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Abstract
Macrofungal species attract significant attention due to their 
critical roles in ecosystems and widespread industrial applications. 
Traditional species identification methods are expertise-intensive and 
time-consuming processes. Artificial intelligence (AI) techniques, 
especially, deep learning (DL), have been employed to accelerate 
these processes and improve result accuracy. This article aimed 
to classify five macrofungi using AI, specifically DL. The study 
focuses on classifying Amanita muscaria, A. phalloides, Lepista 
nuda, Macrolepiota procera, and Craterellus cornucopioides, 
utilizing various DL models, including DenseNet121, InceptionV3, 
MobileNetV2, Xception, VGG16, and ResNet101. The dataset 
comprised 683 images across five classes. The data were collected in 
a balanced manner, and the model’s effectiveness was evaluated based 
on accuracy, precision, recall, and F1-score metrics. Additionally, 
Grad-CAM visualizations were utilized to analyze the regions of 
focus. The best-performing model achieved 93% accuracy (7% error), 
outperforming a simple Convolutional Neural Network baseline 
with 70% accuracy (30% error). Overall, all transfer-learning models 
achieved accuracies of ≥ 90%. In particular, the DenseNet121 and 
Xception models achieved the maximum success by correctly 

Özet
Makromantar türleri, ekosistemlerdeki kritik rolleri ve geniş 
endüstriyel uygulamaları nedeniyle dikkat çekmektedir. Geleneksel 
tür teşhis yöntemleri uzmanlık gerektiren ve zaman alıcı süreçlerdir; 
bu nedenle yapay zekâ (YZ), özellikle derin öğrenme (DÖ) 
teknikleri, bu süreçleri hızlandırmak ve doğruluğu artırmak amacıyla 
kullanılmaktadır. Bu makale, beş farklı makromantar türünü YZ, 
özelde DÖ teknikleri kullanarak otomatik olarak sınıflandırmayı 
amaçlamaktadır. Çalışma kapsamında Amanita muscaria, A. 
phalloides, Lepista nuda, Macrolepiota procera ve Craterellus 
cornucopioides türleri ele alınmış; bu türlerin sınıflandırılmasında 
DenseNet121, InceptionV3, MobileNetV2, Xception, VGG16 ve 
ResNet101 gibi çeşitli derin öğrenme modelleri kullanılmıştır. Veri 
kümesi, 5 sınıfta toplam 683 görüntüden oluşmaktadır. Veriler dengeli 
bir şekilde toplanmış ve modellerin etkinliği doğruluk, kesinlik 
(precision), duyarlılık (recall) ve F1-skoru gibi metrikler üzerinden 
değerlendirilmiştir. Ayrıca modellerin hangi bölgelere odaklandığını 
analiz etmek amacıyla Grad-CAM görselleştirmeleri kullanılmıştır. 
En iyi performansı gösteren model %93 doğruluk (%7 hata) elde etmiş, 
%70 doğruluk (%30 hata) sağlayan basit bir Evrimsel Katmanlı Sinir 
Ağı temel modelini belirgin biçimde geride bırakmıştır; genel olarak, 
tüm transfer öğrenimi modelleri %90 ve üzeri doğruluklara ulaşmıştır. 
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Introduction
Fungi play vital roles in ecosystems and have significant industrial 
and medicinal applications (Chugh et al., 2022; Llanaj et al., 
2023). Macrofungi, primarily belonging to the Basidiomycota 
and Ascomycota phyla, are notable for their large fruiting bodies 
and comprise ~41,000 known species, with > 2,000 being edible 
(Priyamvada et al., 2017; Li et al., 2021; Ekinci et al., 2025). 
They contribute to forest health management through symbiotic 
relationships with trees, breaking down organic matter and 
recycling nutrients (de Mattos-Shipley et al., 2016; Ye et al., 
2019; Ozsari et al., 2024). In addition to their ecological roles, 
macrofungi are valued for their bioactive compounds, which are 
utilized in medicine and explored for their potential applicability 
in biodegradation and as renewable resources (Cheong et al., 2018; 
Hyde et al., 2019; El-Ramady et al., 2022).

