

Placenta-derived cells: A new source for regenerative medicine application

Nguyen Trung QUAN¹, Bui Thi Kim LY², Hoang Thanh CHI³

- Department of Biology Biotechnology, University of Sciences, Viet Nam National University Ho Chi Minh City, 72711, Ho Chi Minh City, Vietnam
- ² Faculty of Technology, Dong Nai Technology University, Bien Hoa City, 02513, Vietnam
- ³ Center for Molecular Biomedicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 72550, Vietnam

Corresponding Author: Hoang Thanh CHI **E-mail:** chihoangthanh@gmail.com

Submitted: 23.01.2024 **Accepted:** 14.02.2025

ABSTRACT

The placenta is the first and most important organ of pregnancy. It is the communication bridge between the mother and fetus. Placental elements, due to their important position and function, are specially designed to manage the exchange of nutrients and the local regulation of the maternal immune system. The development of cells such as cytotrophoblasts, syncytiotrophoblasts, extravillous trophoblasts, placental giant trophoblasts, placental macrophages, and placenta-derived mesenchymal stromal cells is described. Medical researches have been performed to demonstrate the curative potential properties of these cells, such as treating burns, tendon and joint diseases, lung diseases, blood and bone marrow diseases, and other diseases. This review provides an overview of the formation and development of placental cell lines and their potential for regenerative medicinal research and ongoing clinical applications.

Keywords: Placenta, Placental MSC, Application, Clinical trial

1. INTRODUCTION

The placenta is a temporary fetal organ formed first during gestation [1]. The term placenta refers to a disc-shaped structure, 15 to 20 centimeters wide, 2 to 3 centimeters thick, and about 1/6 of the fetal weight, usually about 450 grams [2]. With a multicellular barrier structure, the placenta plays a crucial role in exchanging metabolism, oxygen provision, endocrine, and immune regulation between the mother and fetus [1, 3]. Obstetric complications consisting of preeclampsia, stillbirth, and recurrent miscarriages have been reported to be associated with placental anomalies [4]. The structure of the placenta is a parallel integration of two types of cells, including mother cells derived from the endometrium and fetal cells [5]. Five days after fertilization, the trophoblast covering the inner cell mass is formed as an outer layer of the morula, a part of which continuously develops into the placenta [1]. In preimplantation, essential transformations occur, including inner cell mass restructuring into the epiblast and primitive endoderm [5]. The amnion forms from the epiblast and merges with the trophoblast to become the amniotic chorionic membrane [5].

The embryo and the surface epithelium conjugation happens on the sixth or seventh day after fertilization [5]. The fusion of cytotrophoblast cells in the trophoblast creates the syncytium anchoring the blastocyst within the uterine walls called syncytiotrophoblast [1, 6]. Primary chorionic villi structure is formed by syncytiotrophoblasts enclosing cytotrophoblast cells penetrating the decidua basalis [6, 7]. The development of the invasion of mesoderm-derived cells creates cavities inside the tubular primary villi, forming the secondary chorionic villous structure [8]. The secondary chorionic villus impetuously ramifies and deeply invades basal decidua, then covers up the lacunae to create an intervillous space. The lacunae formation occurs due to the lytic action of syncytiotrophoblast's secretions, which degrades the matrix of the endometrium and the uterine capillaries, leading to maternal blood leakage [1, 6, 7].

During the first trimester, the invasion occurs through extravillous trophoblasts entering the decidua's nearest organ, produced by the decidualized endometrium [9, 10]. Nutritional requirements are a prerequisite for successful parity [4].

How to cite this article: Quan NT, Ly BTK, Chi HT. Placenta-derived cells: A new source for regenerative medicine application. Marmara Med J 2025;38 (2): 90-97. doi: 10.5472/marumj.1708020

ISSN: 1309-9469

© 2025 Marmara University Press, All Rights Reserved

Extravillous trophoblasts invade maternal spiral arteries, adhere to the lumen, induce endothelial cell apoptosis, and replace them [11, 12]. At the end of the invasive process, the structure of the maternal spiral artery becomes a wide tube, leading to an increase in the volume of maternal blood flow into the intervillous space [13]. The speed and volume of maternal blood flow into the intervillous space is perfectly regulated to balance the sufficient nutrient supplement. This regulation is necessary for a healthy pregnancy [14, 15]. In this review, the components of the placenta and therapeutic properties of these components in regenerative medicine are introduced.

