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Abstract

Macrofungal species attract significant attention due to their
critical roles in ecosystems and widespread industrial applications.
Traditional species identification methods are expertise-intensive and
time-consuming processes. Artificial intelligence (AI) techniques,
especially, deep learning (DL), have been employed to accelerate
these processes and improve result accuracy. This article aimed
to classify five macrofungi using Al, specifically DL. The study
focuses on classifying Amanita muscaria, A. phalloides, Lepista
nuda, Macrolepiota procera, and Craterellus cornucopioides,
utilizing various DL models, including DenseNet121, InceptionV3,
MobileNetV2, Xception, VGG16, and ResNetlOl. The dataset
comprised 683 images across five classes. The data were collected in
a balanced manner, and the model’s effectiveness was evaluated based
on accuracy, precision, recall, and Fl-score metrics. Additionally,
Grad-CAM visualizations were utilized to analyze the regions of
focus. The best-performing model achieved 93% accuracy (7% error),
outperforming a simple Convolutional Neural Network baseline
with 70% accuracy (30% error). Overall, all transfer-learning models
achieved accuracies of > 90%. In particular, the DenseNet121 and
Xception models achieved the maximum success by correctly

Ozet

Makromantar tiirleri, ekosistemlerdeki kritik rolleri ve genis
endiistriyel uygulamalar1 nedeniyle dikkat cekmektedir. Geleneksel
tiir teshis yontemleri uzmanlik gerektiren ve zaman alic1 siireglerdir;
bu nedenle yapay zekd (YZ), ozellikle derin dgrenme (DO)
teknikleri, bu siiregleri hizlandirmak ve dogrulugu artirmak amaciyla
kullanilmaktadir. Bu makale, bes farkli makromantar tiirtini YZ,
ozelde DO teknikleri kullanarak otomatik olarak simiflandirmay1
amaclamaktadir. Calisma kapsaminda Amanita muscaria, A.
phalloides, Lepista nuda, Macrolepiota procera ve Craterellus
cornucopioides tiirleri ele alinmig; bu tiirlerin siniflandirilmasinda
DenseNet121, InceptionV3, MobileNetV2, Xception, VGG16 ve
ResNet101 gibi ¢esitli derin 6grenme modelleri kullanilmistir. Veri
kiimesi, 5 sinifta toplam 683 goriintiiden olugsmaktadir. Veriler dengeli
bir sekilde toplanmis ve modellerin etkinligi dogruluk, kesinlik
(precision), duyarlilik (recall) ve F1-skoru gibi metrikler iizerinden
degerlendirilmistir. Ayrica modellerin hangi bolgelere odaklandigini
analiz etmek amaciyla Grad-CAM gorsellestirmeleri kullanilmustir.
En iyi performansi gosteren model %93 dogruluk (%7 hata) elde etmis,
%70 dogruluk (%30 hata) saglayan basit bir Evrimsel Katmanli Sinir
Ag1 temel modelini belirgin bicimde geride birakmigtir; genel olarak,
tiim transfer 6grenimi modelleri %90 ve tizeri dogruluklara ulagmigtir.
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identifying relevant regions of these species. The study demonstrates
that Al, particularly DL-based techniques, can be effectively applied in
species identification. Expanding datasets could further enhance their
performance. The novelty of this study is the use of a combination
of transfer-learning and Grad-CAM explainability to provide an
interpretable and biologically meaningful framework for macrofungi
identification.

Ozellikle DenseNet121 ve Xception modelleri, makromantar tiirlerine
ait ilgili bolgeleri dogru sekilde tespit ederek en yiiksek basariy1
saglanustir. Bu calisma, biyolojik tiir teshisinde YZ, 6zellikle DO
tekniklerinin etkin bir sekilde kullanilabilecegini ortaya koymakta
ve veri setlerinin genisletilmesinin bu tekniklerin basarisini
daha da artirabilecegini gostermektedir. Bu caligmanin yeniligi,
transfer ogrenmeyi Grad-CAM agiklanabilirligi ile birlestirerek
makrofunguslarin  tanimlanmasina  yonelik  yorumlanabilir ve
biyolojik agidan anlamli bir ¢erceve sunmasidir.

