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Abstract
We present an image classification algorithm utilising a deep learning convolutional neural network architecture, which
categorises the morphologies of eclipsing binary systems based on their light curves. The algorithm trains the machine
with light curve images generated from the observational data of eclipsing binary stars in contact, detached and semi-
detached morphologies, whose light curves are provided by Kepler, ASAS and CALEB catalogues. The structure of the
architecture is explained, the parameters of the network layers and the resulting metrics are discussed. Our results show
that the algorithm, which is selected among 132 neural network architectures, estimates the morphological classes of an
independent validation dataset, 705 true data, with an accuracy of 92%.
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1 Introduction

Deep learning techniques strengthen their solid ground in
various areas from art to science every day. In the present,
countless machine and deep learning applications let the
researchers achieve faster and more precise results in their
studies, as well as changing daily life. Convolutional neural
networks, a specialised architecture in deep learning algorithms
using neural networks, give an opportunity to use powerful
methods in some processes such as image recognition
and classification. The prototype of these networks, the
neocognitron, was proposed by Fukushima (1980). Lecun
et al. (1998) introduced the convolutional networks and
demonstrated their robust performance in handling variations
in 2D shapes. They also noted the advantages of fast learning
in their handwriting experiment. The improvement in both
hardware and software technology allows taking giant leaps in
the usage and development of convolutional neural networks.
For instance, a famous architecture, AlexNet (Krizhevsky et al.
2012) classified 1.2 million images with an accuracy value
of about 85% in the ImageNet computer vision challenge.
CoAtNet (Dai et al. 2021) also reached 91% accuracy by
improving the model capacity and introducing the hybrid
models.

Eclipsing binary stars are stellar systems showing light
variations in their light curves due to occultations of the
companions light. Their importance arises from being tools for
deriving the crucial stellar parameters precisely, and therefore,
allowing researchers to determine the structure of the stars in
realistic estimations. Guinan (1993) remarked that the analyses
of their light curves enable us to estimate the important
parameters like mass, radius, luminosity, effective temperature
as well as atmospheric properties. These systems appear
in several morphological types, mainly contact, detached,
and semi-detached (Kopal 1955; Bradstreet 2005), which
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are classified based on Roche lobe geometry. While stellar
evolution can drive transitions between these morphological
classes through mass transfer and Roche lobe overflow, the
classification itself is geometric, determined by whether and
how the component stars fill their respective Roche lobes.
Thus, accurate morphological classification is essential for
determining fundamental stellar parameters, understanding
mass transfer processes, and predicting evolutionary outcomes
of binary systems, which constitute a significant fraction of
stellar populations in our galaxy.

Researchers made efforts in detecting, fitting and
classifying the light curves of binary systems using machine and
deep learning algorithms. Wyrzykowski et al. (2003) proposed
an algorithm using artificial neural networks and detected
2580 binary systems in Large Magellanic Cloud based on
the OGLE data (Udalski et al. 1998). Prša et al. (2008)
presented an artificial neural network trained with data points
of 33235 light curve samples of detached eclipsing binaries
for deriving some physical parameters of eclipsing binary stars
selected from several databases. The authors remarked that
the success rate of the algorithm is more than 90% for
OGLE and CALEB data sets, respectively. Kochoska et al.
(2020) evaluated different fitting methods and concluded that
machine learning techniques are useful tools for estimating
the initial parameters of the binaries. The preliminary results
of a systematic classification for the light curve morphologies
of eclipsing binaries from TESS (Ricker et al. 2015) based
on a machine learning technique, were published by Birky
et al. (2020). Ulaş (2020) suggested a deep learning image
classification algorithm for the classification of light curve
morphologies of ASAS-SN eclipsing binaries with an accuracy
value of 92%. Lately, Čokina et al. (2021a) introduced a two-
class (detached and overcontact) classification based on the
491425 synthetic light curve data generated by ELISa software
(Čokina et al. 2021b). The authors accomplished 98% accuracy
with their combined deep learning architecture. Bódi & Hajdu
(2021) applied a machine learning algorithm that utilised locally
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linear embedding to classify the morphologies of OGLE binaries.
Szklenár et al. (2022) classified variable stars, including
eclipsing binaries, based on their visual characteristics, using
a multi-input neural network trained on OGLE-III data. Prsa &
Wrona (2024) developed a neural network, trained on synthetic
light curves, enabling robust and efficient posterior sampling for
modelling thousands of observed EB systems. More recently,
a combined classification scheme (Long Short-Term Memory
and Convolutional Neural Network) that classifies light curves
by making use of both the Roche geometry-based morphology
and the presence of spot-induced light curve modulations was
proposed by Parimucha et al. (2024) and a classification of
over 60,000 eclipsing binaries in the Zwicky Transient Facility
database using machine learning algorithms was made by Healy
et al. (2024).