2. PLACENTA-DERIVED CELL TYPES

Cytotrophoblast and syncytiotrophoblast

The structure of the villus that develops from trophoblasts plays a crucial role in the fetal and the maternal metabolism, allowing for successful gestation [16]. At the third week of gestation, two populations of cell types are differentiated from trophoblast, consisting of cytotrophoblasts (CTs), which are incomplete differentiated cells, and syncytiotrophoblasts (SCTs), which are complete differentiated cells [17]. As mentioned, the SCTs are created from the conjugation of the CTs, forming the villous trophoblasts which enhances the embryo's infiltration process [6, 7]. The SCTs are responsible for the bidirectional transport of nutrients and wastes, producing various placental proteins and hormones for fetal growth and protecting the inner cell mass [18]. Right after the interaction between the blastocyst and uterine wall implantation, human chorionic gonadotropin (hCG) is produced by SCTs, and it is the first endocrine signal from the fetus to the mother [19, 20]. With the corpus luteum, SCTs participate in progesterone secretion at the seventh to eighth week of gestation, maintaining stability during the early stages of pregnancy [21]. Low-density lipoprotein (LDL) receptors on the SCTs surface absorb LDL from maternal circulation in the intervillous space to synthesize progesterone [22, 23] (Figure 1). The SCTs also synthesize the steroid hormone, estrogen, and human chorionic somatomammotropin (hCS) [24, 25]. The conjugation of the CTs to form the SCTs depends on the expression of connexin 43, the activity of the gap junctional intercellular communication, and the flipping of phosphatidylserine from the inner to the outer of the plasma membrane [26, 27]. Their enormous size provides perfect coverage for endothelial cells; the SCTs avoid presentation to the maternal immune system in the intervillous spaces, which are densely populated by immune cells attract a mass of concentrated immune cells. During the first trimester, the embryo faces a large portion of maternal leukocytes in decidua that statistically include decidual natural killer (dNK) cells (70%), decidual macrophages (20 – 25%), and T cells (3 – 10%) [28, 29]. SCTs are one of the extremely rare human cells that do not express human leukocyte antigens (HLA) (both of HLA class I and HLA class II), playing a crucial role in the immune modulation strategy of pregnancy [30, 31]. Moreover, the surface glycosylation patterns on SCTs also contribute greatly to maternal immune system evasion [32]. The SCTs are reported to exocytose exosomes harbouring the tumor necrosis factorrelated apoptosis-inducing ligant (TRAIL) and Fas ligands, which induce the apoptosis of leukocytes [33] (Figure 2).

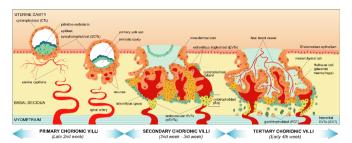


Figure 1. The formation of the placenta.

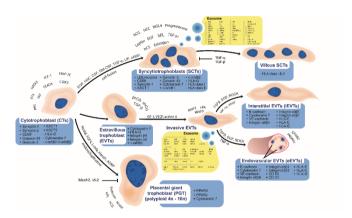


Figure 2. The cytotrophoblast differentiation into functional cells in the placenta

Extravillous trophoblast

The SCT-non-differentiation CTs develop into extravillous phenotypes, which further invade and form the cell column of anchoring villi [34]. A part of the CTs population differentiates into extravillous trophoblasts (EVTs) to invade decidua more effectively, and plug structures are formed by endovascular EVTs (eEVTs) to moderate the maternal blood pressure during the spiral artery invasion [35]. EVTs are also present within the myometrium, the middle layer of the uterus wall, as two cell types, including interstitial EVTs (iEVT), and placental giant trophoblasts (PGTs) [35]. The absence of local lymph nodes in the endometrium restricts dendritic cells and T effector cells and facilitates an abundance of dNK and T-reg cells [36]. SCTs and CTs are in charge of synthesizing M-CSF, GM-CSF, and IL-10, regulating the homeostatic differentiation of M2 macrophages and T-reg cells [37]. On the other hand, the EVTs secrete multiple immunoregulatory factors during invasion, such as macrophage growth factors (GM-CSF and M-CSF), cytokines (IL-1RA, IL-1\beta, IL-2, IL-6, IL-10, IL-17 TNF, IFN-\beta, TGF-β1, TGF-cc2), chemokines (CCL2, CCL17, CCL18, CCL20, CCL22, CXCL1-3, CXCL8, CXCL10, CXCL 11), and apoptosisinducing factor as TRAIL [37]. The EVTs present the HLA-G

Quan et al

determined to interact with killer cell immunoglobulin-like receptor 2DL4 (KIR2DL4) and the leukocyte immunoglobulin-like receptor B (LILRB), which leads to the inactivation of dNK [38]. The secretion of β hCG is recorded in EVTs, and the α hCG is trivial [19]. In contrast to SCTs, EVTs predominantly produce the hyperglycosylated form of hCG, which promotes the development of the SCTs layer and angiogenesis through the LH/CG receptor [19].

Placental giant trophoblast

Placental giant trophoblasts originate from CTs through differentiation; they express the morphology of large cytoplasm and polyploidy. The first signs of primary PGTs are observed from developing the mural sixty trophectoderm cells stage. The differentiation of PGTs is carried out under stringent regulation [39]. The signal from peroxisome proliferator-activated receptor beta (PPARb) activates the Pi3K pathway; the activation of LIF is through the LIFR, starting the MAPK pathway and contributing to the formation of PGTs. Hand1 and Mash2 are crucial in PGTs differentiation and antagonization of each other [40]. Mash2 is found in the chorion, ectoplacental cone, and spongiotrophoblast, and it is responsible for maintaining these structures and the diploid stage of primary PGTs. During the PGTs differentiation, Hand1 inhibits the Mash2 activity and vice versa. The Mash2 is also controlled by the bHLH protein, I-mfa, via PPARb actions [39]. On the other hand, a dominant negative factor, Id-2, diminishes under the Pi3K pathway, leading to the act of Hand1 and the CTs to PGTs transformation. Polyploidy of PGTs is established through cell cycle alterations. In the S phase, the decrease in Geminin allows DNA replication activation, and P57kip2 inhibits the G1/S checkpoint trapping cell in the S phase [41]. In contrast, the reduction in P53 and pRB activity causes Cyclin A and E inhibition, thereby causing the S phase to maintain and repeat. At the G2 phase, p57kip2 inhibits Cdk1 function, while Snail enhances Cyclin A and B expression and allows endoreduplication to occur without mitosis [41]. The differentiation of PGTs is induced by the action of a combination of growth factors, such as EGF, TGF, IGF-I, and IGF-II, that are locally expressed in the uterus [42]. In addition to acting as EVTs, PGTs attend uterus invasion of the placenta, spiral arteries remodeling, and secretion of transcription factors, proteases, cytokines, hormones, and adhesion molecules [42].

