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ABSTRACT

The placenta is the first and most important organ of pregnancy. It is the communication bridge between the mother and fetus.
Placental elements, due to their important position and function, are specially designed to manage the exchange of nutrients and
the local regulation of the maternal immune system. The development of cells such as cytotrophoblasts, syncytiotrophoblasts,
extravillous trophoblasts, placental giant trophoblasts, placental macrophages, and placenta-derived mesenchymal stromal cells is
described. Medical researches have been performed to demonstrate the curative potential properties of these cells, such as treating
burns, tendon and joint diseases, lung diseases, blood and bone marrow diseases, and other diseases. This review provides an overview
of the formation and development of placental cell lines and their potential for regenerative medicinal research and ongoing clinical

applications.
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1. INTRODUCTION

The placenta is a temporary fetal organ formed first during
gestation [1]. The term placenta refers to a disc-shaped structure,
15 to 20 centimeters wide, 2 to 3 centimeters thick, and about
1/6 of the fetal weight, usually about 450 grams [2]. With a
multicellular barrier structure, the placenta plays a crucial
role in exchanging metabolism, oxygen provision, endocrine,
and immune regulation between the mother and fetus [1, 3].
Obstetric complications consisting of preeclampsia, stillbirth,
and recurrent miscarriages have been reported to be associated
with placental anomalies [4]. The structure of the placenta is
a parallel integration of two types of cells, including mother
cells derived from the endometrium and fetal cells [5]. Five
days after fertilization, the trophoblast covering the inner cell
mass is formed as an outer layer of the morula, a part of which
continuously develops into the placenta [1]. In preimplantation,
essential transformations occur, including inner cell mass
restructuring into the epiblast and primitive endoderm [5].
The amnion forms from the epiblast and merges with the
trophoblast to become the amniotic chorionic membrane [5].

The embryo and the surface epithelium conjugation happens
on the sixth or seventh day after fertilization [5]. The fusion of
cytotrophoblast cells in the trophoblast creates the syncytium
anchoring the blastocyst within the uterine walls called
syncytiotrophoblast [1, 6]. Primary chorionic villi structure is
formed by syncytiotrophoblasts enclosing cytotrophoblast cells
penetrating the decidua basalis [6, 7]. The development of the
invasion of mesoderm-derived cells creates cavities inside the
tubular primary villi, forming the secondary chorionic villous
structure [8]. The secondary chorionic villus impetuously
ramifies and deeply invades basal decidua, then covers up the
lacunae to create an intervillous space. The lacunae formation
occurs due to the lytic action of syncytiotrophoblast’s secretions,
which degrades the matrix of the endometrium and the uterine
capillaries, leading to maternal blood leakage [1, 6, 7].

During the first trimester, the invasion occurs through
extravillous trophoblasts entering the decidua’s nearest organ,
produced by the decidualized endometrium [9, 10]. Nutritional
requirements are a prerequisite for successful parity [4].
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Extravillous trophoblasts invade maternal spiral arteries, adhere
to the lumen, induce endothelial cell apoptosis, and replace
them [11, 12]. At the end of the invasive process, the structure
of the maternal spiral artery becomes a wide tube, leading
to an increase in the volume of maternal blood flow into the
intervillous space [13]. The speed and volume of maternal blood
flow into the intervillous space is perfectly regulated to balance
the sufficient nutrient supplement. This regulation is necessary
for a healthy pregnancy [14, 15]. In this review, the components
of the placenta and therapeutic properties of these components
in regenerative medicine are introduced.

