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1. Introduction

An important result in the representation theory of algebras states that every
finite dimensional basic algebra A over an algebraically closed field k is isomorphic
to a quotient of a path algebra kQA/IA, where QA is a finite quiver and IA is
an admissible ideal (see below for details). This allows us to describe the finitely
generated A-modules in terms of the representations of its corresponding quiver
QA, a connection which proves to be essential in this theory.

In order to generalize this construction, Coelho and Liu introduced in [8] the
notion of generalized path algebras (or gp-algebras for short). Instead of assigning
the base field k to each vertex of a quiver Q as in the classical construction of
the path algebra kQ, a finite dimensional k-algebra is assigned. This was further
generalized by us in the article [5], where we considered certain quotients of the
gp-algebras. Specifically, let Γ denote a quiver and A = {Ai : i ∈ Γ0} denote a
family of basic finite dimensional k-algebras indexed by the set Γ0 of the vertices of
Γ. Consider also a set of relations I on the paths of Γ which generates an admissible
ideal of kΓ. To such data we have considered ([5]) the generalized bound path algebra
Λ = k(Γ,A, I) (gbp-algebra for short) with a natural multiplication given not only
by the concatenation of paths of the quiver but also by the multiplication of the
algebras associated with the vertices of Γ, modulo the relations in I (see below for
details).
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Our idea behind such a construction is to obtain properties of a gbp-algebra Λ

from those of the algebras in A. In the seminal work [8], the focus was more ring
theoretical, and, as mentioned, the authors only considered the case where I = 0.
We mention, for instance, [9,12,13,14,15] for further works which are connected
with this construction.

In [5,6], we have studied the case where I is not necessarily zero, thus extending
the description of the representations of the algebra Λ given in [12]. Clearly, a
path algebra A can be realized as a generalized one in two trivial ways: by its
usual description as a quotient of the path algebra over the ordinary quiver QA,
and also by considering a quiver with a single vertex and no arrows and assigning
to it the whole algebra A. In [5], we discuss when there are other possibilities,
apart from the two above, of realizing a path algebra as a generalized one. This is
important because then we can relate properties of a gbp-algebra with those of the
smaller algebras used in its definition. In [6], we studied the correspondence between
modules over a gbp-algebra and representations of the corresponding quiver.

Also in [6], we gave a description of the projective and injective modules over a
gbp-algebra. Using this, here we introduce a special case of gbp-algebras, which we
call terraced gbp-algebras, and we show that we can study homological invariants of
these algebras in terms of those of the “smaller” algebras used in their construction.

This is done in Sections 3 and 4 after devoting Section 2 to preliminary concepts
needed along the paper. The particular case of gp-algebras is discussed in Section
4 where we prove, for instance, that the global dimension of a gp-algebra is the
maximum between one and the global dimension of the algebras assigned to each
vertex (Theorem 4.1).

Also, we provide a sufficient condition for a gp-algebra to belong to classes of
algebras which can be defined using some homological invariants, such as shod or
quasitilted algebras (see [7,10]). These classes of algebras were introduced with
the idea of generalizing the class of tilted algebras through their homological prop-
erties. Also as a motivation, we mention that a very strong connection between
shod/quasitilted algebras and the so-called silted algebras was recently found by
Buan and Zhou [4], leading to a new line of investigation.

2. Preliminaries

Along this paper, k will denote an algebraically closed field. (We make this
assumption in order to use results derived from [6,12]). For an algebra, we mean an
associative and unitary basic finite dimensional k-algebra. Also, given an algebra
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A, an A-module (or just a module) will be a finitely generated right module over A.
We refer to [1,2,3] for unexplained details on modules and representation theory.

2.1. Path algebras. A quiver Q is given by a tuple (Q0, Q1, s, e), where Q0 is
the set of vertices, Q1 is the set of arrows and s, e : Q1 −→ Q0 are maps which
indicate, for each arrow α ∈ Q1, the starting vertex s(α) ∈ Q0 of α and the ending
vertex e(α) ∈ Q0 of α. A vertex i ∈ Q0 is called a source (respectively, a sink)
provided there are no arrows ending (or starting, respectively) at i. A path in Q of
length n ≥ 1 is given by α1 · · ·αn, where for each i = 1, · · · , n− 1, e(αi) = s(αi+1).
There are also paths of length zero which are in a one-to-one correspondence to the
vertices of Q.