Integrating ML and computer vision into mycological research and 
citizen science is revolutionizing macrofungal identification and 
classification (Picek et al., 2022; Ozsari et al., 2024; Korkmaz et al., 
2025). Traditional identification methods, which require extensive 
expertise and are often time-consuming, are being superseded 
by artificial intelligence (AI)-based systems capable of rapidly 
analyzing large datasets and distinguishing minute variations 
in shape, color, and texture (Yan et al., 2023). AI democratises 
this process by providing intuitive mobile applications, enabling 
individuals who are not experts to identify macrofungi from 
photographs, thereby substantially mitigating the risk of 
misidentification (Chathurika et al., 2023; Ekinci et al., 2025; 
Kumru et al., 2025). These AI models evolve by incorporating 
community-contributed data, ensuring their relevance to new 
findings (Bartlett et al., 2022). Moreover, the ability of AI to analyze 
environmental variables along with visual characteristics enhances 
ecological research and conservation efforts. By engaging scientists 
and the general public in collaborative biodiversity monitoring, AI 
helps generate more precise and comprehensive datasets, which are 
crucial for informed conservation strategies (Yan et al., 2023). The 
application of AI in mycology markedly advances macrofungal 
identification by offering speed, precision, accessibility, and 
robust data handling, thereby benefiting from scientific research 
and public involvement in research on fungal biodiversity (Picek 

et al., 2022). Although these studies demonstrate the potential 
of AI, they have not meaningfully integrated performance with 
interpretability, highlighting a gap that the present study seeks to 
address.

This study aims to classify five species of macrofungi: Amanita 
muscaria, A. phalloides, Lepista nuda, Macrolepiota procera, 
and Craterellus cornucopioides using deep learning (DL). The 
five macrofungal species were specifically chosen because they 
represent both toxic and edible taxa with high ecological and 
societal importance. Their morphological similarities often led 
to frequent misidentifications in the field. These were selected 
for their ecological significance and morphological diversity. The 
objective was to develop a model that can quickly and accurately 
identify these species based on their visual characteristics. 

The novelty of this study lies in the application of DL techniques 
to achieve high-accuracy classification. Its contributions may 
represent a significant advancement in the in silico identification 
of macrofungal species, supporting the conservation of natural 
habitats and biodiversity monitoring. The technical contributions 
of this study include a systematic comparison of six transfer-
learning architectures, the integration of Grad-CAM to ensure 
biologically meaningful interpretability, and benchmarking 
against a Convolutional Neural Network (CNN) baseline to 
demonstrate methodological advances. AI-based approaches have 
been applied in mycology, systematic research combining multiple 
DL architectures with interpretability-associated analyses, such as 
Grad-CAM, remains limited (Raghavan et al., 2024). Addressing 
these challenges, this study not only provides a performance 
benchmark applicable to varied state-of-the-art DL architectures 
but also an interpretable framework through Grad-CAM, thereby 
extending beyond the available DL-based biodiversity monitoring 
works that mainly emphasized accuracy. This study, therefore, 
contributes to taxonomy by providing a more comprehensive 
evaluation that highlights the significance of model performance 
and interpretability in macrofungal classification. In this context, 
the models DenseNet121 (Huang et al., 2017), InceptionV3 
(Szegedy et al., 2016), MobileNetV2 (Sandler et al., 2018), 
Xception (Chollet, 2017), VGG16 (Simonyan & Zisserman, 
2014), and ResNet101 (He et al., 2016), which have demonstrated 
considerable efficacy in classification, were employed.

identifying relevant regions of these species. The study demonstrates 
that AI, particularly DL-based techniques, can be effectively applied in 
species identification. Expanding datasets could further enhance their 
performance. The novelty of this study is the use of a combination 
of transfer-learning and Grad-CAM explainability to provide an 
interpretable and biologically meaningful framework for macrofungi 
identification.