Placenta-derived mesenchymal stromal cells (P-MSC)

The term mesenchymal stromal cells (MSC) was officially used over thirty years ago, attracting researchers for analysis and application in human disease treatment [5]. Thus far, the MSC has been isolated from many origins of human tissue and separated into two groups: adult MSC and fetal MSC. The fetal MCS is mainly identified and studied from postnatal tissue such as the placenta (P-MSC), umbilical cord, umbilical cord blood, amniotic fluid, and amniotic membrane [3]. The presence of the P-MSCs is observed around the second or third week of gestation, followed by the first fetal primitive vessel formation [17]. P-MSCs are introduced into the placenta through the mesodermal core and allocated into the placental amniotic

membrane, chorionic plate, chorionic villi, chorionic leave, basal decidua, and placental blood vessels. The P-MSC has a fibroblast cell morphology and differentiates into adipocytes, osteocytes, and chondrocytes. The cells express significant membrane markers such as CD90, CD105, CD73, and lack of CD34, CD45, CD19, CD14, CD11b, CD79 α , and HLA-DR [1, 5, 43]. CD44, HLA-ABC, and pluripotency markers (Rex1, Nanog, Oct4, and Sox2) are also found in P-MSCs [5]. The P-MSCs and MSCs derived from bone marrow (BM-MSC) share significant similarities [44] (Figure 3).

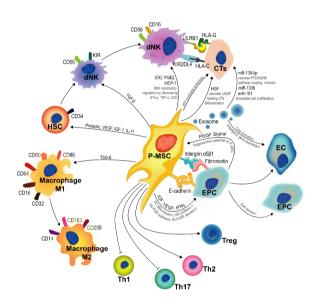


Figure 3. The interaction of placental MSCs with other cellular components present in the placenta

Placenta-derived mesenchymal stromal cells play a crucial role in immunomodulation at the placenta, maintaining successful gestation [3, 44]. P-MSCs enhance the hematopoietic progenitor cells, which are positive to decidual natural killer (dNK) cell differentiation from CD34 cells. dNK cells are clarified to be a majority in the decidua and account for 70% of leukocytes present in decidua [1, 5, 43]. Unlike NK in peripheral blood (pNK), the dNK cells express LILRB1, KIR2DL4, and CD56 but not CD16, exhibiting a poor cytotoxic capacity [45]. P-MSCs also secrete the TGF-β, inducing pNK to dNK phenotype conversion [45]. Moreover, the other P-MSC-derived factors, including IGF-, VEGF, IL-11, prolactin, IDO, PGE2, and MCP-1, support dNK protection and cytotoxicity regulation [42]. The interaction of dNK and CTs is determined to be intimate through the interaction of LILRB1 - HLA-G and KIR2DL4 -HLA-C [5].

In decidua, about 20 % of the leukocyte population is occupied by T cells [46]. T cell induction, proliferation, and differentiation promotion in decidua during gestation are coordinated by P-MSC, including Th1, Th17 differentiative inhibition, Th2 and Treg differentiative activation [46, 47]. Treg is active in

decidua during pregnancy for immune response regulation [46]. Macrophages are crucial in decidua, and macrophage M2 plays a role in tissue healing and repair through anti-inflammatory processes [1]. Macrophages with the M2 phenotype, Hofbauer cells, are discovered in the chorionic villi [48]. The ratio of M1 and M2 cells balances during the initial gestation, and then the M2 polarization elevates after the mature placental formation. Previously, the M1 phenotype macrophage differentiative retardation is reported as the impact of P-MSC and its secretions [49]. The attendance of P-MSC in the co-culturing orientated the increased expression of CD14, CD163, and CD209, representing M2 phenotype as well as the inhibitory factors including B7-H4, PD-L1, and PD-L2, and the decline of CD40, CD80, and CD86 markers, and proinflammatory cytokines [46, 49].

Placenta-derived mesenchymal stromal cells participate in the development of the placenta [1]. The promotion of endothelial growth of P-MSCs is recognized through the signaling interaction of E-cadherin/beta-catenin and fibronectin/ integrin α5β1 between P-MSC and endothelial progenitor cells (EPC) [50, 51]. Developing endothelial cells (EC) from EPC is augmented by P-MSC growth secretions such as VEGF and IGF [42]. In addition, the HLA-DR-expression decreases under the action of IFN-y from the P-MSC, thereby avoiding an unwanted response from the maternal immune system [50]. The reverse interaction from EPC to P-MSC via the PDGF signaling pathway plays a role in the regenerative potential of P-MSC [1, 51]. P-MSC-derived exosomes contribute to EC cell tubule formation and the development of angiogenic factors [1]. HGF derived from P-MSC induces cAMP synthesis, activating the differentiation from CTs to SCTs. MiR-139 influences the invasion of CTs included in P-MSC-derived exosomes, downregulating the MAPK pathway [52]. On the other hand, miR-133b and miR-101 enhance the development and proliferation of CTs and related cells [52].