2. PLACENTA-DERIVED CELL TYPES

Cytotrophoblast and syncytiotrophoblast

The structure of the villus that develops from trophoblasts plays
a crucial role in the fetal and the maternal metabolism, allowing
for successful gestation [16]. At the third week of gestation, two
populations of cell types are differentiated from trophoblast,
consisting of cytotrophoblasts (CTs), which are incomplete
differentiated cells, and syncytiotrophoblasts (SCTs), which are
complete differentiated cells [17]. As mentioned, the SCTs are
created from the conjugation of the CTs, forming the villous
trophoblasts which enhances the embryo’s infiltration process
[6, 7]. The SCTs are responsible for the bidirectional transport
of nutrients and wastes, producing various placental proteins
and hormones for fetal growth and protecting the inner cell
mass [18]. Right after the interaction between the blastocyst
and uterine wall implantation, human chorionic gonadotropin
(hCQG) is produced by SCTs, and it is the first endocrine signal
from the fetus to the mother [19, 20]. With the corpus luteum,
SCTs participate in progesterone secretion at the seventh to
eighth week of gestation, maintaining stability during the
early stages of pregnancy [21]. Low-density lipoprotein (LDL)
receptors on the SCTs surface absorb LDL from maternal
circulation in the intervillous space to synthesize progesterone
[22, 23] (Figure 1). The SCTs also synthesize the steroid
hormone, estrogen, and human chorionic somatomammotropin
(hCS) [24, 25]. The conjugation of the CTs to form the SCTs
depends on the expression of connexin 43, the activity of the
gap junctional intercellular communication, and the flipping of
phosphatidylserine from the inner to the outer of the plasma
membrane [26, 27]. Their enormous size provides perfect
coverage for endothelial cells; the SCTs avoid presentation
to the maternal immune system in the intervillous spaces,
which are densely populated by immune cells attract a mass
of concentrated immune cells. During the first trimester, the
embryo faces a large portion of maternal leukocytes in decidua
that statistically include decidual natural killer (dNK) cells
(70%), decidual macrophages (20 - 25%), and T cells (3 - 10%)
[28, 29]. SCTs are one of the extremely rare human cells that
do not express human leukocyte antigens (HLA) (both of HLA
class I and HLA class II), playing a crucial role in the immune
modulation strategy of pregnancy [30, 31]. Moreover, the
surface glycosylation patterns on SCTs also contribute greatly to
maternal immune system evasion [32]. The SCTs are reported

to exocytose exosomes harbouring the tumor necrosis factor-
related apoptosis-inducing ligant (TRAIL) and Fas ligands,
which induce the apoptosis of leukocytes [33] (Figure 2).
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Figure 1. The formation of the placenta.
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Figure 2. The cytotrophoblast differentiation into functional cells in the
placenta

Extravillous trophoblast

The SCT-non-differentiation CTs develop into extravillous
phenotypes, which further invade and form the cell column of
anchoring villi [34]. A part of the CTs population differentiates
into extravillous trophoblasts (EVTs) to invade decidua more
effectively, and plug structures are formed by endovascular
EVTs (eEVTs) to moderate the maternal blood pressure during
the spiral artery invasion [35]. EVTs are also present within the
myometrium, the middle layer of the uterus wall, as two cell
types, including interstitial EVTs (iEVT), and placental giant
trophoblasts (PGTs) [35]. The absence of local lymph nodes
in the endometrium restricts dendritic cells and T effector
cells and facilitates an abundance of dNK and T-reg cells [36].
SCTs and CTs are in charge of synthesizing M-CSE, GM-CSE,
and IL-10, regulating the homeostatic differentiation of M2
macrophages and T-reg cells [37]. On the other hand, the EVTs
secrete multiple immunoregulatory factors during invasion,
such as macrophage growth factors (GM-CSF and M-CSEF),
cytokines (IL-1RA, IL-1p, IL-2, IL-6, IL-10, IL-17 TNE, IFN-y,
TGEF-B1, TGF-cc2), chemokines (CCL2, CCL17, CCL18, CCL20,
CCL22, CXCL1-3, CXCL8, CXCL10, CXCL 11), and apoptosis-
inducing factor as TRAIL [37]. The EVTs present the HLA-G
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determined to interact with killer cell immunoglobulin-like
receptor 2DL4 (KIR2DL4) and the leukocyte immunoglobulin-
like receptor B (LILRB), which leads to the inactivation of
dNK [38]. The secretion of PhCG is recorded in EVTs, and the
ahCG is trivial [19]. In contrast to SCTs, EVTs predominantly
produce the hyperglycosylated form of hCG, which promotes
the development of the SCTs layer and angiogenesis through the
LH/CG receptor [19].