Özellikle DenseNet121 ve Xception modelleri, makromantar türlerine 
ait ilgili bölgeleri doğru şekilde tespit ederek en yüksek başarıyı 
sağlamıştır. Bu çalışma, biyolojik tür teşhisinde YZ, özellikle DÖ 
tekniklerinin etkin bir şekilde kullanılabileceğini ortaya koymakta 
ve veri setlerinin genişletilmesinin bu tekniklerin başarısını 
daha da artırabileceğini göstermektedir. Bu çalışmanın yeniliği, 
transfer öğrenmeyi Grad-CAM açıklanabilirliği ile birleştirerek 
makrofungusların tanımlanmasına yönelik yorumlanabilir ve 
biyolojik açıdan anlamlı bir çerçeve sunmasıdır.

Keywords: deep learning, macrofungi classification, artificial ıntelligence, Grad-CAM visualization, biodiversity monitoring
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Materials and Methods
Dataset

For this study, some macrofungal images were sourced from publicly 
accessible website primarily the Global Biodiversity Information 
Facility (www.gbif.org). We photographed the other specimens. 
Before their use, the publicly available images were modified, and 
all sources have been cited. The number of photographs taken by 
the authors was lower than that acquired from the websites (GBIF.
org). The primary reason for this difference was the difficulty in 
locating all species simultaneously. Furthermore, obtaining the 
required quantity of data for each species was time-consuming 
and costly. Figure 1 displays a sample image for each macrofungal 
species. The dataset comprised 683 original images across five 
classes. Online data augmentation (horizontal flipping and 0.2° 
rotation) was applied during training; the augmented images were 
not stored offline, and all reported counts referred to the original 
images. Ensuring a balanced dataset is crucial for DL models; 
therefore, data were collected for all macrofungi species. An 
imbalance in data quantity can lead to models having an inherent 
majority bias.

Application of DL Methods

Training and testing procedures employed an equal number of data 
samples for each species. Table 1 illustrates the distribution of  
data samples across the training, validation, and testing phases. 
The images employed for each phase were entirely distinct. 

Specifically, the images used for training did not include any 
photos that were used for verification or testing. The validation 
images did not contain any test data.

Metrics

The effectiveness of all the methods employed was assessed based 
on the parameters of accuracy, precision, recall, and F1-score.

• Accuracy is the ratio between the correctly predicted and the 
total number of instances within each dataset.

• Precision is the proportion of instances with accurate positive 
predictions among all those predicted as positive.

• Recall is the ratio between the instances with accurate positive 
predictions and the total number of actual positive instances.

• F1-score is the harmonic mean of precision and recall, offering a 
single metric that balances both.

Table 1. Data distribution.
Species Training Validation Test
Amanita muscaria 120 10 10
A. phalloides 117 10 10
Lepista nuda 115 10 10
Macrolepiota procera 111 10 10
Craterellus cornucopioides 120 10 10

Figure 1. A sample image for each macrofungi species. (a) Amanita muscaria; (b) A. phalloides; (c) Lepista nuda; (d) Macrolepiota procera; (e) Craterellus
cornucopioides.

a

d

b c

e

http://www.gbif.org
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The formulae used for these metrics are given in Equations 1, 2, 3, 
and 4, respectively.

Accuracy =  
 (TP + TN) 

(TP + TN + FP + FN)
(Equation 1)

					    Precision =
TP 

(TN + FP)
(Equation 2)

					   

Recall =	
TP 

(TP + FN)
(Equation 3)

F1-score =
2*(Precision*Recall)

Precision + Recall
(Equation 4)

For Equations 1, 2, and 3, the terms True Positive (TP), False 
Positive (FP), True Negative (TN), and False Negative (FN) were 
defined. TPs refers to cases where the test sample is actually 
diseased and is correctly predicted as such. FPs denotes cases 
where the sample is healthy but is incorrectly classified as diseased. 
TNs indicates samples that are healthy and correctly identified as 
such. FNs represents samples that are diseased but are mistakenly 
classified as healthy (Ozsari et al., 2024).

In addition, the Grad-CAM approach was employed to examine 
specific regions of the images prioritized by the models during 
inference. Neural networks consist of interconnected layers where 
numerous parameters are adjusted during training to process 
the input data. However, the mechanisms by which the outputs 
are generated based on the inputs remain unclear, diminishing 
model confidence. Grad-CAM is a visualization technique 
used to interpret and understand the decision-making processes 
behind CNNs. It is particularly popular in image classification 
tasks, aiding in identifying the regions of an input image that are 
significant for accurate prediction by a model. The red regions 
in the Grad-CAM images indicate the areas where the model 
focused the most, signifying that the network makes its inferences 
by examining these regions. The blue regions indicate the least 
important regions, denoting areas on which the network does not 
concentrate.

