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Abstract  

 

Generalization of food image recognition frameworks is difficult due to the wide variety of food 

categories in cuisines across cultures. The performance of the deep neural network models highly 

depends on the training dataset. To overcome this problem, we propose to extract context information 

from images in order to increase the discrimination capacity of networks. In this work, we utilize the 

CLIP architecture with the automatically derived ingredient context from food images. A list of 

ingredients are associated with each food category, which is later modeled as text after a voting process 

and fed to a CLIP architecture together with input image. Experimental results on the Food101 dataset 

show that this approach significantly improves the model’s performance, achieving a 2% overall 

increase in accuracy. This improvement varies across food classes, with increases ranging from 0.5% 

to as much as 22%. The proposed framework, CLIP fed with ingredient text, outperforms Yolov8 

(81.46%) with 81.80% top 1 overall accuracy over 101 classes.  
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1. Introduction 

Technological advances in food recognition have greatly benefited from fusion [1-4] of image and text data, 

leading to improved content retrieval and context understanding. These multi-modal approaches leverage graph 

networks, entropy-based methods, and statistical learning to obtain meaningful insights that contribute to 

region of interest identification, ingredient extraction and ontology modeling. The use of complex context 

modeling can indeed result in high accuracy, but at the cost of increased computational complexity and model 

interpretability.  

 

On the other hand, single-context modeling approaches aim to simplify the model by focusing on a single 

primary source of information, such as text. However, these approaches [5-8] still struggle to achieve 

satisfactory results in the food domain. This challenge arises from high diversity [3, 9] of food images, which 

exhibit a wide range of variations in ingredient combinations, presentation styles and the nuances of culinary 

diversity. Although general image recognition [10] architectures such as RCNN, YOLO are commonly 

employed [3, 11, 12] in food recognition, they limit domain-specific context tailoring and their performance 

varies across different food datasets.  Recently, CLIP [13] has proven to be a breakthrough in combining image 

and text for enhanced recognition tasks and successfully applied to many different vision problems. In this 

work, we present a simple yet effective CLIP-based architecture to boost the performance of food category 

recognition. Our approach stands as a pioneering approach utilizing CLIP in food domain. 

 

We propose a CLIP-based image and text fusion architecture (Fig.1) where the first step involves generation 

of the list of ingredients. These ingredients are then translated into textual descriptions, which are fed into the 

text encoder of CLIP system. For testing, we utilize ResNet50 and ViT-B/32 image encoders within CLIP. A 

wide set of experiments are conducted on Food101 dataset [18] with detailed category-based analysis. Our 

CLIP-based approach outperforms [7, 11, 14, 15] existing techniques, achieving %81.80 accuracy across 101 

classes. Additionally, it delivers competitive performance when compared to state-of-the-art complex 

architectures [1, 3]. This result not only highlights the potential of leveraging CLIP in food recognition but also 

presents an exciting opportunity to push the boundaries of food domain with simpler modalities. 
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Figure 1. Overall Architecture. 

 

2. Related Work 

In the food domain, there are various research challenges [1, 3, 16], ranging from segmentation tasks to 

multi label recognition, ingredient extraction, and recipe derivation. Most research study multi-label [19] food 

recognition, whereas some group tackle food image segmentation [3, 17] problem to distinguish food items or 

extract portion size. On the other hand, there are solutions focusing on improving food recognition performance 

via tailored architectures [13], compressed variance [7], and ontology-based [2, 18, 19] semantic cues with 

limited results. Achieving satisfactory accuracies in food category recognition from single food images still 

remains an open problem, making it challenging for practical applications. Ponte et al. [2, 19] investigates web 

scraping and LLM to recognize single and multiple labels in food images in Mexican dataset. Ontology 

information is driven from text and given to ResNet50 framework together with image, achieving 70% 

accuracy. Deepfood [19] research reaches 77.4% accuracy on Food101 dataset by employing multi-level DNN 

architecture. Zhao et al. [4] presents a fusion approach, where class labels are given to BERT architecture and 

produce context-sensitive embbeddings and fed to a few-shot fusion CNN. At the final step, graph 

convolutional networks are employed for inter-class relation learning. They obtain 68.76% accuracy on 

Food101 dataset.  In their work Mao et al. [11] create a new food image dataset, VIPER-FoodNet (VFN) 

dataset, consists of food categories with 15k images. They utilize Faster-RCNN for food region localization 

and present cluster-based proposals to a multi-layerde CNN and test their model with different datasets, with 

79.81% accuracy in Food101. 