Placenta macrophage (Hofbauer cell)

The Hofbauer cells (HCs) first appear at the start of the third week of gestation and remain during the pregnancy [48]. The HCs mainly reside along the walls of fetal blood vessels' placental villous core, and some of the HCs are also found in the amnion [1]. The populations of HCs are diverse, with multiple phenotypes separated by considering the surface markers such as CD163, CD68, CD64, CD14, HLA, DC-SIGN, and others [46, 49]. The expression of CD14 is the most unstable and bonds to the pro-inflammation response [46, 49]. Besides, the MHC class II positive proportion in the HCs population moves up and down during the gestation, documenting the HLA-DP and HLA-DQ elevation and HLA-DR collapses in the third trimester [48]. Based on gene expression detection, HCs display the M2 macrophage phenotype and reflect all M2a, M2b, M2c, and M2d sub-types [49]. HCs activities contribute to fetal protection [48]. The attraction of HCs is caught in villitis caused by a viral infection. Immunoregulation is one of the HCs functions through the secretions of growth factors such as VEGF, TNF, TGF-β, and several cytokines such as IL-1, IL-6, IL-10, CCL-2, CCL-18, and others. HCs derived VEGF and Spry modulate the villi branching formation [49]. Vasoregulation of placental vessels is partially regulated by prostaglandin E2 and thromboxane, which HCs secrete in *in vitro* models. HCs activate the production of hCG and hPL by CTs [46, 49]. The presence of alpha-1 antitrypsin and inter-alpha-trypsin inhibitors in HCs plays a role in protease inhibition related to villous remodeling and differentiation processes in the placenta.

3. MEDICAL APPLICATION OF PLACENTA-DERIVED CELLS

Tendon and joint disease treatment

Tendon and joint disease is a common pathology, especially from the beginning of middle age, such as tendinopathies (43%), musculoskeletal pain (21%), Achilles tendinopathy (11%), and others [53]. Non-steroidal anti-inflammatory and corticosteroid drugs or physical treatments are used for various tendon and joint diseases [53]. However, the persistent symptoms of the condition are not easy to eliminate [54]. Placental-derived elements promise a new, effective therapy for tendon and joint disease treatment [55]. The extract from the placenta is proven to be diverse in nutrient and regular factors [56]. Tendon injury caused by collagenase has been shown to heal rapidly under the impact of cells isolated from the placenta, which actively increases the secretion of IL-1\beta and IL-6 during the treatment [49]. P-MSC activity is involved in tendon repair only through enhancing skeletal muscle regeneration and preventing muscle atrophy [1]. P-MSCs have a role in extracellular matrix remodeling and a central role in local immune regulation [1]. The MSC and tenocyte interaction has still not been completely understood, but the promotion of M2 cell phenotype polarization and IL-4 secretion are likely to play a role in the treatment of tendon and joint disease through the extracellular matrix (ECM) remodeling [49]. Besides, promoting the vascular proliferation of MSCs in the tendon injury model has also been described [56]. In a previous clinical study, P-MSC was also considered a benign therapeutic agent as there were no abnormal symptoms observed, such as biochemical and hematologic disadvantages, ectopic tissue or tumour formation, pulmonary embolism, and liver or renal impairment in patients for 24 weeks posttreatment [57].

Erectile dysfunction treatment

The erection of the penis depends on the volume of blood present in the cavernous body [58]. Under conditions of sexual stimulation, acetylcholine interacts with muscarinic receptors, stimulating increased intracellular free Ca²⁺ ions and activating endothelium-derived nitric oxide synthesis [59]. An increase in nitric oxide activates soluble guanylate cyclase, leading to the rise in cGMP, which causes a decrease in intracellular Ca and relaxation of cavernous smooth muscle and facilitates penile erection [59]. Peyronie's disease is a condition in which fibrotic structures form hard plaques when the penis is erect, causing curvature, deformity or erectile dysfunction [60]. Thus far, scientific studies have indicated that injection of P-MSC improves

Peyronie's disease [61]. The efficacy and safety of microinjection of P-MSC in Peyronie's disease is undergoing phase 1 clinical trials (ClinicalTrials.gov number NCT04771442) in cases of penile curvature of 15 – 90 degrees and fibrous plaques on the tunica albuginea of the penis during erection. The use of P-MSC in treatment can be considered an alternative therapy instead of surgery in cases of Peyronie's disease treatment [61]. Moreover, in clinical trials on erectile dysfunction, the use of P-MSC, has also been tested (ClinicalTrials.gov number NCT02398370).

Blood and bone marrow disorders treatment

Vascular remodeling is a function of P-MSC with VEGF, HGF, and BDNF secretion [62]. Secretions from P-MSCs, including proteins and EVs, play an essential role in regenerating congenital and acquired spinal cord injuries [62]. Clinical trials such as ClinicalTrials.gov numbers NCT002688049, NCT04520373, NCT03308565, NCT02917291, NCT04213131, NCT03505034, 03521232, NCT03521336, NCT05018793 in the treatment of spinal cord injury from MSC have been created the premise for the application of MSC in orthodox medicine shortly [62]. P-MSC's angiogenesis and remodeling of the injured area's effects are believed to have suitable applications in treating myocardial injury, atherosclerosis, nerve and limb ischemia, and stroke [63, 64]. Moreover, interactions with P-MSC and immunoregulatory cells are actively involved in rehabilitating myeloproliferative disorders and other aplastic anemias [65]. The safety and efficacy of P-MSC in aplastic anemia and myelodysplastic syndromes treatment have been progressing to the second phase, which is yielding positive results (ClinicalTrials.gov numbers NCT01182662 and 001129739).