Placental giant trophoblast

Placental giant trophoblasts originate from CTs through
differentiation; they express the morphology of large cytoplasm
and polyploidy. The first signs of primary PGTs are observed
from developing the mural sixty trophectoderm cells stage. The
differentiation of PGTs is carried out under stringent regulation
[39]. The signal from peroxisome proliferator-activated receptor
beta (PPARD) activates the Pi3K pathway; the activation of
LIF is through the LIFR, starting the MAPK pathway and
contributing to the formation of PGTs. Hand1l and Mash2 are
crucial in PGTs differentiation and antagonization of each other
[40]. Mash2 is found in the chorion, ectoplacental cone, and
spongiotrophoblast, and it is responsible for maintaining these
structures and the diploid stage of primary PGTs. During the
PGTs differentiation, Hand1 inhibits the Mash2 activity and vice
versa. The Mash?2 is also controlled by the bHLH protein, I-mfa,
via PPARD actions [39]. On the other hand, a dominant negative
factor, Id-2, diminishes under the Pi3K pathway, leading to the
act of Hand1 and the CTs to PGTs transformation. Polyploidy of
PGTs is established through cell cycle alterations. In the S phase,
the decrease in Geminin allows DNA replication activation,
and P57kip2 inhibits the G1/S checkpoint trapping cell in the
S phase [41]. In contrast, the reduction in P53 and pRB activity
causes Cyclin A and E inhibition, thereby causing the S phase
to maintain and repeat. At the G2 phase, p57kip2 inhibits Cdk1
function, while Snail enhances Cyclin A and B expression
and allows endoreduplication to occur without mitosis [41].
The differentiation of PGTs is induced by the action of a
combination of growth factors, such as EGE, TGE, IGF-I, and
IGF-II, that are locally expressed in the uterus [42]. In addition
to acting as EV'Ts, PGTs attend uterus invasion of the placenta,
spiral arteries remodeling, and secretion of transcription factors,
proteases, cytokines, hormones, and adhesion molecules [42].

Placenta-derived mesenchymal stromal cells (P-MSC)

The term mesenchymal stromal cells (MSC) was officially
used over thirty years ago, attracting researchers for analysis
and application in human disease treatment [5]. Thus far, the
MSC has been isolated from many origins of human tissue and
separated into two groups: adult MSC and fetal MSC. The fetal
MCS is mainly identified and studied from postnatal tissue such
as the placenta (P-MSC), umbilical cord, umbilical cord blood,
amniotic fluid, and amniotic membrane [3]. The presence of
the P-MSCs is observed around the second or third week of
gestation, followed by the first fetal primitive vessel formation
[17]. P-MSCs are introduced into the placenta through the
mesodermal core and allocated into the placental amniotic

membrane, chorionic plate, chorionic villi, chorionic leave,
basal decidua, and placental blood vessels. The P-MSC has a
fibroblast cell morphology and differentiates into adipocytes,
osteocytes, and chondrocytes. The cells express significant
membrane markers such as CD90, CD105, CD73, and lack of
CD34, CD45, CD19, CD14, CD11b, CD79a, and HLA-DR [1, 5,
43]. CD44, HLA-ABC, and pluripotency markers (Rex1, Nanog,
Oct4, and Sox2) are also found in P-MSCs [5]. The P-MSCs and
MSCs derived from bone marrow (BM-MSC) share significant
similarities [44] (Figure 3).
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Figure 3. The interaction of placental MSCs with other cellular
components present in the placenta