 

Zhang et al. [15] propose a new supervised subnetwork-based feature encoding and pattern classification 

model generated by a multi-level multiple CNN architectures to leverage feature transformation and fusion 

efficiently. In [12], Yolov5 based performance evaluation is given across various food datasets in the existence 

of multiple food items in the images.  Min et al. [21] propose extraction of ingredients by first localizing 

attention region as a reference and sequentially discovering diverse attentional regions with fine-grained scales 

by means of a multi-level LSTM and spatial transformer networks. The drawbacks of this method are two-

fold: the system is high in complexity and highly dependent on region extraction and spatial appearances of 

ingredients. Chen et al. [22] implement a multi-task DCNN for extracting ingredients from images. However, 

the number of ingredients is limited and modeled based on food clusters, rather than the basic ingredients that 

compose the food. 
 

CLIP [13] given in Fig. 2 has been widely adopted and extended to a variety of vision tasks since its 

introduction. It leverages the power of large-scale datasets containing both text and images, enabling it to 

perform well on various vision problems [23] by learning visual representations that are aligned with textual 

descriptions. Some major applications of CLIP in vision problems include event recognition [24], image/text 

transformation [20,25], anomaly detection [26] and sketch-based image retrieval [27]. To our knowledge, CLIP 

architecture has not been yet throughly investigated in food recognition problem. The only existing two 

approaches [28, 29] present poor recognition performances. Very recent study for multi label food image 

recognition, Rawlekar et al. [28] adapts CLIP to generate prior logits, which is later model by graph CNN 

representing co-occurances of different food labels. Results show accuracy %52 in FoodSeg103 dataset. In the 

other work, Wu et al. [29], very little information is available and it states that fine-tuning of CLIP with only 

a few samples achieves 63% accuracy on food image recognition, which is a relatively low performance.  
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Figure 2. CLIP Architecture with Image and Text Encoder. 

 

Unlike complex architectures, we present a simple yet high-performance architecture that leverages CLIP 

to simultaneously incorporate both textual and visual information. Our system achieves significant accuracy 

improvements across each category, with an overall accuracy of 81.80%, surpassing Yolov8. This highlights 

the potential of the proposed approach within the food domain, offering significant benefits when further 

studied for tasks such as meal recognition, nutrition analysis, portion size detection and the extraction of health-

related statistics. 
 

Food category recognition from images poses significant challenges due to the inter- and intra-class 

complexities inherent in food images. Recent advancements in image recognition marked the emergence of 

general frameworks like YOLO [10] architectures with high accuracies. However, generalized frameworks 

encounter difficulties when applied to specific data domains, where inter-class similarities are more 

pronounced, as in images of dishes prepared with similar ingredients. Additionally, food images exhibit high 

intra-class variability in terms of visual appearance due to factors like camera angle, portion size, the 

arrangement of side ingredients, and the visual presentation of the dish. Among these challenges, most state-

of-the-art recognition frameworks achieve overall accuracies around 60%-78% on food datasets such as 

Food101, UEC256. Meanwhile, these frameworks often show poor performance for certain food categories, 

with recognition rates as low as 20%-40%. As a result, achieving top-1 recognition accuracy remains a 

demanding goal, and most research focuses on top-5 recognition results, where uncertainty still exists. 

 

3. Food Image Recognition Framework 

To overcome the variations in visual appearance within the same categories and enhance the discrimination 

power of recognition under high similarity conditions, we propose a fusion approach that combines both image 

and textual cues from single food images by using the CLIP [13]. Key contributions of this work are twofold: 

1) Using small window patches for classification of food material rather than food type to model ingredient 

description. 2)Employing CLIP (Fig. 2) architecture for fusion of food image and ingredient text. 
 