Keywords: deep learning, macrofungi classification, artificial intelligence, Grad-CAM visualization, biodiversity monitoring

Introduction

Fungi play vital roles in ecosystems and have significant industrial
and medicinal applications (Chugh et al., 2022; Llanaj et al.,
2023). Macrofungi, primarily belonging to the Basidiomycota
and Ascomycota phyla, are notable for their large fruiting bodies
and comprise ~41,000 known species, with > 2,000 being edible
(Priyamvada et al., 2017; Li et al., 2021; Ekinci et al., 2025).
They contribute to forest health management through symbiotic
relationships with trees, breaking down organic matter and
recycling nutrients (de Mattos-Shipley et al., 2016; Ye et al.,
2019; Ozsari et al., 2024). In addition to their ecological roles,
macrofungi are valued for their bioactive compounds, which are
utilized in medicine and explored for their potential applicability
in biodegradation and as renewable resources (Cheong et al., 2018;
Hyde et al., 2019; El-Ramady et al., 2022).

Integrating ML and computer vision into mycological research and
citizen science is revolutionizing macrofungal identification and
classification (Picek et al., 2022; Ozsari et al., 2024; Korkmaz et al.,
2025). Traditional identification methods, which require extensive
expertise and are often time-consuming, are being superseded
by artificial intelligence (Al)-based systems capable of rapidly
analyzing large datasets and distinguishing minute variations
in shape, color, and texture (Yan et al., 2023). Al democratises
this process by providing intuitive mobile applications, enabling
individuals who are not experts to identify macrofungi from
photographs, thereby substantially mitigating the risk of
misidentification (Chathurika et al., 2023; Ekinci et al., 2025;
Kumru et al., 2025). These Al models evolve by incorporating
community-contributed data, ensuring their relevance to new
findings (Bartlett et al., 2022). Moreover, the ability of Al to analyze
environmental variables along with visual characteristics enhances
ecological research and conservation efforts. By engaging scientists
and the general public in collaborative biodiversity monitoring, Al
helps generate more precise and comprehensive datasets, which are
crucial for informed conservation strategies (Yan et al., 2023). The
application of Al in mycology markedly advances macrofungal
identification by offering speed, precision, accessibility, and
robust data handling, thereby benefiting from scientific research
and public involvement in research on fungal biodiversity (Picek

et al., 2022). Although these studies demonstrate the potential
of Al, they have not meaningfully integrated performance with
interpretability, highlighting a gap that the present study seeks to
address.

This study aims to classify five species of macrofungi: Amanita
muscaria, A. phalloides, Lepista nuda, Macrolepiota procera,
and Craterellus cornucopioides using deep learning (DL). The
five macrofungal species were specifically chosen because they
represent both toxic and edible taxa with high ecological and
societal importance. Their morphological similarities often led
to frequent misidentifications in the field. These were selected
for their ecological significance and morphological diversity. The
objective was to develop a model that can quickly and accurately
identify these species based on their visual characteristics.

The novelty of this study lies in the application of DL techniques
to achieve high-accuracy classification. Its contributions may
represent a significant advancement in the in silico identification
of macrofungal species, supporting the conservation of natural
habitats and biodiversity monitoring. The technical contributions
of this study include a systematic comparison of six transfer-
learning architectures, the integration of Grad-CAM to ensure
biologically meaningful interpretability, and benchmarking
against a Convolutional Neural Network (CNN) baseline to
demonstrate methodological advances. Al-based approaches have
been applied in mycology, systematic research combining multiple
DL architectures with interpretability-associated analyses, such as
Grad-CAM, remains limited (Raghavan et al., 2024). Addressing
these challenges, this study not only provides a performance
benchmark applicable to varied state-of-the-art DL architectures
but also an interpretable framework through Grad-CAM, thereby
extending beyond the available DL-based biodiversity monitoring
works that mainly emphasized accuracy. This study, therefore,
contributes to taxonomy by providing a more comprehensive
evaluation that highlights the significance of model performance
and interpretability in macrofungal classification. In this context,
the models DenseNetl21 (Huang et al., 2017), InceptionV3
(Szegedy et al., 2016), MobileNetV2 (Sandler et al., 2018),
Xception (Chollet, 2017), VGG16 (Simonyan & Zisserman,
2014), and ResNet101 (He et al., 2016), which have demonstrated
considerable efficacy in classification, were employed.
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Materials and Methods
Dataset