Placenta-derived mesenchymal stromal cells play a crucial role
in immunomodulation at the placenta, maintaining successful
gestation [3, 44]. P-MSCs enhance the hematopoietic progenitor
cells, which are positive to decidual natural killer (dNK) cell
differentiation from CD34 cells. dNK cells are clarified to be
a majority in the decidua and account for 70% of leukocytes
present in decidua [1, 5, 43]. Unlike NK in peripheral blood
(pNK), the dNK cells express LILRB1, KIR2DL4, and CD56 but
not CD16, exhibiting a poor cytotoxic capacity [45]. P-MSCs
also secrete the TGF-P, inducing pNK to dNK phenotype
conversion [45]. Moreover, the other P-MSC-derived factors,
including IGF-, VEGE, IL-11, prolactin, IDO, PGE2, and MCP-
1, support dNK protection and cytotoxicity regulation [42].
The interaction of dNK and CTs is determined to be intimate
through the interaction of LILRB1 - HLA-G and KIR2DL4 -
HLA-C [5].

In decidua, about 20 % of the leukocyte population is occupied
by T cells [46]. T cell induction, proliferation, and differentiation
promotion in decidua during gestation are coordinated by
P-MSC, including Thl, Th17 differentiative inhibition, Th2
and Treg differentiative activation [46, 47]. Treg is active in
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decidua during pregnancy for immune response regulation [46].
Macrophages are crucial in decidua, and macrophage M2 plays
a role in tissue healing and repair through anti-inflammatory
processes [1]. Macrophages with the M2 phenotype, Hofbauer
cells, are discovered in the chorionic villi [48]. The ratio of M1
and M2 cells balances during the initial gestation, and then the
M2 polarization elevates after the mature placental formation.
Previously, the M1 phenotype macrophage differentiative
retardation is reported as the impact of P-MSC and its secretions
[49]. The attendance of P-MSC in the co-culturing orientated the
increased expression of CD14, CD163, and CD209, representing
M2 phenotype as well as the inhibitory factors including B7-H4,
PD-L1, and PD-L2, and the decline of CD40, CD80, and CD86
markers, and proinflammatory cytokines [46, 49].

Placenta-derived mesenchymal stromal cells participate in the
development of the placenta [1]. The promotion of endothelial
growth of P-MSCs is recognized through the signaling
interaction of E-cadherin/beta-catenin and fibronectin/
integrin a5p1 between P-MSC and endothelial progenitor
cells (EPC) [50, 51]. Developing endothelial cells (EC) from
EPC is augmented by P-MSC growth secretions such as VEGF
and IGF [42]. In addition, the HLA-DR-expression decreases
under the action of IFN-y from the P-MSC, thereby avoiding
an unwanted response from the maternal immune system [50].
The reverse interaction from EPC to P-MSC via the PDGF
signaling pathway plays a role in the regenerative potential of
P-MSC [1, 51]. P-MSC-derived exosomes contribute to EC cell
tubule formation and the development of angiogenic factors [1].
HGF derived from P-MSC induces cAMP synthesis, activating
the differentiation from CTs to SCTs. MiR-139 influences the
invasion of CTs included in P-MSC-derived exosomes, down-
regulating the MAPK pathway [52]. On the other hand, miR-
133b and miR-101 enhance the development and proliferation
of CTs and related cells [52].

Placenta macrophage (Hofbauer cell)

The Hofbauer cells (HCs) first appear at the start of the third
week of gestation and remain during the pregnancy [48].
The HCs mainly reside along the walls of fetal blood vessels’
placental villous core, and some of the HCs are also found in the
amnion [1]. The populations of HCs are diverse, with multiple
phenotypes separated by considering the surface markers
such as CD163, CD68, CD64, CD14, HLA, DC-SIGN, and
others [46, 49]. The expression of CD14 is the most unstable
and bonds to the pro-inflammation response [46, 49]. Besides,
the MHC class II positive proportion in the HCs population
moves up and down during the gestation, documenting the
HLA-DP and HLA-DQ elevation and HLA-DR collapses in the
third trimester [48]. Based on gene expression detection, HCs
display the M2 macrophage phenotype and reflect all M2a,
M2b, M2c, and M2d sub-types [49]. HCs activities contribute to
fetal protection [48]. The attraction of HCs is caught in villitis
caused by a viral infection. Immunoregulation is one of the
HCs functions through the secretions of growth factors such as
VEGE TNE TGF-p, and several cytokines such as IL-1, IL-6, IL-
10, CCL-2, CCL-18, and others. HCs derived VEGF and Spry