Fig. 1 presents the proposed architecture, where the first step involves extracting ingredients from recipe 

data and associating it to food categories. Associated recipes are processed to find the significant key words 

representing ingredients. Then a voting mechanism is then applied to select the most critical ingredients from 

the detected ones. Finally, these selected ingredients are used to generate textual descriptions, which are then 

fused with the image data in the CLIP model to enhance recognition performance. Fig.2 provides an overview 

of the CLIP architecture, where text and image information are processed in separate encoders and then jointly 

aligned together through a correlation step to feed the final output for recognizing the content. This architecture 

helps the model focus on the most relevant ingredients, improving the quality of the image-text fusion. The 

voting mechanism ensures that the most important ingredients are prioritized, reducing noise from less 

significant ones. Ingredient detection is an interesting and challenging problem in computer vision, presenting 

domain-specific difficulties. Unlike other object-part recognition tasks, ingredients can vary significantly in 

visual appearance, leading to diverse presentations of the same ingredient. Researchers in the field of ingredient 

detection focus on identifying all ingredients with clear boundaries within a dish. In this work, the primary 

goal is to detect the most prominent ingredients, which can serve as cues for further analysis. This helps us to 

obtain an efficient mechanism, where noise is highly regarded and purpose-guided context is extracted from 

images. In another words, only most reliable one or two ingredients are passed to the next fusion step. 
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3.1. Fusion of Image and Ingredients Data 

 

As illustrated in Fig. 3, a custom ingredient labeling effort was conducted to construct mid-sized ingredient 

regions using the YOLO Annotation tool. These labeled regions are used for both training and performance 

testing of the YOLO architecture on a set of 101 classes from the Food101 dataset [14], which has been 

explored in other work of ours. This set of ingredients differs slightly from the standard ingredient names used 

in [21]. For example, meat dishes, sauce types, and vegetables are organized in greater detail, and some 

ingredients are assigned different names. A part of ingredient list can be given as: tomatoes, bread, pork, beef, 

apple, butter, chocolate, sauce, onion, meat, greenery, rice, chicken, fish, potato, soup, dough, egg, sausage, 

cake, cheese, spaghetti, cake, brown rice, crab, noodles, chili, sausage, bacon, ... 
 

 
Figure 3. Fusion of Image and Textual Descriptions. 

 

“Information fusion of image and text is carried out in three distinct ways when feeding data into the CLIP 

architecture. In the first approach, the standard CLIP implementation is used, which relies on class-name-based 

retrieval. In the second approach, a textual description is generated along with the class name and the dominant 

ingredient identified in the first step. The third approach employs a confidence voting algorithm to select 

between the first or second approach. Confidence values are generated as binary votes (0 or 1), determining 

whether the first or second approach should be used, based on a set of training and testing evaluations. At this 

point, the dataset characteristics influence the decision-making system. Depending on the specific photos in 

the dataset, class names alone may provide better results, or a combination of ingredients and class names may 

yield better performance. Fig. 3 demonstrates the sample textual descriptions which are scanned over a grid of 

food category vs ingredients. Since ResNet50 and ViT-B/32 are the two common architectures within CLIP 

that are used in food recognition domain, we also utilize these two architectures for our system. Implementation 

details and experimental results are given in the next section proving the critical role of the proposed system 

in addressed challenges. Table 1 gives average recognition performances of the proposed architecture. 

 

Table 1. Results of Food101 with 25000 images in total. 

Method Accuracy (%) 

Yolo v8 81.46 

CLIP-ResNet50 w class names 77.27 

CLIP-ResNet50 w Ingredient 78.44 

CLIP-ResNet50 w Hybrid 78.38 

CLIP-ViT-B/32 w class names 80.71 

CLIP-ViT-B/32 w Ingredient 81.79 

CLIP-ViT-B/32 w Hybrid 81.81 

 

4. Experimental Results 

To evaluate the feasibility of the proposed method, extensive experiments were conducted on the Food101 

dataset to analyze the effectiveness of textual ingredient fusion on both the overall recognition accuracy and 
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class-based improvement rates. The Food101 dataset, which consists of 101 types of dishes with a total of 