Model Architectures and Training Hyperparameters

We evaluated six transfer-learning backbones: DenseNet121, 
InceptionV3, MobileNetV2, Xception, VGG16, and ResNet101, 
which were initialized with ImageNet (https://www.image-net.org/
index.php) weights. In each model, the original classification head 
was replaced with a global average pooling layer followed by a 
fully connected softmax layer with five outputs corresponding to 
the target species. All layers were fine-tuned end-to-end.

The images were resized to 224 × 224 pixels for DenseNet121, 
MobileNetV2, VGG16, and ResNet101, and to 299 × 299 pixels 
for InceptionV3 and Xception. Preprocessing used the dedicated 

preprocess_input function of each model. During training, we 
applied horizontal flipping and a 0.2° rotation as data augmentation.

Training employed the Adaptive Moment Estimation (Adam) 
optimizer with an initial learning rate of 1 × 10-4 and a categorical 
cross-entropy loss. We trained with a batch size of 32 for 50 
epochs, selecting the best checkpoint based on validation loss. 
We employed the ReduceLROnPlateau scheduling technique 
(factor 0.1, patience 5, and minimum learning rate 1 × 10-6) and 
early stopping (patience 10 and restore_best_weights=True). 
Experiments were conducted in a GPU-enabled Google Colab 
environment (Python 3.x; TensorFlow/Keras), with fixed random 
seeds to enhance reproducibility (Ozsari et al., 2024).

Methodological Overview and Contributions

This study implements a standardized transfer-learning pipeline 
for macrofungi identification that (i) benchmarks six widely used 
backbones (DenseNet121, InceptionV3, MobileNetV2, Xception, 
VGG16, and ResNet101) under identical data splits and a unified 
training protocol; (ii) employs on-the-fly augmentation (horizontal 
flip and 0.2° rotation) to mitigate limited data without artificially 
inflating the sample counts; (iii) integrates Grad-CAM–based 
visual explanations to verify the attention on morphologically 
relevant regions; and (iv) establishes a simple CNN baseline for 
contextual comparison. All experimental settings, including input 
resolutions and preprocessing, fine-tuning strategy, optimizer, 
learning rate schedule, batch size, epochs, early stopping, and the 
hardware/software environments, facilitate reproducibility (Ekinci 
et al., 2025; Kumru et al., 2025).

Results 
Due to the limited number of images, data augmentation preceded 
training. This technique involves increasing the quantity of 
available data through minor transformations, such as rotation 
and brightness adjustment, without altering the image content. In 
the present study, data were augmented using horizontal flipping 
and a 0.2-degree rotation. Augmented samples were not stored 
offline; therefore, all dataset counts reported refer to the original 
images, while augmentation only enhances the effective number 
of training instances per epoch. Figure 2 presents a sample output 
for A. muscaria.

With on-the-fly augmentation, a series of experiments was 
conducted to evaluate and confirm the performance of various 
transfer-learning based models, including DenseNet121, 
InceptionV3, MobileNetV2, Xception, VGG16, and ResNet101, 
for automatically predicting five different macrofungi species. 
Table 2 presents the results for the models.

A CNN model built with basic layers yields average results 
(Table 2). Given the limited number of available images, this 
outcome is expected and highlights the rationale for utilizing pre-
trained networks. All fine-tuned models demonstrated substantial 
effectiveness, achieving results > 90%. Among all metrics, the 
MobileNetV2 network attained the maximum values, with the 
InceptionV3 architecture also producing comparable results.  
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The ResNet101 network produced lower accuracy values when 
compared to the other models. Notably, the high performance of these 
networks does not guarantee that the inferences made were from the 
correct regions. Therefore, Grad-CAM visualizations were generated 
to analyse the areas that the models focused on for predictions.