Applications of the machine learning techniques on the
astrophysical data are in progress and promise novel results in
the area. The potential of the subject motivated us to apply
the method to the classification of eclipsing binary light curves
according to their morphologies. In the following section, we
introduce the details and structure of the light curve data used
in the study. Sec. 3 deals with the details of our code and the
architecture of the convolutional neural network. The results
are discussed and the concluding remarks are given in the last
section.

2 Light Curve Data

The algorithm needs light curve images corresponding to
certain morphological classes of binary stars to train the
machine and perform the classification. Therefore, we collected
real light curve data to construct light curve images of eclipsing
binary stars. The data for eclipsing binary stars with known
morphological types are provided from three main data sources
in this study: Kepler Eclipsing Binary Catalog (Kirk et al.
2016), All Sky Automated Survey (ASAS, Pojmanski 1997)
and Catalog and Atlas of Eclipsing Binaries (CALEB, former
EBOLA, Bradstreet et al. 2004).

Kepler light curves were accessed through the Kepler
Eclipsing Binary Catalog (Kirk et al. 2016). The authors
catalogued some basic properties of 2920 binary systems
and indicated a parameter for their morphological classes.
The catalog provides light curves consisting of long cadence
Kepler observations processed by the Kepler Science Operations
Center pipeline (Jenkins et al. 2010). It applies advanced
systematic error correction using Cotrending Basis Vectors
(CBVs) and provides PDCSAP (Pre-search Data Conditioning
Simple Aperture Photometry) fluxes that are detrended by
using the common features in the CBVs. We made use of
these PDCSAP light curves in the classification of Kepler
data. The parameter c, introduced by Matijevič et al. (2012)
using the locally linear embedding method, is a classification
criterion for contact (0.7<c<0.8), detached (c <0.5) and semi-
detached (0.5<c<0.7) binary systems. We note that Kepler
systems with c≥0.8 are predominantly ellipsoidal variables or
uncertain types that typically show only ellipsoidal modulation
without clear eclipse features. Since our deep learning algorithm
requires well-defined eclipse features for accurate morphological
classification, we excluded all Kepler systems with c≥0.8 from
our analysis. For consistency across all three databases, we
adopt the term ’contact’ throughout this work, noting that
it corresponds to systems with 0.7<c<0.8 in the Kepler
classification scheme, and to contact binaries as defined in

the ASAS and CALEB catalogs. We eventually collected 1913
binary systems (239 contact, 1253 detached and 421 semi-
detached) with corresponding c parameters. To construct the
light curve images, the orbital phase and detrended flux values
were used as provided in the catalog. No additional processing,
such as further detrending or outlier removal, was applied to
these preprocessed data in our analysis.

ASAS (Pojmanski 1997) variable star database was also
used to gather light curve data and morphological classes of
the eclipsing binary stars. The variability class of the targets in
the catalogue were determined by Pojmanski (2002) using an
approach based on multidimensional parametric space as well
as an extended method using certain Fourier coefficients. We
were able to collect data and morphological classes of 5907
binary systems through the database query service (ASAS).
The phases for the light curves were calculated by adopting
the times of minimum and orbital period values from the ACVS
(ASAS Catalog of Variable Stars) list given by the author. The
magnitudes were also converted to normalised fluxes by deriving
the maximum magnitudes for the corresponding light curves for
the systems.

The CALEB data were achieved via the catalogue’s web
page. The author catalogued light curves and observational
properties of 305 individual stars with their morphological
classes. Since the catalogue contains light curves in several
filters for many stars, the actual number of data exceeds the
above-mentioned value. 1632 light curves from the database
were included in our study. The light curve images were
constructed by using the orbital phase and flux values given
by the catalogue.

The 256×256 pixel light curve images were generated
by plotting the data in the 0.25-1.25 phase interval, where
phase 0.0 corresponds to the primary minimum. For Kepler
and CALEB targets, the phase values were taken directly
from the respective databases, while for ASAS binaries, they
were calculated using the corresponding times of minima, as
previously described. The total number of data decreased after
eliminating the light curves which (1) show very large scatter
that obscured the eclipse features (assessed visually rather than
using a fixed quantitative criterion due to the heterogeneous
nature of the data sources), (2) have very few data points to
adequately sample the orbital phase and (3) do not resemble
the light curve of an eclipsing binary system. This visual
inspection approach was necessary because the three databases
have significantly different observational characteristics.

