid model demonstrated high classification performance across three different datasets, there are 

several limitations that should be addressed in future studies. The most critical limitation is the issue of class imbalance observed 

in some datasets (MSID and MSLD). In particular, classes with a small number of samples or those that are visually very similar 

to other skin lesions—such as Chickenpox and Monkeypox—made accurate classification more challenging. To mitigate this 

issue, advanced data augmentation techniques such as Generative Adversarial Networks (GANs), Autoencoder-based 

approaches, and Neural Style Transfer (NST) can be utilized. Another limitation of the study is the high computational cost of 

the hybrid architecture. This may hinder its deployment in low-resource environments with limited hardware capabilities. In 

future work, efforts will focus on increasing the computational efficiency of the model by exploring more lightweight 

architectures and optimizing the implementation environment. Moreover, integrating the model into real-world applications, 

including mobile health platforms, is also planned to enhance its accessibility and usability. 
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