We shall assume that all quivers are finite, that is, both sets Q0 and Q1 are
finite.

Given a quiver Q, one can assign a path algebra kQ with a k-basis given by
all paths over Q and multiplication on that basis defined by concatenation. Even
when Q is finite, the corresponding algebra does not need to be finite dimensional.
However, a well-known result by P. Gabriel states that given an algebra A, there
exists a finite quiver Q and a set of relations on the paths of Q which generates an
admissible ideal I of kQ such that A ∼= kQ/I (see [1] for details).

2.2. Generalized bound path algebras (gbp-algebras). Let Γ = (Γ0,Γ1, s, e)

be a quiver and A = (Ai)i∈Γ0
be a family of algebras indexed by Γ0. An A-path

of length n over Γ is defined as follows: for n = 0, such a path is an element of∪
i∈Γ0

Ai, and for n > 0, it is a sequence of the form

a1β1a2 . . . anβnan+1

where β1 . . . βn is an ordinary path in the quiver Γ, ai ∈ As(βi) if i ≤ n, and
an+1 ∈ Ae(βn). Denote by k[Γ,A] the k-vector space spanned by all A-paths over
Γ.

Then we consider the quotient vector space k(Γ,A) = k[Γ,A]/V , where V is the
subspace generated by all elements of the form

(a1β1 . . . βj−1(aj,1+. . .+aj,m)βjaj+1 . . . βnan+1)−
m∑
l=1

(a1β1 . . . βj−1aj,lβj . . . βnan+1)

or, for λ ∈ k,

(a1β1 . . . βj−1(λaj)βjaj+1 . . . βnan+1)− λ · (a1β1 . . . βj−1ajβjaj+1 . . . βnan+1).

The space k(Γ,A) has a naturally defined multiplication, induced by the multi-
plications of the algebras Ai’s and the composition of the A-paths. More explicitly,
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it is defined by linearity and the following rule:

(a1β1 . . . βnan+1)(b1γ1 . . . γmbm+1) = a1β1 . . . βn(an+1b1)γ1 . . . γmbm+1

if e(βn) = s(γ1), and

(a1β1 . . . βnan+1)(b1γ1 . . . γmbm+1) = 0

otherwise.
With this multiplication, k(Γ,A) is an associative algebra, and since we are

assuming the quivers to be finite, it has also an identity element, which is equal to∑
i∈Γ0

1Ai . Finally, it is easy to observe that k(Γ,A) is finite dimensional over k if
and only if so are the algebras Ai and Γ is acyclic. We call k(Γ,A) the generalized
path algebra (gp-algebra) over Γ and A (see [8]). In case Ai = k for every i ∈ Γ0,
this construction gives the usual path algebra kΓ.

It was already observed in [8] that generalized path algebras can alternatively
be constructed as tensor algebras, as follows: let Γ be a quiver, let A = {Ai :

i ∈ Γ0} be a set of finite-dimensional k-algebras, one for each vertex of Γ, and let
M = {Mij : i, j ∈ Γ0} be a set of modules, such that, for each i, j ∈ Γ0, Mij

is an (Ai − Aj)-bimodule, finitely generated from both sides, with Mij free as an
Aop

i ⊗ Aj-module, having rank equal to the number of arrows i → j in Γ0. (By
the way, this structure is similar to those of modulations introduced by F. Li in
[15], and of pro-species of algebras introduced by J. Külshammer in [13]. However,
in their context, it is not necessary to assume, for example, that k is algebraically
closed or that the Mij ’s are free as bimodules.)

Let now AA =
∏

i∈Γ0
Ai be the product algebra and MA =

⊕
i,j∈Γ0

Mij . Then,
by restriction of scalars through the canonical projections AA → Ai, we can make
MA into an (AA − AA)-bimodule. Finally, the tensor algebra T (AA,MA) is iso-
morphic to the generalized path algebra k(Γ,A) defined above.

2.3. Generalized bound path algebras. Let k(Γ,A) be a generalized path al-
gebra. Using the result mentioned above in 2.1, for each i ∈ Γ0, we may fix a quiver
Σi such that Ai

∼= kΣi/Ωi with Ωi an admissible ideal of kΣi.
Following [5], we consider quotients of generalized path algebras by an ideal

generated by relations. Namely, let I be a finite set of relations over Γ which
generates an admissible ideal in kΓ. Consider the ideal (A(I)) generated by the
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following subset of k(Γ,A):

A(I) =

{
t∑

i=1

λiβi1γi1βi2 . . . γi(mi−1)βimi :

t∑
i=1

λiβi1 . . . βimi
is a relation in I and γij is a path in Σe(βij)

}
.