Specifically, Figure 3 illustrates the macrofungi for which Grad-
CAM visualizations were conducted. Figure 4 displays the Grad-
CAM images for DenseNet121, Figure 5 for InceptionV3, Figure 6 
for MobileNetV2, Figure 7 for Xception, Figure 8 for VGG16, and 
Figure 9 for ResNet101.

Table 2. Experimental results.
Model Accuracy Precision Recall F1-score
CNN 0.70 0.68 0.65 0.67
DenseNet121 0.90 0.90 0.90 0.90
InceptionV3 0.93 0.93 0.93 0.93
MobileNetV2 0.93 0.93 0.93 0.93
Xception 0.90 0.90 0.90 0.90
VGG16 0.89 0.93 0.90 0.91
ResNet101 0.90 0.90 0.90 0.90

Figure 2. A sample output for data augmentation.

Figure 3. Original images (without Grad-CAM visualization). 

Figure 4. Grad-CAM images of DenseNet121. 
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Analysis of the Grad-CAM images of the DenseNet architecture 
reveals that it derives inferences from the correct regions for all 
three macrofungi species. The blue areas denote regions unrelated 
to the macrofungi. Although its metric values were high, it is 
evident that the InceptionV3 network concentrates on the entire 
image (Figure 5), suggesting that the network makes incorrect 
predictions. The Grad-CAM images for the MobileNetV2 network 
demonstrate that it focuses on the correct regions for the for the 
central macrofungus (second image) and partially correct ones 
for the first and third macrofungi images. The heatmap indicates 

that the Xception network, just like DenseNet121, concentrates on 
macrofungi-related areas (Figure 7). The VGG16 network made 
accurate predictions for the second and third images,but shifted 
to areas in the first image that were unrelated to macrofungi. The 
ResNet101 model, apart from InceptionV3, focused on the correct 
regions in the second image, considering the stem part in the 
third macrofungi, and shifting to the knife-related area in the first 
macrofungi. Thus, it can be concluded that DenseNet121 was the 
most successful model based on the Grad-CAM visualizations and 
metric values.

Figure 5. Grad-CAM images of InceptionV3.

Figure 6. Grad-CAM images of MobileNetV2.

Figure 7. Grad-CAM images of Xception.
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Discussion 
Fungi represent a diverse kingdom of organisms, including 
yeasts, moulds, and macrofungi. They are essential components 
of various ecosystems, serving as decomposers, symbionts, and 
pathogens. Recently, DL applications in mycology have gained 
significant popularity, particularly for image classification, species 
identification, and disease diagnosis. This study employed the 
models DenseNet121, InceptionV3, MobileNetV2, Xception, 
VGG16, and ResNet101 to assess the effectiveness of DL 
techniques in autonomously detecting five distinct macrofungal 
species. The results, with values ≥ 0.9, demonstrate that these 
networks are highly efficient in distinguishing between these 
species. However, high-performance metrics do not necessarily 
ensure that the architectures operate with the appropriate regions. 
Consequently, Grad-CAM visualizations were also employed. 
Analysis of the Grad-CAM outputs revealed that the networks 
generally drew inferences from the correct areas. The Grad-CAM 
images for the DenseNet121 model demonstrated that it drew 
inferences from the correct regions for all macrofungal species. 
This result aligns with the findings of Van Horn et al. (2018), who 
observed that DL models accurately identify the regions relevant 
to species classification tasks. Conversely, the InceptionV3 
network focused on entire images and, despite high metric values, 

made incorrect inferences. This outcome was consistent with the 
findings of Wah et al. (2011), who noted that DL models can 
sometimes derive inferences from the irrelevant regions. The 
MobileNetV2 network focused on the correct regions applicable to 
the middle macrofungi and partially correct areas for A. phalloides 
and M. procera. The Xception network, similar to DenseNet-121, 
focused on areas related to macrofungi. The VGG16 network 
made accurate predictions using the second and third images, 
but shifted to regions irrelevant to macrofungi in the first image. 
The ResNet101 model, apart from InceptionV3, focused on the 
correct areas of the second image, considering the stem part in the 
third macrofungi, and shifting to the knife-related area in the first 
macrofungi.