Kepler provides high-precision space-based photometry
with a regular long cadence, while ASAS and CALEB
contain ground-based observations with varying cadences and
photometric precision. A uniform quantitative scatter criterion
would have been inappropriate across such diverse data sources.
The incorrect orbital period values, especially in the ASAS
Catalog, were also responsible for the decrease in the number
of light curves. Additionally, the entire dataset from three
databases was checked by eye to prevent misclassification. The
data in each class was also balanced. Namely, we limit the
number of light curve images in each morphological class to
be equal, thus, it is one-third of the total number of data in
a given database (e.g. 2286 light curves from ASAS contain
762 images from each individual class; contact, detached and
semi-detached).

We randomly chose 657, 2286 and 585 images from the
final datasets of Kepler, ASAS and CALEB, respectively. Note
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Figure 1. Sankey diagram showing the distribution of 3528 light
curve image data in three nodes: morphology, database and type
of the dataset. C, D and SD refer to contact, detached and semi-
detached morphologies, respectively. tr indicates training set, while
val remarks the validation data. See text for details. Diagram created
using SankeyMATIC.

that the 585 CALEB light curves in our final dataset correspond
to some systems observed in different photometric filters. While
this could potentially introduce a bias toward systems with
multi-band coverage, we addressed this concern through our
class balancing procedure. By ensuring equal representation
across morphological classes (contact, detached, and semi-
detached), we prevented any systematic overrepresentation
of individual systems. Moreover, the inclusion of multi-filter
observations serves to enhance the model’s ability to recognize
morphological features that are wavelength-independent,
contributing to more robust classification. Therefore, a total
of 3528 light curves from all databases were selected to use
for image classification. The number of the light curves in the
training set is 2823, while the validation set covers 705 light
curves, about 20% of the whole sample, following the Pareto
principle (Moore 1897; Juran & Godfrey 1999).

It should be noted that we employed a two-way data
split (training and validation) rather than the three-way split
(training, validation, and test) that is sometimes utilized in
machine learning applications. This methodological choice was
made due to the relatively limited size of our total dataset (3528
images) and the need to maintain a balanced representation
across morphological classes. In our implementation, the
validation set of 705 images serves as an independent test set
for final performance evaluation, as these data were completely
withheld during the training process and were not used for any
model optimization decisions. This approach ensures that our
reported 92% accuracy represents performance on genuinely
unseen data, though we acknowledge that having a separate
test set would provide an additional layer of validation. Fig.
1 is a Sankey diagram showing the relation among the

Figure 2. Selected images from the training set generated by using
the light curve data of KIC 12458133 (a), ASAS 065227-5524.6 (b),
V572 Cen (c), KIC 06545018 (d), ASAS 075602-4454.8 (e), QX Car
(f), KIC 03954798 (g), ASAS 101553-6012.9 (h) and TZ Lyr from
three different databases. C, D and SD refer to contact, detached
and semi-detached morphologies, respectively. Figure created using
gnuplot.

morphologies, databases and datasets based on the number of
light curves. Nine samples of data with different morphologies
in the training set from three databases are illustrated in Fig.
2.

We acknowledge that the three data sources also exhibit
significantly different observational characteristics in terms
of cadence, precision, and sampling patterns. To address
these, we applied consistent preprocessing: using phase-folded
light curves, plotting them in the 0.25-1.25 phase range,
normalizing fluxes and filtering out unsuitable light curves.
We then converted all data into the same size (256×256
pixel) images to create a uniform visual representation.
Rather than applying aggressive harmonization techniques
like rebinning or smoothing, which may risk altering genuine
astrophysical features, we relied on the CNN’s capacity to learn
robust patterns from these images, aided by Gaussian blur
during augmentation to handle dataset-specific noise. While
differences between datasets may still influence results, our
model’s 92% accuracy across a mixed validation set suggests
it has learned features resilient to these variations.

3 Architecture of the Neural Network

A Python (Van Rossum & Drake 2009) code (ebclass) was
written to set a deep learning neural network algorithm and thus
train the machine to classify the light curve images generated
from the light curve data. The code proceeds with seed fixing
for NumPy, Python and TensorFlow to avoid randomness and
make the results reproducible, and yet randomness that may
arise from the calculations on the GPU still remains. It must
be noted that when running the code on a GPU, randomness
may alter the results slightly from one run to another due to
the parallel operations, as remarked by the Keras team. The
problem can be solved by conducting the calculations on a
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CPU, however, neural networks are computationally expensive,
and it takes an extremely long time to achieve the results on a
CPU.