The quotient k(Γ,A)
(A(I)) is said to be a generalized bound path algebra (gbp-algebra).

We may also write k(Γ,A)
(A(I)) = k(Γ,A, I). When the context is clear, we simply denote

the set A(I) by I.
We use the following notation in the sequel: Γ is an acyclic quiver,

A = {Ai : i ∈ Γ0} denotes a family of basic finite dimensional algebras over an
algebraically closed field k, and I is a set of relations in Γ generating an admissible
ideal in the path algebra kΓ. By Λ = k(Γ,A, I), we denote the gbp-algebra obtained
from these data. Also, AA will denote the product algebra

∏
i∈Γ0

Ai. We denote
the identity element of the algebras Ai by 1i instead of 1Ai

. Also, for an algebra
A, we shall denote by modA the category of finitely generated right A-modules.

2.4. Representations. In [6], we have described the representations of a gbp-
algebra, including those associated to projective and injective modules. We shall
now recall the results needed in the sequel.

Definition 2.1. Let Λ = k(Γ,A, I) be a gbp-algebra.

(a) A representation of Λ is given by ((Mi)i∈Γ0
, (Mα)α∈Γ1

) where
(i) Mi is an Ai-module, for each i ∈ Γ0;
(ii) Mα : Ms(α) → Me(α) is a k-linear transformation, for each arrow

α ∈ Γ1; and
(iii) whenever γ =

∑t
i=1 λtαi1αi2 . . . αin1

is a relation in I, with λi ∈ k and
αij ∈ Γ1, we have

t∑
i=1

λtMαini
◦ γini

◦ . . . ◦Mαi2
◦ γi2 ◦Mαi1

= 0

for every choice of paths γij over Σs(αij), with 1 ≤ i ≤ t, 2 ≤ j ≤ ni.
(b) We say that a representation ((Mi)i∈Γ0

, (Mα)α∈Γ1
) of Λ is finitely generated

if each of the Ai-modules Mi is finitely generated.
(c) Let M = ((Mi)i∈Γ0

, (Mα)α∈Γ1
) and N = ((Ni)i∈Γ0

, (Nα)α∈Γ1
) be represen-

tations of Λ. A morphism of representations f : M → N is given by a tuple
f = (fi)i∈Γ0

, such that, for every i ∈ Γ0, fi : Mi → Ni is a morphism of
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Ai-modules; and such that, for every arrow α : i → j ∈ Γ1, it holds that
fjMα = Nαfi, that is, the following diagram commutes.

Mi

Mα //

fi

��

Mj

fj

��
Ni

Nα

// Nj

We shall denote by Repk(Γ,A, I) (or by repk(Γ,A, I)) the category of the repre-
sentations (or finitely generated representations, respectively) of the algebra k(Γ,A, I).

Theorem 2.2. ([6], see also [12]) There is a k-linear equivalence

F : Repk(Γ,A, I) → Mod k(Γ,A, I)

which restricts to an equivalence

F : repk(Γ,A, I) → mod k(Γ,A, I).

2.5. Realizing an Ai-module as a Λ-module. Let i ∈ Γ0 and let M be an
Ai-module. We consider three ways of realizing M as a Λ-module (see [6] for fur-
ther details of these constructions).

A) Natural inclusion. Define I(M) = ((Mj)j∈Γ0
, (ϕα)α∈Γ1

) to be the represen-
tation given by

Mj =

M if j = i

0 if j ̸= i
and ϕα = 0 for all α ∈ Γ1.

By abuse of notation, we shall identify I(M) = M , since these two have the same
underlying space.

B) Cones. As recalled from [8] above, consider the gp-algebra k(Γ,A) as a tensor
algebra k(Γ,A) ∼= T (AA,MA). Since M is naturally an AA-module and there is
a canonical map AA → Λ = k(Γ,A)/I, by extension of scalars, M originates a
Λ-module Ci(M), which is called the cone over M .

We now recall the following results from [6].