For this study, some macrofungal images were sourced from publicly
accessible website primarily the Global Biodiversity Information
Facility (www.gbif.org). We photographed the other specimens.
Before their use, the publicly available images were modified, and
all sources have been cited. The number of photographs taken by
the authors was lower than that acquired from the websites (GBIF.
org). The primary reason for this difference was the difficulty in
locating all species simultaneously. Furthermore, obtaining the
required quantity of data for each species was time-consuming
and costly. Figure 1 displays a sample image for each macrofungal
species. The dataset comprised 683 original images across five
classes. Online data augmentation (horizontal flipping and 0.2°
rotation) was applied during training; the augmented images were
not stored offline, and all reported counts referred to the original
images. Ensuring a balanced dataset is crucial for DL models;
therefore, data were collected for all macrofungi species. An
imbalance in data quantity can lead to models having an inherent
majority bias.

Application of DL Methods

Training and testing procedures employed an equal number of data
samples for each species. Table 1 illustrates the distribution of
data samples across the training, validation, and testing phases.
The images employed for each phase were entirely distinct.

Specifically, the images used for training did not include any
photos that were used for verification or testing. The validation
images did not contain any test data.

Table 1. Data distribution.

Species Training | Validation Test
Amanita muscaria 120 10 10
A. phalloides 117 10 10
Lepista nuda 115 10 10
Macrolepiota procera 111 10 10
Craterellus cornucopioides | 120 10 10
Metrics

The effectiveness of all the methods employed was assessed based
on the parameters of accuracy, precision, recall, and F1-score.

e Accuracy is the ratio between the correctly predicted and the
total number of instances within each dataset.

e Precision is the proportion of instances with accurate positive
predictions among all those predicted as positive.

e Recall is the ratio between the instances with accurate positive
predictions and the total number of actual positive instances.

e Fl-score is the harmonic mean of precision and recall, offering a
single metric that balances both.

Figure 1. A sample image for each macrofungi species. (a) Amanita muscaria; (b) A. phalloides; (c) Lepista nuda; (d) Macrolepiota procera; (e) Craterellus

cornucopioides.
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The formulae used for these metrics are given in Equations 1, 2, 3,
and 4, respectively.

(TP + TN)
Accuracy = (Equation 1)
(TP + TN + FP + FN)
o TP
Precision = (Equation 2)
(TN + FP)
TP
Recall = (Equation 3)
(TP + EN)
2*(Precision*Recall)
F1-score = (Equation 4)

Precision + Recall

For Equations 1, 2, and 3, the terms True Positive (TP), False
Positive (FP), True Negative (TN), and False Negative (FN) were
defined. TPs refers to cases where the test sample is actually
diseased and is correctly predicted as such. FPs denotes cases
where the sample is healthy but is incorrectly classified as diseased.
TNs indicates samples that are healthy and correctly identified as
such. FNs represents samples that are diseased but are mistakenly
classified as healthy (Ozsari et al., 2024).