The light curve image data in three folders (C: contact,
D: detached and SD: semi-detached) were indicated in the
code and the total number of data files inside those directories
was commanded to display on the output. The sizes of input
images were also defined. We applied data augmentation by
adding a random Gaussian blur to images in the training
dataset. Augmentation enriches information about data by
applying certain operations to a given dataset, and it helps
prevent overfitting (Shorten & Khoshgoftaar 2019). As some
augmentation methods (e.g. flip and rotation) may cause
changes in the shape of the light curve, we avoided employing
further augmentation to our data. Training and validation
directories were defined to direct the algorithm to the targeted
data, which was intended to be dealt with. The data generation
process resizes the images to 128×128 pixels to save on
computing time and converts to greyscale since the colour
is not a distinctive feature for our data. In data generation,
class_mode argument was categorical which defines 2D
one-hot encoded labels that contain one hot (1) among all
other cold (0) values (Harris & Harris 2007).

The backbone of the algorithm is the sequential model,
a stack of layers, which includes several hyperparameters
forming the convolutional neural network architecture, which
consists of convolutional, pooling, fully connected and output
layers. Convolutional layers use kernels with the size of (3, 3),
referring to the size of the convolutional window (Chollet et al.
2015). Rectified Linear Unit (ReLU) function, f(x)=max(0, x),
was selected as the activation function for the layers, which
assigns 0 for the values smaller than zero and returns the
input value for non-negative inputs (Goodfellow et al. 2016).
The training is done by using the stochastic gradient descent
algorithm (Ruder 2016) to achieve the converged result and
then ReLU provides relatively more effortless optimisation and
calculation since it is a piece-wise linear function consisting of
two linear segments. The convolution operation was done by
applying a L2 regularisation penalty (Cortes et al. 2009). The
regularisation term is

λ

N∑
i=1

ω2
i (1)

where λ (=0.001 in our case), ω and N are the regularisation
parameters, weight and the number of features, respectively.
The term adds the squared weights to the loss function
and controls the weights to be relatively small values,
thus, preventing the model from overfitting and structural
complexity. The padding hyperparameter was adjusted to
same, which guarantees that the feature map is the same size
as the input (Chollet et al. 2015). The stride value was left
default, (1, 1), which corresponds to the filter moves one pixel
at a time. We also applied max pooling operation (Christlein
et al. 2019) with a pool size of (2, 2) between convolutional
layers. It basically downsamples the input data by taking the
maximum values within the pool size. The pooling also helps
avoid overfitting and lowers the computation time. The above
processes lead to the feature extraction and the next stage,
the flattening operation, is necessary to convert the 3D tensor
output from the final convolutional layer into a 1D vector
required as input for the dense layers (Basha et al. 2020).

Flattening converts the data into a 1-dimensional array, the
shape which is mandatory to make the algorithm be able to
perform the classification. A Dropout layer with a rate of 0.5
follows the flattening, which avoids the model from overfitting,
as mentioned by Srivastava et al. (2014). The last steps of
the convolutional neural network include fully connected layers
where the classification takes place. All the input neurons are
connected to the neurons in the present layer at this stage
(Géron 2017), therefore, the dimensionality of the first dense
layer is equal to the filter number of the last convolutional
layer. The dimension was set to 3 in the output layer of
the network since we have three classes (contact, detached
and semi-detached). Probabilistic distribution was determined
using the softmax activation function as it is appropriate for
multiclass classifications using the categorical cross-entropy
loss function, which is

L = −
n∑
i=1

p(xi) loge(q(xi)) (2)

given by Zhou et al. (2021), where p(xi) and q(xi) denote
real and predicted distributions, and n is the number of
classes. Our architecture consists of 7 trainable layers (5
convolutional and 2 dense layers) and 7 non-trainable layers
(5 max pooling, 1 flatten, and 1 dropout layer). Note that
these numbers are specific to our architecture and would vary
with different network designs. The Adam algorithm (Kingma
& Ba 2015) was chosen as the optimiser, which uses the
stochastic gradient descent method. Adam is appropriate for
multiclass problems and can be adjusted with the learning rate
hyperparameter. Learning rate is basically referring to the step
size (Murphy 2012) in the convergence of the learning process.
Tuning this parameter plays an important role in obtaining
reliable results during calculations. Large values can result in
straying from convergence, while small values may extend the
training time. We control the learning process by monitoring
the validation loss through EarlyStopping callback, which
is known to boost the performance of algorithms (Yao et al.
2007). The arguments of early stopping were arranged to stop
training when no decrement in validation loss is observed in
20 consecutive epochs, and therefore, training was prevented
from overfitting. Another callback, ModelCheckpoint, was
also included in the code to save the best model having the
maximum validation accuracy in a model file. We compiled our
model using cross-entropy loss, as mentioned before, based on
accuracy evaluation. The final operation, fitting the model, was
done by specifying the number of training samples per iteration
(batch_size=32), generators, and the callbacks mentioned
above. Additionally, in our code, we stored the number of filters
in convolutional layers and learning rate values in variables (l1,
l2, l3, l4 and lrate) to be able to test various architectures
quicker, only by changing the set of variables.