Proposition 2.3. Given i ∈ Γ0, we have:

(1) The cone functor Ci : modAi → modΛ is exact.
(2) If P is a projective Ai-module, then Ci(P ) is a projective Λ-module.
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C) Dual cones. The dual cone over M is given by C∗
i (M)

.
= DCiD(M), where

D = Homk(−, k) is the usual duality functor. A dual result of Proposition 2.3 for
injective modules holds true (see [6]).

3. Homological dimensions of gbp-algebras

We shall prove in this section general results involving gbp-algebras, leaving the
particular case of gp-algebras for the next section. Using the notations established
above, we shall compare some homological dimensions of a gbp-algebra Λ with those
of the algebras Ai, i ∈ Γ0, which are used in its construction. Given an algebra
A and an A-module M , we denote by pdAM and by idAM the projective and the
injective dimensions of M , respectively. Also, the global dimension of A is denoted
by gl.dimA.

3.1. First case. We analyse the natural inclusion of Ai-modules in mod Λ.

Lemma 3.1. Let i ∈ Γ0 and let M be an Ai-module. Then

(a) pdΛ M ≥ pdAi
M .

(b) if i is a sink, then pdΛ M = pdAi
M .

(c) idΛ M ≥ idAi
M .

(d) if i is a source, then idΛ M = idAi M .

Proof. We shall prove only (a) and (b) since the proofs of (c) and (d) are dual.
(a) There is nothing to show if pdΛM = ∞. So, assume M has finite projective

dimension m over Λ. It follows from the description of the projective modules over
Λ (see [6], Subsection 5.1) that every component of a projective representation is
projective (indeed, the i-th component is either a direct sum of indecomposable
projective modules over Ai, copies of Ai, or zero modules). Therefore the i-th
component of a minimal projective resolution of M as a Λ-module is a projective
resolution of Mi as an Ai-module, which proves this item.

(b) Because i is a sink, every projective resolution of M over Ai is easily seen to
yield a projective resolution of M over Λ with the same length. □

The next result follows easily.

Corollary 3.2. gl.dimΛ ≥ max{gl.dimA1, . . . , gl.dimAn}.

We shall see below examples of when equality in the above statement holds and
when it does not.
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3.2. Cones and duals. The next result, which relates the projective and the
injective dimensions of a module over Ai with the corresponding dimension of its
cone or its dual cone, is a direct consequence of Proposition 2.3 and its dual.

Lemma 3.3. Given i ∈ Γ0 and M an Ai-module, we have

(a) pdAi
M = pdΛ Ci(M).

(b) idAi M = idΛ C∗
i (M).

Proof. We shall prove only (a) since the proof of (b) is dual. Let

0 // Pm
// . . . // P1

// P0
// M // 0

be a minimal projective resolution of M in modAi. Thus m = pdAi
M . Applying

the functor Ci, we have

0 // Ci(Pm) // . . . // Ci(P1) // Ci(P0) // Ci(M) // 0.

Because of Proposition 2.3, this sequence is exact. Moreover, also by Proposi-
tion 2.3, every term except possibly for Ci(M) is known to be projective. So this is
a projective resolution in modΛ, proving that pdΛ Ci(M) ≤ pdAi

M . Since the i-th
component of Ci(M) is M , we know from Proposition 3.1 that the inverse inequality
also holds. □

3.3. General case. Having studied the projective and injective dimensions of
modules which are inclusion or cones of Ai-modules, we turn our attention to
general representations over Λ.

Definition 3.4. Let M = ((Mi)i∈Γ0
, (ϕα)α∈Γ1

) be a representation over k(Γ,A, I).
The support of M is defined as the set of vertices suppM

.
= {i ∈ Γ0 : Mi ̸= 0}.

Proposition 3.5. For a Λ-module M ,

(a) pdΛ M ≤ maxj∈suppM{pdΛ Mj},
(b) idΛ M ≤ maxj∈suppM{idΛ Mj}.