101,000 images, is used as the primary dataset throughout all experiments. Experiments are organized into four 

sub-groups based on the number of classes: 10, 30, 50, and 101. The average accuracy per sub-group is 

presented in Fig. 4 for three different approaches: the CLIP baseline, CLIP with ingredients, and the hybrid 

approach. Since fewer classes have a limited capacity to represent the variety of food types, only a small 

increase in accuracy is observed overall. The CLIP baseline achieves 95.07% accuracy across 10 classes, while 

it achieves 88.99% accuracy across 30 classes. When ingredient fusion with images is applied, the overall 

accuracy increases to 95.55% for 10 classes and 89.35% for 30 classes. With 101 classes considered for 

inspection, the improvement in overall accuracy becomes more apparent, as the recognition accuracy increases 

from 77.24% to 78.55% when the ResNet50 architecture is utilized. To observe the performance improvement 

of the proposed architecture across different dish types, the top 12 dishes showing the highest improvement 

rates are displayed in Table 2. The learning rate depends on the number of available images. However, an 

excessive amount of data can increase the tendency toward biased results. To analyze how the number of 

images per category affects the final recognition results of the proposed system, 100, 250, 500, and 1000 images 

per class were distributed across four experimental setups. All four groups showed improvements in accuracy, 

with 250 images per class setup achieving the highest overall increase. This suggests that a simpler and faster 

setup is optimal for evaluation and practical use with the Food101 dataset. 

 

 
Figure 4. Class numbers-based performance comparison. 

 

Table 2. Performance Comparison of SOTA Methods on Food101 dataset. 

Increase Rates  Method                                Accuracy (%) 

Beet Salad 26.8%  Yolo v8 [25] 81.46 

Pork Chop 22.4%  CNN-HC-FT [17] 79.78 

Strawberry Cake 14%  Foster w Comp [13] 79.56 

Hamburger 10.4%  MVFSL-TC [12] 55.3 

Lasagna 9.2%  DeepFood [8] 77.4 

Eggs benedict 6.8%  Fusion Learning [29] 68.76 

Pizza 4.8%  CLIP-ViT-B/32 w Hybrid (Ours) 81.81 

 

4.1. Implementation Details 

 

We employ zero-shot classification implementation of CLIP based on two pre-trained models: ResNet50 

and Vision Transformer (Vit-B/32) with batch size of 32 and a varying number of classes as 10,30,50,101. 

ResNet-50 takes approximately 0.5secs per batch, whereas Vit-B/32 takes 0.7secs on a computer with an Intel 

i7 processor and graphics card RTX3090. Processing full images takes around 28 minutes for ResNet50 and 

36 minutes for Vit-B/32 for each evaluation cycle. For data processing, standart CLIP pipeline is followed and 

images are resized to 224x224. PIL (Python Imaging Library), CLIP’s built-in processing functions and 

PyTorch dataset and data loader are used for supporting libraries. Table 2 depicts the performance improvement 
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compared to the CLIP baseline and hybrid approach. Ingredient fusion and the hybrid approach yield similar 

results most of the time, demonstrating the positive contribution of ingredient cues to the results. As shown in 

the figure, the “beet salad” class benefits the most from the ingredient context, with its accuracy increasing 

from 50% to 78%. The second largest improvement is observed in the “pork chop” class, where accuracy 

increases from 30% to 55%. The “eggs benedict” and “pizza” classes show a smaller increase when textual 

ingredient descriptions are included. This could be due to the nature of the ingredients detected in these dishes, 

which may improve results for certain food images but have little to no effect on others. 
 

5. Conclusions 

In this work, we propose enhancing recognition performance by extracting contextual information from 

images within the food domain. Our approach incorporates a CLIP based image and text fusion architecture 

where the first step involves extracting characteristic ingredients from recipes. The final performance of the 

framework is evaluated through extensive experiments by utilizing ResNet50 and ViT-B/32 372 image 

encoders within CLIP on Food101 dataset. Experimental results demonstrate the effectiveness and efficiency 

of the proposed architecture in significantly boosting recognition performance, with improvements ranging 

from 0.5% to 15%. Our approach notably outperforms existing techniques, surpassing even YOLO v8 in 

overall food category recognition with an overall accuracy of 81.81%. This work highlights a pioneering 

contribution by leveraging contextual information for food image understanding, with the potential for 

application in various domain-specific image recognition challenges. It also presents significant promise in 

advancing fields such as nutrition, culinary science, food science, and health. 
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