modulate the villi branching formation [49]. Vasoregulation of
placental vessels is partially regulated by prostaglandin E2 and
thromboxane, which HCs secrete in in vitro models. HCs activate
the production of hCG and hPL by CTs [46, 49]. The presence
of alpha-1 antitrypsin and inter-alpha-trypsin inhibitors in HCs
plays a role in protease inhibition related to villous remodeling
and differentiation processes in the placenta.

3. MEDICAL APPLICATION OF PLACENTA-DERIVED
CELLS

Tendon and joint disease treatment

Tendon and joint disease is a common pathology, especially
from the beginning of middle age, such as tendinopathies (43%),
musculoskeletal pain (21%), Achilles tendinopathy (11%), and
others [53]. Non-steroidal anti-inflammatory and corticosteroid
drugs or physical treatments are used for various tendon and
joint diseases [53]. However, the persistent symptoms of the
condition are not easy to eliminate [54]. Placental-derived
elements promise a new, effective therapy for tendon and joint
disease treatment [55]. The extract from the placenta is proven
to be diverse in nutrient and regular factors [56]. Tendon
injury caused by collagenase has been shown to heal rapidly
under the impact of cells isolated from the placenta, which
actively increases the secretion of IL-1p and IL-6 during the
treatment [49]. P-MSC activity is involved in tendon repair only
through enhancing skeletal muscle regeneration and preventing
muscle atrophy [1]. P-MSCs have a role in extracellular matrix
remodeling and a central role in local immune regulation [1].
The MSC and tenocyte interaction has still not been completely
understood, but the promotion of M2 cell phenotype polarization
and IL-4 secretion are likely to play a role in the treatment of
tendon and joint disease through the extracellular matrix (ECM)
remodeling [49]. Besides, promoting the vascular proliferation
of MSCs in the tendon injury model has also been described
[56]. In a previous clinical study, P-MSC was also considered a
benign therapeutic agent as there were no abnormal symptoms
observed, such as biochemical and hematologic disadvantages,
ectopic tissue or tumour formation, pulmonary embolism,
and liver or renal impairment in patients for 24 weeks post-
treatment [57].

Erectile dysfunction treatment

The erection of the penis depends on the volume of blood
present in the cavernous body [58]. Under conditions of sexual
stimulation, acetylcholine interacts with muscarinic receptors,
stimulating increased intracellular free Ca** ions and activating
endothelium-derived nitric oxide synthesis [59]. An increase in
nitric oxide activates soluble guanylate cyclase, leading to the
rise in cGMP, which causes a decrease in intracellular Ca and
relaxation of cavernous smooth muscle and facilitates penile
erection [59]. Peyronie’s disease is a condition in which fibrotic
structures form hard plaques when the penis is erect, causing
curvature, deformity or erectile dysfunction [60]. Thus far,
scientific studies have indicated that injection of P-MSC improves
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Peyronie’s disease [61]. The efficacy and safety of microinjection
of P-MSC in Peyronie’s disease is undergoing phase 1 clinical
trials (ClinicalTrials.gov number NCT04771442) in cases of
penile curvature of 15 — 90 degrees and fibrous plaques on the
tunica albuginea of the penis during erection. The use of P-MSC
in treatment can be considered an alternative therapy instead of
surgery in cases of Peyronie’s disease treatment [61]. Moreover,
in clinical trials on erectile dysfunction, the use of P-MSC, has
also been tested (ClinicalTrials.gov number NCT02398370).