Proof. For both items, it is sufficient to observe that since Γ is acyclic, M is
an iterated extension of its components Mi, and so it must have its projective or
injective dimensions over Λ limited by those of the Mi’s. □

Remark 3.6. Although we have not explicitly stated, the results we gave so far
hold in more general settings, for example in the context of tensor algebras over
modulations by F. Li recalled above, provided that the defining bimodules Mij

are projective from both sides. However, the proofs of our upcoming results rely
specifically on the structure of gbp-algebras.
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3.4. The main lemma. We will adopt the following notation from here on: if i
is a source vertex of Γ, then Γ \ {i} shall denote the quiver obtained from Γ by
deleting the vertex i and the arrows starting at i. Moreover, if Γ is equipped with a
set of relations I, I \ {i} will be the set obtained from I by excluding the relations
starting at i. Also, since Γ is acyclic, we can iterate this process and enumerate
Γ0 = {1, . . . , n} in such a way that i is a source vertex of Γ \{1, . . . , i− 1} for every
i. (Some authors call this a topological ordering of the vertices.)

Lemma 3.7. Let i ∈ Γ0, M be an Ai-module, and let (P, g) be its projective cover
in modAi. Then there is an exact sequence of Λ-modules:

0 // Ci(Ker g)⊕ L // Ci(P ) // M // 0

where L is a Λ-module with suppL ⊆ {j ∈ Γ0 : j ̸= i and there is a path i ⇝ j}.
Moreover,

(a) Lj is free for every vertex j, and
(b) If i ∈ Γ0 is such that I \ {1, . . . , i} = I \ {1, . . . , i− 1}, then L is projective

over Λ.

Proof. (a) It follows from [6, Proposition 5 and Remark 5] that (Ci(P ))i = P . So,
we can define a morphism of representations g′ : Ci(P ) → M by establishing that
g′i = g and that g′j = 0 for j ̸= i. We want to show that Ker g′ = Ci(Ker g) ⊕ L,
where L satisfies the conditions in the statement.

Let {p1, . . . , pr} be a k-basis of Ker g and complete it to a k-basis
{p1, . . . , pr, . . . , ps} of P . Also let, for every j ∈ Γ0, {aj1, . . . , ajnj

} be a k-basis
of Aj . For a path γ : i = l0 → l1 → . . . → lt = j from i to j in Γ denote

θγ,h,i1,...,it = ph ⊗ γ1a
e(γ1)
i1

γ2a
e(γ2)
i2

. . . γta
j
it
∈ Ker g′.

Remember that since g′ was defined as a morphism of representations, it corre-
sponds to a morphism of Λ-modules, because of Theorem 2.2. Therefore,

g′(θγ,h,i1,...,it) = g′(ph ⊗ γ1a
e(γ1)
i1

γ2a
e(γ2)
i2

. . . γta
j
it
) = g(ph).

So θγ,h,i1,...,it /∈ Ker g′ if and only if γ is the zero-length path ϵi and r < h ≤ s.
Thus we can write

Ker g′ = (θϵi,h : 1 ≤ h ≤ r) + (θγ,h,i1,...,it : l(γ) > 0)

= (θγ,h,i1,...,it : 1 ≤ h ≤ r)⊕ (θγ,h,i1,...,it : l(γ) > 0 and r < h ≤ s)

= Ci(Ker g)⊕ L
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where L
.
= (θγ,h,i1,...,it : l(γ) > 0 and r < h ≤ s). Since the generators of L involve

only paths of length strictly greater than zero, the only components of L that are
non-zero are the ones over the successors of i, except for i itself. Therefore the
condition about the support of L in the statement is satisfied. It remains to prove
the other two assertions in the statement.

To prove (a), fix j ∈ Γ0. If j = i or if j is not a successor of i, then Lj = 0, so we
may suppose this is not the case. Again using the equivalence given by Theorem 2.2,

Lj = L · 1j = (θγ,h,i1,...,it : γ : i⇝ j and r < h ≤ s)

= (ph ⊗ γ1a
e(γ1)
i1

γ2a
e(γ2)
i2

. . . γta
j
it
: γ : i⇝ j and r < h ≤ s).

So Lj is isomorphic to the free Aj-module whose basis is the set of all possible
elements ph ⊗ γ1a

e(γ1)
i1

γ2a
e(γ2)
i2

. . . γt. In particular, Lj is free over Aj , and this
proves (a).