The aim of the neural network is to minimise the cross-
entropy type loss function and reach the maximum accuracy
value. Accuracy is a measure of how model predictions are
close to the true labels in all classes, while loss, a cost function,
is an indicator of the correctness of the predictions (Sammut
& Webb 2017). Specifically, in zero-one loss, 0 and 1 refer to
correct and incorrect classifications, respectively. To achieve the
best result based on the corresponding values, we employ a total
of 132 different convolutional neural network architectures (Fig.
3) with three different learning rate values (10−3, 10−4, 10−5)
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Figure 3. Schematic representation of 44 different architectures with
their filter numbers which are employed with three specific learning
rate values (10−3, 10−4, 10−5) separately, and correspond to 132
different networks.

which were run using NVidia T4 GPU accelerator provided by
Kaggle platform. Although the higher accuracy values were
reached in some other architectures, the optimum result was
achieved in the network of 5 convolutional layers having 32, 32,
64, 128, 256 filters, respectively (see §4). The final accuracy
and loss values for the models with validation accuracies larger
than 0.9 are represented in Fig. 4. Models with the learning
rate value of 10−3 are not included in the figure, since their
validation accuracy never exceeded 0.9.

4 Results and Conclusion

An accuracy of 92% was achieved in architecture with 5
convolutional layers having 32, 32, 64,128 and 256 filters.
The learning rate was 10−4, and it takes 142 epochs for the
architecture to achieve the result, whose training loss (0.233) is
slightly lower than the validation loss (0.257), and the training
and validation accuracies (0.937 and 0.936) are close. Thus,
the model can be considered prevented from overfitting and
underfitting compared to other models shown in Fig. 4. A
visualisation of the final architecture is shown in Fig. 5. The
learning curves, accuracy and loss values for both training and
validation versus epoch, are plotted in Fig. 6. The trends of the
curves imply a typical good fit. The Keras model file containing
the final architecture is provided through a GitHub repository.

A plot of the confusion matrix (Fig. 7) for the validation
dataset reveals the details of the classification result. 217 of
contact, 228 of detached and 201 of semi-detached systems
out of a total of 705 were correctly classified. The maximum
misclassification was seen in semi-detached binaries; 22 of
them are classified as detached systems. Selected light curves
among the best and the worst classified data for each of the
morphological classes are given in Fig. 8. True positive (TP),
true negative (TN), false positive (FP) and false negative (FN)
values calculated based on the confusion matrix are listed in
Table 1.

Our training data combines morphological classifications

Table 1. True positive (TP), true negative (TN), false positive (FP)
and false negative (FN) values of classification for validation dataset
covering 705 light curves.

TP TN FP FN

C 217 458 12 18
D 228 448 22 7
SD 201 445 25 34

Table 2. Classification report. C, D and SD refer to contact, detached
and semi-detached systems, respectively.

Precision Recall F1 score number of data

C 0.948 0.923 0.935 235
D 0.912 0.970 0.940 235
SD 0.889 0.855 0.872 235

Average 0.916 0.916 0.916 705

derived from different methodological approaches. The
Kepler dataset uses the morphology parameter (c), ASAS
classifications are based on Fourier coefficient analysis and the
classes of CALEB database appear to be based on detailed
individual analyses. This heterogeneity in classification methods
could potentially introduce inconsistencies in our training
labels. However, we suggest that our deep learning approach
may benefit from this diversity in several ways. First, by
training on data classified through different methods, our
model may learn more robust and generalized morphological
features. Second, the model’s 92% accuracy on this diverse
validation set indicates that it has successfully captured the
core characteristics of light curves that are consistent across
various classification schemes. Nevertheless, we recognize that
future work should investigate the impact of this heterogeneity
more systematically, perhaps by training separate models
on each dataset. Such analysis would help quantify any
systematic biases and could inform strategies for harmonizing
morphological classifications across different surveys.