Type 2 diabetes mellitus treatment

Cell transplantation therapies in treating diabetes were first used in the early 2000s [66]. In the first cases of treatment, the source of donated cells was the deceased, and there were many limitations in the source of samples [66]. Applying P-MSC can be advantageous in terms of cell supply [67]. The differentiation process into pancreatic islet beta cells (IPCs) is dominant in treating type 2 diabetes, directly releasing insulin [68]. The control of T-cell populations by P-MSCs is essential in protecting IPCs [47]. In addition, the regeneration of IPCs is also stimulated by growth factors secreted from P-MSC, such as IGF, PDGF, and VEGF [42, 69]. P-MSC helps patients with type 2 diabetes significantly reduce insulin levels in treatment (ClinicalTrials.gov numbers NCT01413035) [70]. Other clinical and preclinical studies have also shown similar results about the effectiveness of MSCs in the treatment of type 2 diabetes with multiple effects [71].

Treatment of burns

The MSC burn wound healing process is described in several stages. The anti-inflammatory phase occurs when the immunoregulatory processes of MSCs are accomplished through the polarization of M2 cells and regulation of T cells [47]. MSC-derived exosomes release miRNAs that promote protein synthesis [72]. During the wound repair phase, growth

factors are actively involved in promoting cell proliferation, regeneration of the ECM, and angiogenesis [2, 18]. Placental-derived MSCs are also a cell source of interest in treating burns. Other particular burns, such as Corneal alkali burns, are also being studied for applying P-MSC as a therapy [73].

Treatment of lung injury

After the COVID-19 pandemic, respiratory health problems are of particular concern [74]. The sequelae of Covid-19 and lung damage are significant threats to human health [74]. MSC-induced remodeling is targeted as an effective tool in remodeling damaged lungs [75]. P-MSC has been proven to treat acute respiratory distress syndrome caused by Covid-19, in which P-MSC can migrate, attach, and re-heal the injured lung tissue [76]. The mechanism of the action in the treatment lung by P-MSC is considered through the proinflammatory elements secretion, especially IL-1, IL-6, IL-12, IFN- γ , and TNF- α [77]. Macrophage immunomodulation induced by P-MSC was found to affect the LPS-induced acute lung injury model [78]. Other factors, such as placental EVs, also contribute to treating lung diseases [79].

Conclusion

The placenta was once considered a medical waste. However, with the current exploitation potential, the placenta is gradually becoming a raw material for regenerative medicine. The biological interaction mechanisms of cells of placental origin, including immunomodulatory, anti-inflammatory, EVs, and other secretory activities, are still under intensive investigation. The clinical trials that have been conducted indicate the archivable application potential of placental cells.

Compliance with Ethical Standards

Conflict of interest:The authors declare that the research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest.

Financial disclosure: The authors declare that no financial support was received for the research, authorship, and/or publication of this article.

Author contributions: NTQ, BTKL, and HTC analyzed the data. All authors wrote the draft manuscript. The authors painstakingly read and approved the final manuscript.

REFERENCES

- [1] Turco MY, Moffett A. Development of the human placenta. Development 2019; 146: dev163428. doi:10.1242/dev.163428.
- 2] Carlson BM. Placenta. Reference Module in Biomedical Sciences. Elsevier, 2014.
- [3] Sferruzzi-Perri AN, Camm EJ. The programming power of the placenta. Front Physiol 2016; 7: 33. doi:10.3389/fphys.2016.00033.
- [4] Brosens I, Pijnenborg R, Vercruysse L, Romero R. The "Great Obstetrical Syndromes" are associated with disorders of

- deep placentation. Am J Obstet Gynecol 2011; 204: 193-201. doi:10.1016/j.ajog.2010.08.009.
- [5] Burton GJ, Fowden AL. The placenta: a multifaceted, transient organ. Phil Trans R Soc B 2015; 370: 20140066. doi:10.1098/ rstb.2014.0066
- [6] Hemberger M, Hanna CW, Dean W. Mechanisms of early placental development in mouse and humans. Nat Rev Genet 2020; 21: 27-43. doi:10.1038/s41576.019.0169-4.
- [7] Carter AM, Enders AC, Pijnenborg R. The role of invasive trophoblast in implantation and placentation of primates. Philos Trans R Soc Lond B Biol Sci 2015; 370: 20140070. doi:10.1098/rstb.2014.0070.
- [8] Cuman C, Menkhorst E, Winship A, et al. Fetal-maternal communication: the role of Notch signalling in embryo implantation. Reproduction 2014; 147: R75-86. doi:10.1530/ rep-13-0474.
- [9] Lee C, Moulvi A, James JL, Clark AR. Multi-scale modelling of shear stress on the syncytiotrophoblast: Could maternal blood flow impact placental function across gestation? Ann Biomed Eng 2023; 51: 1256-1269. doi:10.1007/s10439.022.03129-2.
- [10] Aplin JD, Myers JE, Timms K, Westwood M. Tracking placental development in health and disease. Nat Rev Endocrinol 2020; 16: 479-494. doi:10.1038/s41574.020.0372-6.
- [11] Ashton V, Whitley GS, Dash PR, et al. Uterine spiral artery remodeling involves endothelial apoptosis induced by extravillous trophoblasts through Fas/FasL interactions. Arterioscler Thromb Vasc Biol 2005; 25: 102-8. doi:10.1161/01. Atv.000.014.8547.70187.89.
- [12] Whitley GS, Cartwright JE. Trophoblast-mediated spiral artery remodelling: a role for apoptosis. J Anat 2009; 215: 21-6. doi:10.1111/j.1469-7580.2008.01039.x.
- [13] Burton GJ, Woods AW, Jauniaux E, Kingdom JC. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 2009; 30: 473-82. doi:10.1016/j. placenta.2009.02.009.
- [14] Kaufmann P, Black S, Huppertz B. Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod 2003; 69: 1-7. doi:10.1095/biolreprod.102.014977.
- [15] Lyall F, Robson SC, Bulmer JN. Spiral artery remodeling and trophoblast invasion in preeclampsia and fetal growth restriction: relationship to clinical outcome. Hypertension 2013; 62: 1046-54. doi:10.1161/hypertensionaha.113.01892.
- [16] Burton GJ, Fowden AL. The placenta: a multifaceted, transient organ. Philos Trans R Soc Lond B Biol Sci 2015; 370: 20140066. doi:10.1098/rstb.2014.0066.
- [17] James JL, Carter AM, Chamley LW. Human placentation from nidation to 5 weeks of gestation. Part I: What do we know about formative placental development following implantation? Placenta 2012; 33: 327-34. doi:10.1016/j.placenta.2012.01.020.
- [18] Roberts KA, Riley SC, Reynolds RM, et al. Placental structure and inflammation in pregnancies associated with obesity. Placenta 2011; 32: 247-54. doi:10.1016/j.placenta.2010.12.023.