(b) Assume that I \ {1, . . . , i} = I \ {1, . . . , i − 1} and let i+ denote the set of
immediate successors of i. Since, by hypothesis, there are no relations starting at
i, we can write:

L
.
= (θγ,h,i1,...,it : l(γ) > 0 and r < h ≤ s)

= (ph ⊗ γ1a
e(γ1)
i1

γ2a
e(γ2)
i2

. . . γta
j
it
: l(γ) > 0 and r < h ≤ s)

= (ph ⊗ γ1a
e(γ1)
i1

⊗ γ2a
e(γ2)
i2

. . . γta
j
it
: l(γ) > 0 and r < h ≤ s)

∼=
(
a
e(γ1)
i1

⊗ γ2a
e(γ2)
i2

. . . γta
j
it
: l(γ) > 0

)s−r

∼=
⊕
i′∈i+

Ci(Ai′)
s−r.

Since Ai′ is projective over Ai′ , Ci(Ai′) is projective over Λ by Proposition 2.3. We
have thus shown that L is isomorphic to a direct sum of projective Λ-modules, and
therefore it is also projective, concluding the proof. □

3.5. A special kind of gbp-algebras. Before our next result, we need an ad-
ditional definition. For a vertex j of Γ, denote by Sj the simple kΓ/I-module
associated with j.

Definition 3.8. A gbp-algebra Λ is called terraced provided that for every i ∈ Γ0

such that I\{1, . . . , i} ̸= I\{1, . . . , i−1} (i.e., every time there are relations starting
at i), one has pdkΓ/I Si ≥ max{pdkΓ/I Sj : j is a successor of i}+ 1.

Example 3.9. Observe that any gp-algebra (that is, when I = 0, which makes kΓ

hereditary) is terraced. An example of a non-terraced gbp-algebra is the following
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bound path algebra given by

5

ϵ

��

η

��
4

β

��

δ // 3
γ // 1

2
α

??

and the relations βα = δγ, ϵβ = 0. Here the simple module S5 associated to vertex
5 has projective dimension 2, and does not exceed by one the dimension of S4,
which is also 2.

Theorem 3.10. Let Λ = k(Γ,A, I) be a terraced gbp-algebra. Then, for every
representation M over Λ,

pdΛ M ≤ max
i∈suppM

{pdAi
Mi, pdkΓ/I Si}

where Si denotes the simple kΓ/I-module associated with the vertex i.

Observe that if Λ is simply a terraced bound path algebra (i.e., Ai = k for every
i ∈ Γ0), then each of the Mi are semisimple and we recover an inequality given by
M. Auslander: pdΛ M ≤ max{pdΛ S : S is a simple composition factor of M}.

Proof. The proof is done by induction. First, suppose suppM = {n}. By the
assumption on the numbering of the vertices, we know that n is a sink vertex of
Γ0. It follows from Lemma 3.1(b) that pdΛ M = pdAn

Mn. Since n is a sink
vertex, the simple kΓ/I-module Sn is projective, and thus it holds that pdΛ M =

max{pdAn
Mn, pdkΓ/I Sn}. This proves the initial step of induction.

Now suppose that suppM ⊆ {i, . . . , n} and that the statement is valid for rep-
resentations whose support is contained in {i+ 1, . . . , n}. Initially we are going to
study the projective dimension of Mi over Λ. If i is a sink vertex, then, similarly to
above, we have that pdΛ Mi = max{pdAi

Mi, pdkΓ/I Si}, so suppose i is not a sink
vertex. Let (P, g) be a projective cover of Mi over Ai. Then, because of Lemma 3.7,
there is an exact sequence in modΛ:

0 // Ci(Ker g)⊕ L // Ci(P ) // Mi
// 0

where L satisfies the conditions given in the statement of the cited lemma. From
this exact sequence, we deduce that

pdΛ Mi ≤ max{pdΛ Ci(P ), pdΛ(Ci(Ker g)⊕ L) + 1}.
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Since P is projective over Ai, Proposition 2.3 implies that pdΛ Ci(P ) = 0. Thus

pdΛ Mi ≤ pdΛ(Ci(Ker g)⊕ L) + 1 ≤ max{pdΛ Ci(Ker g), pdΛ L}+ 1.

Using Corollary 3.3, we have

pdΛ Mi ≤ max{pdAi
Ker g, pdΛ L}+ 1. (3.1)

Now we divide our analysis in cases:
Case 1: pdAi

Ker g ≥ pdΛ L.
In this case, Equation 3.1 implies that pdΛ Mi ≤ pdAi

Ker g + 1 = pdAi
Mi,

because (P, g) is the projective cover of Mi.
Case 2: pdAi

Ker g ≤ pdΛ L.
Now, from Equation 3.1, pdΛ Mi ≤ pdΛ L + 1. In case I \ {1, . . . , i} =

I \ {1, . . . , i − 1}, from Lemma 3.7, we get that pdΛ L = 0. Since we have al-
ready supposed in this case that pdAi

Ker g ≤ pdΛ L, we have pdAi
Ker g = 0.