In addition, the Grad-CAM approach was employed to examine
specific regions of the images prioritized by the models during
inference. Neural networks consist of interconnected layers where
numerous parameters are adjusted during training to process
the input data. However, the mechanisms by which the outputs
are generated based on the inputs remain unclear, diminishing
model confidence. Grad-CAM is a visualization technique
used to interpret and understand the decision-making processes
behind CNNs. It is particularly popular in image classification
tasks, aiding in identifying the regions of an input image that are
significant for accurate prediction by a model. The red regions
in the Grad-CAM images indicate the areas where the model
focused the most, signifying that the network makes its inferences
by examining these regions. The blue regions indicate the least
important regions, denoting areas on which the network does not
concentrate.

Model Architectures and Training Hyperparameters

We evaluated six transfer-learning backbones: DenseNetl21,
InceptionV3, MobileNetV2, Xception, VGG16, and ResNet101,
which were initialized with ImageNet (https://www.image-net.org/
index.php) weights. In each model, the original classification head
was replaced with a global average pooling layer followed by a
fully connected softmax layer with five outputs corresponding to
the target species. All layers were fine-tuned end-to-end.

The images were resized to 224 x 224 pixels for DenseNet121,
MobileNetV2, VGG16, and ResNet101, and to 299 x 299 pixels
for InceptionV3 and Xception. Preprocessing used the dedicated

preprocess_input function of each model. During training, we
applied horizontal flipping and a 0.2° rotation as data augmentation.

Training employed the Adaptive Moment Estimation (Adam)
optimizer with an initial learning rate of 1 X 10 and a categorical
cross-entropy loss. We trained with a batch size of 32 for 50
epochs, selecting the best checkpoint based on validation loss.
We employed the ReduceLROnPlateau scheduling technique
(factor 0.1, patience 5, and minimum learning rate 1 x 10) and
early stopping (patience 10 and restore_best_weights=True).
Experiments were conducted in a GPU-enabled Google Colab
environment (Python 3.x; TensorFlow/Keras), with fixed random
seeds to enhance reproducibility (Ozsari et al., 2024).

Methodological Overview and Contributions

This study implements a standardized transfer-learning pipeline
for macrofungi identification that (i) benchmarks six widely used
backbones (DenseNet121, InceptionV3, MobileNetV2, Xception,
VGG16, and ResNet101) under identical data splits and a unified
training protocol; (ii) employs on-the-fly augmentation (horizontal
flip and 0.2° rotation) to mitigate limited data without artificially
inflating the sample counts; (iii) integrates Grad-CAM-based
visual explanations to verify the attention on morphologically
relevant regions; and (iv) establishes a simple CNN baseline for
contextual comparison. All experimental settings, including input
resolutions and preprocessing, fine-tuning strategy, optimizer,
learning rate schedule, batch size, epochs, early stopping, and the
hardware/software environments, facilitate reproducibility (Ekinci
et al., 2025; Kumru et al., 2025).

Results

Due to the limited number of images, data augmentation preceded
training. This technique involves increasing the quantity of
available data through minor transformations, such as rotation
and brightness adjustment, without altering the image content. In
the present study, data were augmented using horizontal flipping
and a 0.2-degree rotation. Augmented samples were not stored
offline; therefore, all dataset counts reported refer to the original
images, while augmentation only enhances the effective number
of training instances per epoch. Figure 2 presents a sample output
for A. muscaria.

With on-the-fly augmentation, a series of experiments was
conducted to evaluate and confirm the performance of various
transfer-learning based models, including DenseNetl21,
InceptionV3, MobileNetV2, Xception, VGG16, and ResNet101,
for automatically predicting five different macrofungi species.
Table 2 presents the results for the models.

A CNN model built with basic layers yields average results
(Table 2). Given the limited number of available images, this
outcome is expected and highlights the rationale for utilizing pre-
trained networks. All fine-tuned models demonstrated substantial
effectiveness, achieving results > 90%. Among all metrics, the
MobileNetV2 network attained the maximum values, with the
InceptionV3 architecture also producing comparable results.
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Figure 2. A sample output for data augmentation.