- [19] Fournier T. Human chorionic gonadotropin: Different glycoforms and biological activity depending on its source of production. Ann Endocrinol (Paris) 2016; 77: 75-81. doi:10.1016/j.ando.2016.04.012.
- [20] Strott CA, Yoshimi T, Ross GT, Lipsett MB. Ovarian physiology: relationship between plasma LH and steroidogenesis by the follicle and corpus luteum; effect of HCG. J Clin Endocrinol Metab 1969; 29: 1157-67. doi:10.1210/jcem-29-9-1157.
- [21] Lee B, Park TC, Lee HJ. Maternal age and serum concentration of human chorionic gonadotropin in early pregnancy: influence of gonadotropin-releasing hormone. Acta Obstet Gynecol Scand 2015; 94: 443-4. doi:10.1111/aogs.12573.
- [22] Alsat E, Bouali Y, Goldstein S, Malassiné A, Laudat MH, Cedard L. Characterization of specific low-density lipoprotein binding sites in human term placental microvillous membranes. Mol Cell Endocrinol 1982; 28: 439-53. doi:10.1016/0303-7207(82)90138-1.
- [23] Spaans F, Kao CK, Morton JS, et al. Syncytiotrophoblast extracellular vesicles impair rat uterine vascular function via the lectin-like oxidized LDL receptor-1. PLoS One 2017; 12: e0180364. doi:10.1371/journal.pone.0180364.
- [24] Musicki B, Pepe GJ, Albrecht ED. Functional differentiation of the placental syncytiotrophoblast: Effect of estrogen on chorionic somatomammotropin expression during early primate pregnancy. The Journal of Clinical Endocrinology & Metabolism 2003; 88: 4316-4323. doi:10.1210/jc.2002-022052.
- [25] Pedersen AM, Taylor BK, Payne AM, Abdelrahim M, Francis GL. Macrophage conditioned media affects steroid hormone production by placental cultures. Ann Clin Lab Sci 1994; 24: 548-54.
- [26] Ruch RJ. The role of gap junctional intercellular communication in neoplasia. Ann Clin Lab Sci 1994; 24: 216-31.
- [27] Adler RR, Ng AK, Rote NS. Monoclonal antiphosphatidylserine antibody inhibits intercellular fusion of the choriocarcinoma line, JAR. Biol Reprod 1995; 53: 905-10. doi:10.1095/ biolreprod53.4.905.
- [28] Manaster I, Mandelboim O. The unique properties of uterine NK cells. Am J Reprod Immunol 2010; 63: 434-44. doi:10.1111/j.1600-0897.2009.00794.x.
- [29] Liu S, Diao L, Huang C, Li Y, Zeng Y, Kwak-Kim JYH. The role of decidual immune cells on human pregnancy. J Reprod Immunol 2017; 124: 44-53. doi:10.1016/j.jri.2017.10.045.
- [30] Tilburgs T, Meissner TB, Ferreira LMR, et al. NLRP2 is a suppressor of NF-kB signaling and HLA-C expression in human trophoblasts†,‡. Biol Reprod 2017; 96: 831-842. doi:10.1093/biolre/iox009.
- [31] Ljunggren HG, Kärre K. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol Today 1990; 11: 237-44. doi:10.1016/0167-5699(90)90097-s.
- [32] Nishima W, Miyashita N, Yamaguchi Y, Sugita Y, Re S. Effect of bisecting GlcNAc and core fucosylation on conformational properties of biantennary complex-type N-glycans in solution. J Phys Chem B 2012; 116: 8504-12. doi:10.1021/jp212550z.
- [33] Stenqvist AC, Nagaeva O, Baranov V, Mincheva-Nilsson L. Exosomes secreted by human placenta carry functional