Blood and bone marrow disorders treatment

Vascular remodeling is a function of P-MSC with VEGE HGEF,
and BDNF secretion [62]. Secretions from P-MSCs, including
proteinsand EVs, play an essential role in regenerating congenital
and acquired spinal cord injuries [62]. Clinical trials such as
ClinicalTrials.gov numbers NCT002688049, NCT04520373,
NCT03308565, NCT02917291, NCT04213131, NCT03505034,
03521232, NCT03521336, NCT05018793 in the treatment of
spinal cord injury from MSC have been created the premise
for the application of MSC in orthodox medicine shortly [62].
P-MSC’s angiogenesis and remodeling of the injured area’s effects
are believed to have suitable applications in treating myocardial
injury, atherosclerosis, nerve and limb ischemia, and stroke [63,
64]. Moreover, interactions with P-MSC and immunoregulatory
cells are actively involved in rehabilitating myeloproliferative
disorders and other aplastic anemias [65]. The safety and
efficacy of P-MSC in aplastic anemia and myelodysplastic
syndromes treatment have been progressing to the second
phase, which is yielding positive results (ClinicalTrials.gov
numbers NCT01182662 and 001129739).

Type 2 diabetes mellitus treatment

Cell transplantation therapies in treating diabetes were first
used in the early 2000s [66]. In the first cases of treatment,
the source of donated cells was the deceased, and there were
many limitations in the source of samples [66]. Applying
P-MSC can be advantageous in terms of cell supply [67]. The
differentiation process into pancreatic islet beta cells (IPCs) is
dominant in treating type 2 diabetes, directly releasing insulin
[68]. The control of T-cell populations by P-MSCs is essential
in protecting IPCs [47]. In addition, the regeneration of IPCs
is also stimulated by growth factors secreted from P-MSC, such
as IGE PDGE and VEGF [42, 69]. P-MSC helps patients with
type 2 diabetes significantly reduce insulin levels in treatment
(ClinicalTrials.gov numbers NCT01413035) [70]. Other clinical
and preclinical studies have also shown similar results about the
effectiveness of MSCs in the treatment of type 2 diabetes with
multiple effects [71].

Treatment of burns

The MSC burn wound healing process is described in
several stages. The anti-inflammatory phase occurs when
the immunoregulatory processes of MSCs are accomplished
through the polarization of M2 cells and regulation of T cells
[47]. MSC-derived exosomes release miRNAs that promote
protein synthesis [72]. During the wound repair phase, growth

factors are actively involved in promoting cell proliferation,
regeneration of the ECM, and angiogenesis [2, 18]. Placental-
derived MSCs are also a cell source of interest in treating burns.
Other particular burns, such as Corneal alkali burns, are also
being studied for applying P-MSC as a therapy [73].

Treatment of lung injury

After the COVID-19 pandemic, respiratory health problems
are of particular concern [74]. The sequelae of Covid-19 and
lung damage are significant threats to human health [74].
MSC-induced remodeling is targeted as an effective tool in
remodeling damaged lungs [75]. P-MSC has been proven to
treat acute respiratory distress syndrome caused by Covid-19, in
which P-MSC can migrate, attach, and re-heal the injured lung
tissue [76]. The mechanism of the action in the treatment lung
by P-MSC is considered through the proinflammatory elements
secretion, especially IL-1, IL-6, IL-12, IFN-y, and TNF-a [77].
Macrophage immunomodulation induced by P-MSC was found
to affect the LPS-induced acute lung injury model [78]. Other
factors, such as placental EVs, also contribute to treating lung
diseases [79].

Conclusion

The placenta was once considered a medical waste. However,
with the current exploitation potential, the placenta is gradually
becoming a raw material for regenerative medicine. The
biological interaction mechanisms of cells of placental origin,
including immunomodulatory, anti-inflammatory, EVs, and
other secretory activities, are still under intensive investigation.
The clinical trials that have been conducted indicate the
archivable application potential of placental cells.
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