Table 2. Experimental results. The ResNetl01 network produced lower accuracy values when
Model Accuracy | Precision Recall | Fl-score compared to the other models. Notabl}f, the high performance of these

networks does not guarantee that the inferences made were from the
CNN 0.70 0.68 0.65 0.67 correct regions. Therefore, Grad-CAM visualizations were generated
DenseNet121 | 0.90 0.90 0.90 0.90 to analyse the areas that the models focused on for predictions.
InceptionV3 0.93 0.93 0.93 0.93 Specifically, Figure 3 illustrates the macrofungi for which Grad-
MobileNetV2 | 0.93 0.93 0.93 0.93 CAM visualizations were conducted. Figure 4 displays the Grad-
Xception 0.90 0.90 0.90 0.90 CAM images for DenseNetl21, Figure 5 for InceptionV3, Figure 6
VGG16 0.89 0.93 0.90 091 for MobileNetV2, Figure 7 for Xception, Figure 8 for VGG16, and
ResNet101 0.90 0.90 090 | 0.90 Figure 9 for ResNet101.

2 'y
L )

Figure 4. Grad-CAM images of DenseNet121.
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Analysis of the Grad-CAM images of the DenseNet architecture
reveals that it derives inferences from the correct regions for all
three macrofungi species. The blue areas denote regions unrelated
to the macrofungi. Although its metric values were high, it is
evident that the InceptionV3 network concentrates on the entire
image (Figure 5), suggesting that the network makes incorrect
predictions. The Grad-CAM images for the MobileNetV?2 network
demonstrate that it focuses on the correct regions for the for the
central macrofungus (second image) and partially correct ones
for the first and third macrofungi images. The heatmap indicates

that the Xception network, just like DenseNet121, concentrates on
macrofungi-related areas (Figure 7). The VGG16 network made
accurate predictions for the second and third images,but shifted
to areas in the first image that were unrelated to macrofungi. The
ResNet101 model, apart from InceptionV3, focused on the correct
regions in the second image, considering the stem part in the
third macrofungi, and shifting to the knife-related area in the first
macrofungi. Thus, it can be concluded that DenseNet121 was the
most successful model based on the Grad-CAM visualizations and
metric values.

Figure 7. Grad-CAM images of Xception.
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Figure 9. Grad-CAM images of ResNet101.

Discussion

Fungi represent a diverse kingdom of organisms, including
yeasts, moulds, and macrofungi. They are essential components
of various ecosystems, serving as decomposers, symbionts, and
pathogens. Recently, DL applications in mycology have gained
significant popularity, particularly for image classification, species
identification, and disease diagnosis. This study employed the
models DenseNet121, InceptionV3, MobileNetV2, Xception,
VGG16, and ResNetlO1 to assess the effectiveness of DL
techniques in autonomously detecting five distinct macrofungal
species. The results, with values > 0.9, demonstrate that these
networks are highly efficient in distinguishing between these
species. However, high-performance metrics do not necessarily
ensure that the architectures operate with the appropriate regions.
Consequently, Grad-CAM visualizations were also employed.
Analysis of the Grad-CAM outputs revealed that the networks
generally drew inferences from the correct areas. The Grad-CAM
images for the DenseNet121 model demonstrated that it drew
inferences from the correct regions for all macrofungal species.
This result aligns with the findings of Van Horn et al. (2018), who
observed that DL models accurately identify the regions relevant
to species classification tasks. Conversely, the InceptionV3
network focused on entire images and, despite high metric values,

made incorrect inferences. This outcome was consistent with the
findings of Wah et al. (2011), who noted that DL models can
sometimes derive inferences from the irrelevant regions. The
MobileNetV?2 network focused on the correct regions applicable to
the middle macrofungi and partially correct areas for A. phalloides
and M. procera. The Xception network, similar to DenseNet-121,
focused on areas related to macrofungi. The VGG16 network
made accurate predictions using the second and third images,
but shifted to regions irrelevant to macrofungi in the first image.
The ResNet101 model, apart from InceptionV3, focused on the
correct areas of the second image, considering the stem part in the
third macrofungi, and shifting to the knife-related area in the first
macrofungi.