Again from Equation 3.1, pdΛ Mi ≤ 1. Since i is not a sink, we know that Si is not
projective over kΛ/I and so pdkΛ/I Si ≥ 1. Thus pdΛ Mi ≤ pdkΛ/I Si.

Assume now I \ {1, . . . , i} ̸= I \ {1, . . . , i − 1}. By Lemma 3.7, pdAj
Lj = 0 for

every j, and since the support of L is contained in {i+ 1, . . . , n}, by the induction
hypothesis and because Λ is terraced:

pdΛ L ≤ max
j∈suppL

{pdkΓ/I Sj} ≤ pdkΓ/I Si − 1.

Then pdΛ Mi ≤ pdΛ L+ 1 ≤ pdkΓ/I Si − 1 + 1 = pdkΓ/I Si.
Putting together all cases discussed above, we conclude that

pdΛ Mi ≤ max{pdAi
Mi, pdkΓ/I Si}.

Now, using Proposition 3.5, we have that

pdΛ M ≤ max
j∈suppM

pdΛ Mj ≤ max
j∈suppM

{pdAj
Mj , pdkΓ/I Sj},

which proves the theorem. □

Corollary 3.11. Let Λ = k(Γ,A, I) be a terraced gbp-algebra. Then, for every
j ∈ Γ0, gl.dimAj ≤ gl.dimΛ, and the following inequality holds:

gl.dimΛ ≤ max
j∈Γ0

{
gl.dim kΓ

I
, gl.dimAj

}
.
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3.6. The dual result. Using the fact that the duality functor D = Homk(−, k)

anti-preserves homological properties and [6, Proposition 3], we obtain the following
result, which is dual to Theorem 3.10.

Corollary 3.12. Let Λ = k(Γ,A, I) be a terraced gbp-algebra, and let M be a
representation over Λ. Then idΛ M = maxi∈suppM{idAi

Mi, idkΓ/I Si} where Si

denotes the simple kΓ/I-module associated with the vertex i.

3.7. Finitistic dimension. Given an algebra A, its finitistic dimension is given
by:

fin.dimA = sup{pdA M : M is an A-module of finite projective dimension}.

A still open conjecture, called the Finitistic Dimension Conjecture, states that
every algebra has finite finitistic dimension.

Proposition 3.13. Let Λ = k(Γ,A, I) be a terraced gbp-algebra. Then

fin.dimΛ ≤ max
i∈Γ0

{
gl.dim kΓ

I
,fin.dimAi

}
.

In particular, if the bound path algebra kΓ/I has finite global dimension and
fin.dimAi < ∞ for each i, then also fin.dimΛ < ∞.

Proof. Let M = ((Mi)i∈Γ0
, (ϕα)α∈Γ1

) be a representation of finite projective di-
mension over Λ. From Lemma 3.1, for every i ∈ Γ0, pdAi

Mi ≤ pdΛ M , so Mi

has finite projective dimension over Ai, and thus pdAi
Mi ≤ fin.dimAi. Using

Theorem 3.10,

pdΛ M ≤ max
i∈Γ0

{pdkΓ/I Si, pdAi
Mi} ≤ max

i∈Γ0

{gl.dim kΓ/I, fin.dimAi}.

Since M is arbitrary, the statement follows. □

4. Homological dimensions for gp-algebras

We now focus on gp-algebras, which are, as observed above, terraced gbp-
algebras. We start with the following result which is a direct consequence of the
above considerations.

Theorem 4.1. Let Λ = k(Γ,A) be a gp-algebra, with Γ having at least one arrow.
Then gl.dimΛ = maxj∈Γ0

{1, gl.dimAj}.

Proof. Observe that gl.dim kΓ = 1 in this case and hence, by Corollary 3.11,
gl.dimΛ ≤ maxj∈Γ0{1, gl.dimAj}. The equality now follows using Corollary 3.2
and the fact that Λ is not semisimple (since kΓ is not). □



14 VIKTOR CHUST AND FLÁVIO U. COELHO

Remark 4.2. Theorem 4.1 may be considered a slight improvement from basic
formulas for calculating the global dimension of a tensor algebra. For example, if
we had used [11, Theorem 2.2.11], then we could only affirm that gl.dim k(Γ,A) ≤
maxj∈Γ0

{gl.dimAj}+ 1.