- Fas ligand and TRAIL molecules and convey apoptosis in activated immune cells, suggesting exosome-mediated immune privilege of the fetus. J Immunol 2013; 191: 5515-23. doi:10.4049/jimmunol.1301885.
- [34] Zhou Y, Fisher SJ, Janatpour M, et al. Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? J Clin Invest 1997; 99: 2139-51. doi:10.1172/jci119387.
- [35] Moser G, Gauster M, Orendi K, Glasner A, Theuerkauf R, Huppertz B. Endoglandular trophoblast, an alternative route of trophoblast invasion? Analysis with novel confrontation coculture models. Hum Reprod 2010; 25: 1127-36. doi:10.1093/ humrep/deq035.
- [36] Red-Horse K, Rivera J, Schanz A, et al. Cytotrophoblast induction of arterial apoptosis and lymphangiogenesis in an in vivo model of human placentation. J Clin Invest 2006; 116: 2643-52. doi:10.1172/jci27306.
- [37] Svensson-Arvelund J, Mehta RB, Lindau R, et al. The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages. J Immunol 2015; 194: 1534-44. doi:10.4049/jimmunol.1401536.
- [38] Carosella ED, Rouas-Freiss N, Tronik-Le Roux D, Moreau P, LeMaoult J. HLA-G: An immune checkpoint molecule. Adv Immunol 2015; 127: 33-144. doi:10.1016/bs.ai.2015.04.001.
- [39] Fernandes SLE, de Carvalho FAG. Preimplantation genetic testing: A narrative review. Porto Biomed J 2024; 9: 262. doi:10.1097/j.pbj.000.000.0000000262.
- [40] Dinsmore J, Soriano P. MAPK and PI3K signaling: At the crossroads of neural crest development. Dev Biol 2018; 444 Suppl 1: S79-s97. doi:10.1016/j.ydbio.2018.02.003.
- [41] Cho DJ, Liang P. S-phase-coupled apoptosis in tumor suppression. Cell Mol Life Sci 2011; 68: 1883-96. doi:10.1007/ s00018.011.0666-x.
- [42] Ciarmela P, Islam MS, Reis FM, et al. Growth factors and myometrium: biological effects in uterine fibroid and possible clinical implications. Human Reproduction Update 2011; 17: 772-790. doi:10.1093/humupd/dmr031.
- [43] Liang L, Li Z, Ma T, et al. Transplantation of human placentaderived mesenchymal stem cells alleviates critical limb ischemia in diabetic nude rats. Cell Transplant 2017; 26: 45-61. doi:10.3727/096368916x692726.
- [44] Barlow S, Brooke G, Chatterjee K, et al. Comparison of human placenta and bone marrow-derived multipotent mesenchymal stem cells. Stem Cells Dev 2008; 17: 1095-107. doi:10.1089/scd.2007.0154.
- [45] Vacca P, Cantoni C, Prato C, et al. Regulatory role of NKp44, NKp46, DNAM-1 and NKG2D receptors in the interaction between NK cells and trophoblast cells. Evidence for divergent functional profiles of decidual versus peripheral NK cells. Int Immunol 2008; 20: 1395-405. doi:10.1093/intimm/dxn105.
- [46] DeJong CS, Maurice NJ, McCartney SA, Prlic M. Human tissue-resident memory T cells in the maternal-fetal interface. Lost Soldiers or Special Forces? Cells 2020; 9: doi:10.3390/ cells9122699.

- [47] Mjösberg J, Berg G, Jenmalm MC, Ernerudh J. FOXP3+ regulatory T cells and T helper 1, T helper 2, and T helper 17 cells in human early pregnancy decidua. Biol Reprod 2010; 82: 698-705. doi:10.1095/biolreprod.109.081208.
- [48] Schliefsteiner C, Ibesich S, Wadsack C. Placental Hofbauer cell polarization resists inflammatory cues in vitro. Int J Mol Sci 2020; 21: doi:10.3390/ijms21030736.
- [49] Brown MB, Chamier M, Allam AB, Reyes L. M1/M2 macrophage polarity in normal and complicated pregnancy. Front Immunol 2014; 5: 606. doi:10.3389/fimmu.2014.00606.
- [50] Zhu Y, Yang Y, Zhang Y, et al. Placental mesenchymal stem cells of fetal and maternal origins demonstrate different therapeutic potentials. Stem Cell Res Ther 2014; 5: 48. doi:10.1186/scrt436.
- [51] Bouland C, Philippart P, Dequanter D, et al. Cross-talk between mesenchymal stromal cells (MSCs) and endothelial progenitor cells (EPCs) in Bone Regeneration. Front Cell Dev Biol 2021; 9: 674084. doi:10.3389/fcell.2021.674084.
- [52] Jia Y, Ding X, Zhou L, Zhang L, Yang X. Mesenchymal stem cells-derived exosomal microRNA-139-5p restrains tumorigenesis in bladder cancer by targeting PRC1. Oncogene 2021; 40: 246-261. doi:10.1038/s41388.020.01486-7.
- [53] Rees JD, Wilson AM, Wolman RL. Current concepts in the management of tendon disorders. Rheumatology (Oxford) 2006; 45: 508-21. doi:10.1093/rheumatology/kel046.
- [54] Yang G, Rothrauff BB, Tuan RS. Tendon and ligament regeneration and repair: clinical relevance and developmental paradigm. Birth Defects Res C Embryo Today 2013; 99: 203-222. doi:10.1002/bdrc.21041.
- [55] Ma R, Schär M, Chen T, et al. Use of human placenta-derived cells in a preclinical model of tendon injury. J Bone Joint Surg Am 2019; 101: e61. doi:10.2106/jbjs.15.01381.
- [56] Gwam C, Ohanele C, Hamby J, Chughtai N, Mufti Z, Ma X. Human placental extract: a potential therapeutic in treating osteoarthritis. Ann Transl Med 2023; 11: 322. doi:10.21037/atm.2019.10.20.
- [57] S. Khalifeh Soltani, Forogh B, Ahmadbeigi N, et al. Safety and efficacy of allogenic placental mesenchymal stem cells for treating knee osteoarthritis: a pilot study. Cytotherapy 2019; 21: 54-63. doi:10.1016/j.jcyt.2018.11.003.
- [58] Dean RC, Lue TF. Physiology of penile erection and pathophysiology of erectile dysfunction. Urol Clin North Am 2005; 32: 379-95, v. doi:10.1016/j.ucl.2005.08.007.
- [59] Argiolas A, Argiolas M, Argiolas G, Melis MR. Erectile dysfunction: Treatments, advances and new therapeutic strategies. Brain Sci 2023; 13: doi:10.3390/brainsci13050802.
- [60] Lindsay MB, Schain DM, Grambsch P, Benson RC, Beard CM, Kurland LT. The incidence of Peyronie's disease in Rochester, Minnesota, 1950 through 1984. J Urol 1991; 146: 1007-9. doi:10.1016/s0022-5347(17)37988-0.
- [61] Levy JA, Marchand M, Iorio L, Zribi G, Zahalsky MP. Effects of stem cell treatment in human patients with Peyronie Disease. J Am Osteopath Assoc 2015; 115: e8-13. doi:10.7556/ jaoa.2015.124.