The application of DL techniques in classifying macrofungal 
species, as demonstrated in this study, has shown significant 
promise. By leveraging advanced architectures such as 
DenseNet121, InceptionV3, MobileNetV2, Xception, VGG16, 
and ResNet101, we achieved accuracy rates > 90%, indicating 
the efficacy of these models in identifying and classifying 
species based on their visual characteristics. The use of Grad-
CAM visualizations provided further insights into those regions 
of the images that the models focused on. This observation 
confirmed that DenseNet121 and Xception, in particular, were 
highly effective in identifying the areas relevant to the species.  

Figure 8. Grad-CAM images of VGG16.

Figure 9. Grad-CAM images of ResNet101.       
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The performance of these architectures was assessed based on 
accuracy, precision, recall, and F1-score metrics. Additionally, 
Grad-CAM visualizations were generated to pinpoint the regions 
that the models concentrated on during inference. These results 
indicated that the networks achieved high effectiveness, with scores 
≥ 0.9. The Grad-CAM images demonstrated that the DenseNet121 
and Xception architectures focused accurately on the macrofungi.

Despite these positive outcomes, several challenges persist, 
particularly concerning data availability and diversity. The current 
dataset, while effective, is limited in size, which restricts the 
ability of the model to realize its potential fully. This limitation 
underscores the need to expand datasets to encompass a broader 
range of species and more diverse image sets. Larger and more 
varied datasets would not only enhance model performance 
but also improve the generalizability of the results, rendering 
the models more robust across different ecological contexts. 
Our results were consistent with findings from previous studies 
on image-based fungal classification, which reported that DL 
architectures outperform traditional ML approaches (Picek et al., 
2022; Yan et al., 2023). However, unlike prior studies that mostly 
evaluated single CNN models, this study systematically compared 
six state-of-the-art transfer-learning architectures on macrofungi. 
Moreover, while earlier research focused only on accuracy-
associated metrics, performance evaluation in this study was 
complemented with Grad-CAM visualizations, thereby adding 
interpretability and biological relevance to the results.

The main contribution of this study lies in the systematic 
comparison of six transfer-learning architectures for macrofungi 
classification, which was combined with the Grad-CAM 
visualizations to validate the model’s focus on biologically relevant 
regions. In addition, benchmarking against a simple CNN baseline 
highlighted the methodological advantage of advanced DL 
models. These contributions together provide a reproducible and 
interpretable framework that can be adapted to future biodiversity 
monitoring studies.

Future research should focus on addressing these data limitations 
by developing and utilizing more comprehensive and diverse 
datasets. Furthermore, integrating DL models with other 
computational techniques, such as computer vision, could further 
enhance the efficiency and accuracy of species classification, 
particularly in identifying poisonous macrofungi and supporting 
mechanized harvesting processes. Such a line of research could 
be further strengthened by incorporating additional data types, 
including spore prints and relevant environmental variables. In 
conclusion, while this study adds significant amounts of data to the 
automated classification of macrofungi species, it also underscores 
the necessity for continued research and development. Future 
studies should aim to build upon these findings by expanding 
data resources, refining model architectures, and exploring new 
applications of AI in mycology, ultimately contributing to more 
effective biodiversity conservation efforts.

Conclusion
This study addresses the core challenge of reliable macrofungal 
identification with limited datasets, in a context where traditional 
methods remain inadequate and the existing AI-based approaches 
seldom integrate performance with interpretability. Through a 
systematic comparison of six state-of-the-art transfer-learning 
architectures and the integration of Grad-CAM visualization, this 
study demonstrated high accuracy and biologically meaningful 
interpretability, providing a methodological framework that 
advances beyond previous works. Importantly, by highlighting 
the diagnostic image regions used by the models, this framework 
not only advances methodological development but also offers 
practical ease in the identification of the fungal species included 
in the study, thereby supporting both taxonomic accuracy and 
applied usability.Future research should focus on scaling up this 
framework by employing larger and more diverse datasets and 
enhancing generalizability under data-scarce conditions through 
advanced approaches such as transformer-based architectures and 
semi-supervised learning. Moreover, applying these models to 
field-based contexts, particularly for the reliable identification of 
poisonous species and for ecological monitoring, would provide 
significant practical contributions.
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