4.1. Shod and quasitilted algebras. The next result is an application to the
study of shod and quasitilted algebras. Quasitilted algebras were introduced in [10]
as a generalization of tilted algebras, by considering tilting objects in abelian cate-
gories. We shall, however, use a characterization of quasitilted algebras, also proven
in [10], which suits better our purpose here. The shod algebras were introduced in
[7] in order to generalize the concept of quasitilted. The acronym shod stands for
small homological dimension, as it is clear from the definition below. We refer to
[7,10] for more details.

Definition 4.3. Let A be an algebra. We say that A is a shod algebra if, for every
indecomposable A-module M , either pdA M ≤ 1 or idA M ≤ 1. If, besides from
being shod, A has global dimension of at most two, we say that A is quasitilted.

Our next result allows us to produce a quasitilted or shod gp-algebra from other
algebras. It is worth mentioning that it is not intended as a complete description
of which generalized (bound) path algebras are quasitilted or shod. Before stating
it, please note that every hereditary algebra is quasitilted, and thus also shod.

Proposition 4.4. Let Λ = k(Γ,A) be a gp-algebra, with Γ acyclic. Suppose that
Aj is hereditary for every j ∈ Γ0, except possibly for a single vertex i ∈ Γ0. Then:

(a) If Ai is shod, then Λ is shod.
(b) If Ai is quasitilted, then Λ is quasitilted.

Proof. (a) Let M = ((Mj)j∈Γ0
, (ϕα)α∈Γ1

) be an indecomposable representation
over Λ. Since Γ is acyclic, we infer that the algebra kΓ is hereditary and so every
simple module over it will have projective and injective dimension of at most one.
Observe also that, since Aj is hereditary for j ̸= i, we also have pdAj

Mj ≤ 1 and
idAj

Mj ≤ 1 if j ̸= i.
Now, since Ai is shod, either pdAi

Mi ≤ 1 or idAi
Mi ≤ 1. In the former

case, from Theorem 3.10, we have that pdΛ M ≤ maxj∈Γ0
{pdAj

Mj , pdkΓ Sj} ≤ 1,
and in the latter, using Corollary 3.12 in an analogous manner, one obtains that
idΛ M ≤ 1. Thus Λ is shod.



HOMOLOGICAL INVARIANTS 15

(b) Since Ai is quasitilted, it is shod and from the previous item we get that Λ

is shod. It remains to prove that gl.dimΛ ≤ 2. Applying Corollary 3.11,

gl.dimΛ ≤ max
j∈Γ0

{kΓ, gl.dimAj} ≤ 2,

using that Ai is quasitilted and that the other algebras are hereditary. □

Example 4.5. This example will show that the converse of proposition above could
not hold. Let A be the bound path algebra over the quiver

1
α // 2

β // 3

bound by αβ = 0, and let Λ be the generalized path algebra given by

A // k Aoo .

We have that, with this setting, Λ does not satisfy the hypothesis from the last
proposition: there is more than one vertex upon which the algebra is quasitilted
and non-hereditary. However, using [12, Theorem 3.3] or [5, Theorem 3.9], we see
that Λ is isomorphic to the bound path algebra over the quiver

1

α

�� &&MM
MMM

MMM
MMM

MM 5

γ

��xxqqq
qqq

qqq
qqq

q

2

β

��

// 4 6

δ

��

oo

3

88qqqqqqqqqqqqq
7

ffMMMMMMMMMMMMM

bound by αβ = γδ = 0. Then a routine calculation shows that Λ is a quasitilted
algebra. The same example shows that the converse of the above proposition also
does not hold for shod algebras.

We finish our considerations with a result which is a direct consequence of Propo-
sition 3.13.

Proposition 4.6. Let Λ = k(Γ,A) be a gp-algebra, with Γ having at least one
arrow. Then

fin.dimΛ = max
i∈Γ0

{1,fin.dimAi} .

In particular, if fin.dimAi < ∞ for each i, then also fin.dimΛ < ∞.

Proof. Just observe that gl.dim kΓ = 1, and use Proposition 3.13. □
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