The application of DL techniques in classifying macrofungal
species, as demonstrated in this study, has shown significant
promise. By leveraging advanced architectures such as
DenseNet121, InceptionV3, MobileNetV2, Xception, VGG16,
and ResNet101, we achieved accuracy rates > 90%, indicating
the efficacy of these models in identifying and classifying
species based on their visual characteristics. The use of Grad-
CAM visualizations provided further insights into those regions
of the images that the models focused on. This observation
confirmed that DenseNetl121 and Xception, in particular, were
highly effective in identifying the areas relevant to the species.

www.tujns.org
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The performance of these architectures was assessed based on
accuracy, precision, recall, and Fl-score metrics. Additionally,
Grad-CAM visualizations were generated to pinpoint the regions
that the models concentrated on during inference. These results
indicated that the networks achieved high effectiveness, with scores
> 0.9. The Grad-CAM images demonstrated that the DenseNet121
and Xception architectures focused accurately on the macrofungi.

Despite these positive outcomes, several challenges persist,
particularly concerning data availability and diversity. The current
dataset, while effective, is limited in size, which restricts the
ability of the model to realize its potential fully. This limitation
underscores the need to expand datasets to encompass a broader
range of species and more diverse image sets. Larger and more
varied datasets would not only enhance model performance
but also improve the generalizability of the results, rendering
the models more robust across different ecological contexts.
Our results were consistent with findings from previous studies
on image-based fungal classification, which reported that DL
architectures outperform traditional ML approaches (Picek et al.,
2022; Yan et al., 2023). However, unlike prior studies that mostly
evaluated single CNN models, this study systematically compared
six state-of-the-art transfer-learning architectures on macrofungi.
Moreover, while earlier research focused only on accuracy-
associated metrics, performance evaluation in this study was
complemented with Grad-CAM visualizations, thereby adding
interpretability and biological relevance to the results.

The main contribution of this study lies in the systematic
comparison of six transfer-learning architectures for macrofungi
classification, which was combined with the Grad-CAM
visualizations to validate the model’s focus on biologically relevant
regions. In addition, benchmarking against a simple CNN baseline
highlighted the methodological advantage of advanced DL
models. These contributions together provide a reproducible and
interpretable framework that can be adapted to future biodiversity
monitoring studies.

Future research should focus on addressing these data limitations
by developing and utilizing more comprehensive and diverse
datasets. Furthermore, integrating DL models with other
computational techniques, such as computer vision, could further
enhance the efficiency and accuracy of species classification,
particularly in identifying poisonous macrofungi and supporting
mechanized harvesting processes. Such a line of research could
be further strengthened by incorporating additional data types,
including spore prints and relevant environmental variables. In
conclusion, while this study adds significant amounts of data to the
automated classification of macrofungi species, it also underscores
the necessity for continued research and development. Future
studies should aim to build upon these findings by expanding
data resources, refining model architectures, and exploring new
applications of Al in mycology, ultimately contributing to more
effective biodiversity conservation efforts.

Conclusion

This study addresses the core challenge of reliable macrofungal
identification with limited datasets, in a context where traditional
methods remain inadequate and the existing Al-based approaches
seldom integrate performance with interpretability. Through a
systematic comparison of six state-of-the-art transfer-learning
architectures and the integration of Grad-CAM visualization, this
study demonstrated high accuracy and biologically meaningful
interpretability, providing a methodological framework that
advances beyond previous works. Importantly, by highlighting
the diagnostic image regions used by the models, this framework
not only advances methodological development but also offers
practical ease in the identification of the fungal species included
in the study, thereby supporting both taxonomic accuracy and
applied usability.Future research should focus on scaling up this
framework by employing larger and more diverse datasets and
enhancing generalizability under data-scarce conditions through
advanced approaches such as transformer-based architectures and
semi-supervised learning. Moreover, applying these models to
field-based contexts, particularly for the reliable identification of
poisonous species and for ecological monitoring, would provide
significant practical contributions.
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