The classification report, indicating metrics for the
classification of the validation dataset, is shown in Table 2.
Precision is the ratio of true positives to the total number
of true and false positives (TP/(TP+FP)), a measure of
how trustworthy the model is in predicting positive samples
(Ting 2010). Recall is defined as the ratio of the number of
correctly classified positives to the total number of positives,
TP/(TP+FN), and it focuses on positive samples. F1 score
is the harmonic mean of precision and recall. In addition
to these metrics, the subset accuracy of the classification,
calculated using accuracy_score function of scikitlearn
library (Pedregosa et al. 2011), is 92%. This is simply
the percentage of correctly classified samples (Tsoumakas &
Vlahavas 2007):

1
|D|

|D|∑
i=1

I(Zi = Yi) (3)

where Yi and Zi are actual and predicted labels, while |D| is
the number of multilabel examples and I takes the value of 0
or 1 for false or true statements, respectively.

An important astrophysical consideration in our
classification results is the O’Connell effect, where stellar
spots or other surface inhomogeneities cause unequal heights

TJAA Vol. 6, Issue1, p.18–27 (2025).

https://www.kaggle.com
https://github.com/burakulas/ebclass


Deep Learning Classification for Binaries 23

0.91

0.92

0.93

0.94

0.95

1
6

 : 1
6

 : 3
2

 : 3
2

1
6

 : 1
6

 : 3
2

 : 6
4

1
6

 : 3
2

 : 3
2

 : 6
4

1
6

 : 3
2

 : 6
4

 : 6
4

1
6

 : 3
2

 : 6
4

 : 1
2

8

3
2

 : 3
2

 : 6
4

 : 6
4

3
2

 : 3
2

 : 6
4

 : 1
2

8

3
2

 : 6
4

 : 6
4

 : 1
2

8

3
2

 : 6
4

 : 1
2

8
 : 1

2
8

3
2

 : 6
4

 : 1
2

8
 : 2

5
6

6
4

 : 6
4

 : 1
2

8
 : 1

2
8

6
4

 : 6
4

 : 1
2

8
 : 2

5
6

6
4

 : 1
2

8
 : 1

2
8

 : 2
5

6

6
4

 : 1
2

8
 : 2

5
6

 : 2
5

6

1
2

8
 : 1

2
8

 : 2
5

6
 : 2

5
6

[a]

A
c
c
u

ra
c
y

0.1

0.2

0.3

0.4

1
6

 : 1
6

 : 3
2

 : 3
2

1
6

 : 1
6

 : 3
2

 : 6
4

1
6

 : 3
2

 : 3
2

 : 6
4

1
6

 : 3
2

 : 6
4

 : 6
4

1
6

 : 3
2

 : 6
4

 : 1
2

8

3
2

 : 3
2

 : 6
4

 : 6
4

3
2

 : 3
2

 : 6
4

 : 1
2

8

3
2

 : 6
4

 : 6
4

 : 1
2

8

3
2

 : 6
4

 : 1
2

8
 : 1

2
8

3
2

 : 6
4

 : 1
2

8
 : 2

5
6

6
4

 : 6
4

 : 1
2

8
 : 1

2
8

6
4

 : 6
4

 : 1
2

8
 : 2

5
6

6
4

 : 1
2

8
 : 1

2
8

 : 2
5

6

6
4

 : 1
2

8
 : 2

5
6

 : 2
5

6

1
2

8
 : 1

2
8

 : 2
5

6
 : 2

5
6

[c]

L
o

s
s

Filter order

1
6

 : 1
6

 : 3
2

 : 3
2

 : 6
4

1
6

 : 1
6

 : 3
2

 : 6
4

 : 6
4

1
6

 : 1
6

 : 3
2

 : 6
4

 : 1
2

8

1
6

 : 3
2

 : 3
2

 : 6
4

 : 6
4

1
6

 : 3
2

 : 3
2

 : 6
4

 : 1
2

8

1
6

 : 3
2

 : 6
4

 : 6
4

 : 1
2

8

1
6

 : 3
2

 : 6
4

 : 1
2

8
 : 1

2
8

1
6

 : 3
2

 : 6
4

 : 1
2

8
 : 2

5
6

3
2

 : 3
2

 : 6
4

 : 6
4

 : 1
2

8

3
2

 : 3
2

 : 6
4

 : 1
2

8
 : 1

2
8

3
2

 : 3
2

 : 6
4

 : 1
2

8
 : 2

5
6

3
2

 : 6
4

 : 6
4

 : 1
2

8
 : 1

2
8

3
2

 : 6
4

 : 6
4

 : 1
2

8
 : 2

5
6

3
2

 : 6
4

 : 1
2

8
 : 1

2
8

 : 2
5

6

3
2

 : 6
4

 : 1
2

8
 : 2

5
6

 : 2
5

6

6
4

 : 6
4

 : 1
2

8
 : 1

2
8

 : 2
5

6

6
4

 : 6
4

 : 1
2

8
 : 2

5
6

 : 2
5

6

6
4

 : 1
2

8
 : 1

2
8

 : 2
5

6
 : 2

5
6

[b]