- [62] Cho J, Kim TH, Seok J, et al. Vascular remodeling by placenta-derived mesenchymal stem cells restores ovarian function in ovariectomized rat model via the VEGF pathway. Laboratory Investigation 2021; 101: 304-317. doi:10.1038/ s41374.020.00513-1.
- [63] Kanelidis J, Premer C, Lopez J, Balkan W, Hare JM. Route of delivery modulates the efficacy of mesenchymal stem cell therapy for myocardial infarction. Circulation Research 2017; 120: 1139-1150. doi:10.1161/CIRCRESAHA.116.309819.
- [64] Shirbaghaee Z, Heidari Keshel S, Rasouli M, et al. Report of a phase 1 clinical trial for safety assessment of human placental mesenchymal stem cells therapy in patients with critical limb ischemia (CLI). Stem Cell Res Ther 2023; 14: 174. doi:10.1186/ s13287.023.03390-9.
- [65] Lan Y, Liu F, Chang L, et al. Combination of umbilical cord mesenchymal stem cells and standard immunosuppressive regimen for pediatric patients with severe aplastic anemia. BMC Pediatrics 2021; 21: 102. doi:10.1186/s12887.021.02562-x.
- [66] Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343: 230-8. doi:10.1056/nejm200.007.273430401.
- [67] Musiał-Wysocka A, Kot M, Majka M. The pros and cons of mesenchymal stem cell-based therapies. Cell Transplant 2019; 28: 801-812. doi:10.1177/096.368.9719837897.
- [68] Chen LB, Jiang XB, Yang L. Differentiation of rat marrow mesenchymal stem cells into pancreatic islet beta-cells. World J Gastroenterol 2004; 10: 3016-20. doi:10.3748/wjg.v10. i20.3016.
- [69] Samikannu B, Chen C, Lingwal N, Padmasekar M, Engel FB, Linn T. Dipeptidyl peptidase IV inhibition activates CREB and improves islet vascularization through VEGF-A/VEGFR-2 signaling pathway. PLoS One 2013; 8: e82639. doi:10.1371/ journal.pone.0082639.
- [70] Jiang R, Han Z, Zhuo G, et al. Transplantation of placentaderived mesenchymal stem cells in type 2 diabetes: a pilot study. Front Med 2011; 5: 94-100. doi:10.1007/s11684.011.0116-z.

- [71] Gao S, Zhang Y, Liang K, Bi R, Du Y. Mesenchymal stem cells (MSCs): A novel therapy for type 2 diabetes. Stem Cells International 2022; 2022: 8637493. doi:10.1155/2022/8637493.
- [72] Hu L, Wang J, Zhou X, et al. Exosomes derived from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the characteristics of fibroblasts. Sci Rep 2016; 6: 32993. doi:10.1038/srep32993.
- [73] Chen M, Chen X, Li X, et al. Subconjunctival administration of mesenchymal stem cells alleviates ocular inflammation in a murine model of corneal alkali burn. Stem Cells 2023; 41: 592-602. doi:10.1093/stmcls/sxad027.
- [74] Philip KEJ, Lonergan B, Cumella A, Farrington-Douglas J, Laffan M, Hopkinson NS. COVID-19 related concerns of people with long-term respiratory conditions: a qualitative study. BMC Pulmonary Medicine 2020; 20: 319. doi:10.1186/ s12890.020.01363-9.
- [75] Harrell CR, Sadikot R, Pascual J, et al. Mesenchymal stem cell-based therapy of inflammatory lung diseases: Current understanding and future perspectives. Stem Cells Int 2019; 2019: 4236973. doi:10.1155/2019/4236973.
- [76] Kakabadze Z, Kipshidze N, Paresishvili T, Kipshidze N, Vadachkoria Z, Chakhunasvili D. Human placental mesenchymal stem cells for the treatment of ARDS in rat. Stem Cells Int 2022; 2022: 8418509. doi:10.1155/2022/8418509.
- [77] Chen K, Kolls JK. Innate lymphoid cells and acute respiratory distress syndrome. Am J Respir Crit Care Med 2016; 193: 350-2. doi:10.1164/rccm.201.510.2101ED.
- [78] Hezam K, Wang C, Fu E, et al. Superior protective effects of PGE2 priming mesenchymal stem cells against LPSinduced acute lung injury (ALI) through macrophage immunomodulation. Stem Cell Research & Therapy 2023; 14: 48. doi:10.1186/s13287.023.03277-9.
- [79] Kim SY, Joglekar MV, Hardikar AA, et al. Placenta stem/ stromal cell-derived extracellular vesicles for potential use in lung repair. Proteomics 2019; 19: e1800166. doi:10.1002/ pmic.201800166.