 

1
6

 : 1
6

 : 3
2

 : 3
2

 : 6
4

1
6

 : 1
6

 : 3
2

 : 6
4

 : 6
4

1
6

 : 1
6

 : 3
2

 : 6
4

 : 1
2

8

1
6

 : 3
2

 : 3
2

 : 6
4

 : 6
4

1
6

 : 3
2

 : 3
2

 : 6
4

 : 1
2

8

1
6

 : 3
2

 : 6
4

 : 6
4

 : 1
2

8

1
6

 : 3
2

 : 6
4

 : 1
2

8
 : 1

2
8

1
6

 : 3
2

 : 6
4

 : 1
2

8
 : 2

5
6

3
2

 : 3
2

 : 6
4

 : 6
4

 : 1
2

8

3
2

 : 3
2

 : 6
4

 : 1
2

8
 : 1

2
8

3
2

 : 3
2

 : 6
4

 : 1
2

8
 : 2

5
6

3
2

 : 6
4

 : 6
4

 : 1
2

8
 : 1

2
8

3
2

 : 6
4

 : 6
4

 : 1
2

8
 : 2

5
6

3
2

 : 6
4

 : 1
2

8
 : 1

2
8

 : 2
5

6

3
2

 : 6
4

 : 1
2

8
 : 2

5
6

 : 2
5

6

6
4

 : 6
4

 : 1
2

8
 : 1

2
8

 : 2
5

6

6
4

 : 6
4

 : 1
2

8
 : 2

5
6

 : 2
5

6

6
4

 : 1
2

8
 : 1

2
8

 : 2
5

6
 : 2

5
6

[d]

 

Figure 4. Final Accuracy (a and b) and Loss (c and d) values for different architectures whose validation accuracies are larger than 0.9. Filter
orders refer to the filter numbers of convolutional layers. Blue and light blue refer to the training and validation datasets with the learning rate
value of 10−4. Red and orange bars represent the training and validation results when the learning rate was set to 10−5.

Figure 5. Visualisation of the final neural network architecture.
Orange, red, green, blue and black colours refer to Convolutional,
Max pooling, Flatten, Dropout and Dense layers. Figure created
using visualkeras for Keras/TensorFlow (Gavrikov 2020).
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Figure 6. Learning curves, variation of training (black) and validation
(red) accuracy and loss with epoch.

Figure 7. Confusion matrix for validation dataset (705 images)
as obtained by using metrics module of Scikit-learn (Pedregosa
et al. 2011) based on Keras model file containing the final network
architecture. C, D and SD refer to contact, detached and semi-
detached morphologies, respectively.
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Figure 8. Selection from the best and the worst classified light curves with their estimated morphological classes. The algorithm correctly
classified KIC 10723143 (a), BW Aqr (b) and KIC 06852488 (c) with the probability of 99.9% as contact, detached and semi-detached,
respectively. The semi-detached binaries ASAS 125523-7322.2 (d) and KIC 10191056 (e) were estimated as contact and detached systems with
99.9% probability. KIC 03530668 (e) was also misclassified as 93.1% semi-detached, while its actual class is detached. C, D and SD refer to
contact, detached and semi-detached morphologies, respectively.

of the light curve maxima. The effect can make semi-detached
systems appear more similar to contact binaries, as both
may exhibit asymmetric light curves with unequal maxima.
This effect likely contributes to some of the misclassifications
observed in our confusion matrix (Fig. 7). Notably, 12
semi-detached systems were classified as contact binaries,
and 22 were classified as detached systems. The former
misclassification could be attributed to semi-detached systems
with significant spot activity producing light curves that
resemble the continuous variations seen in contact binaries,
while the latter might occur when spots reduce the apparent
depth of one minimum, making the system appear more
detached. While our CNN model has become somewhat robust
to these variations through exposure to diverse light curves in
the training set, the O’Connell effect remains a fundamental
challenge for morphological classification based solely on light
curve shape. Future improvements to our approach could
include incorporating light curves from multiple photometric
bands to help distinguish wavelength-dependent spot-induced
asymmetries from geometric effects. Training on light curves
from different time intervals to help the model learn to
distinguish transient spot effects from stable morphological
features. The presence of the O’Connell effect underscores the
inherent ambiguity in morphological classification based on
photometry alone and highlights the value of spectroscopic
follow-up for definitive classification of eclipsing binary
systems.

Furthermore, it is worth looking up the filters and
the output of convolutional layers (feature maps) of the
final architecture in terms of how the machine sees and
processes the light curves through the network. As an example,
we demonstrate the feature maps for the light curve of
KIC 03954798 as proceeded along with the filters of the first

and the fourth convolutional layers in Fig. 9 and Fig. 10. For
the human eye, the deeper the layer is, the harder the light
curve perception is.

Besides fixing the seeds in our code for reproducibility,
following the 2.0 version of the reproducibility checklist
for machine learning given by Pineau et al. (2020), we
addressed the details of our model in the previous section. The
algorithm was explained in detail with necessary mathematical
descriptions. The application platform and infrastructure used
were also denoted. The sample size of the data was given,
the number of examples in the training and validation sets
was specified, and the data preparation process was denoted
(§2). The dataset and the code executing the classification
are downloadable. We defined and provided the metrics of
the classification and indicated the classification report, which
refers to the quality of the classification.

The scientific importance of our neural network algorithm
arises from its capacity to provide a means to distinguish
the morphological types of eclipsing binary systems with
high accuracy, only using their light curve images. It is also
significantly faster than other conventional methods performing
the same process, such as workflows that involve testing at
least two morphological models using widely known light curve
analysis software (e.g., PHOEBE (Prša & Zwitter 2005) which
is based on the Wilson-Devinney method (Wilson & Devinney
1971); JKTEBOP (Southworth et al. 2005) based on EBOP of
Popper & Etzel (1981); or ELISa which is written by Čokina
et al. 2021b), and then comparing the results to select the
best fit. The determination of the morphological class is vital
in the analysis of an eclipsing binary light curve in order to yield
physically meaningful results, therefore, our algorithm can be
applied to a light curve image before its analysis to establish a

TJAA Vol. 6, Issue1, p.18–27 (2025).
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Figure 9. 32 (3×3) filters of the first convolutional layer (upper panel) and 32 feature maps of the light curve image of KIC 03954798 as output
from the first convolutional layer with corresponding filters (lower panel). Figure created using Matplotlib (Hunter 2007).

rapid and reliable morphological assumption for the light curve
solution.

When it comes to comparing our results to other studies
using machine learning algorithms related to the morphologies,
our accuracy is found to be close to that of investigations
in the literature. Although they were not to deal with the
morphology alone, the accuracy in the three-layer artificial
neural network by Prša et al. (2008), which focused on detached
morphological classification, was higher than 90%. An image
classification algorithm proposed by Ulaş (2020) was also
reached an accuracy value of 91%. Čokina et al. (2021a)
achieved 98% accuracy through their combined classifier, which
was trained with synthetic light curve data constructed using
ELISa software for detached and overcontact morphologies.
Finally, our results are comparable to the performance reported
by Parimucha et al. (2024), who achieved an accuracy of 94%
based on two classes. We did not run our code using the images
generated from the light curve of the above-mentioned studies,
since a classification owes its resulting accuracy to properly
collected training data as well as the architecture. A complete

change in the training set most probably requires modification
in the network architecture and hyperparameters to achieve the
same accuracy, over 90%.

The accurate information on the classes of training
samples plays a vital role in the quality of the results. Therefore,
in a future study, we plan to improve our algorithm by collecting
light curve images with more accurate information on their
types, namely the light curves of the systems having the
morphological classes determined by analyses through human-
controlled software, since hands-on modelling is the finest
approach as Kochoska et al. (2020) concluded. This is projected
to be done by a detailed survey of the literature for individual
analyses of eclipsing binary light curves. Thuswise, the volume
of training and validation samples, another crucial parameter,
is also aimed to be increased. The increasing volume of
space telescope observations of binary stars provides a growing
pool of potential training data; however, the utility of these
data for machine learning applications depends critically on
accurate morphological classification of each system. Finally,
our code and collected data are public, therefore, it is open

TJAA Vol. 6, Issue1, p.18–27 (2025).
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Figure 10. Same as the lower panel of Fig. 9, but for the fourth convolutional layer with 128 filters. Note that human perception for the light
curve is almost lost.
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to be improved by tuning the hyperparameters or altering the
architecture.
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