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Abstract 

 

This study presents a comprehensive analysis of land use and land cover change within the 

Istanbul Regional Directorate of Forestry (RDF) utilizing semantic segmentation referred to as 

pixel-based classification. Focusing particularly on forest land dynamics, Sentinel-2 satellite 

imagery spanning five years from 2019 to 2023 was processed using a U-Net architecture. The 

study area encompasses diverse forest ecosystems, urban/built-up areas, water bodies, 

rangelands, wetlands, and agricultural lands. Through the application of advanced remote 

sensing techniques, significant changes in forest and rangeland were identified and quantified, 

15.250 and 13.226 hectares of area decreased in five years, shedding light on the drivers and 

implications of land use transformations in this critical region. Controversially, built area and 

agricultural lands were increased by 13.878 and 15.953 hectares over 5 years. The findings 

contribute to a deeper understanding of forest dynamics and inform sustainable management 

strategies for preserving the ecological integrity and socio-economic value of forested 

landscapes within the Istanbul RDF. Additionally, the results reveal the average F1-score for 

each land cover class is approximately 90% for each year, with forested areas achieving an 

average F1-score of about 92%, demonstrating the robustness and accuracy of the classification 

approach. 
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Araştırma Makalesi  

İSTANBUL ORMAN BÖLGE MÜDÜRLÜĞÜ'NDE ORMAN 

ALANLARININ İZLENMESİNDE YENİ YAKLAŞIM: U-NET DERİN 

ÖĞRENME YÖNTEMİNİN ENTEGRASYONU 
Özet 

 

Bu çalışma, İstanbul Orman Bölge Müdürlüğü (OBM) sınırları içerisinde arazi kullanım ve 

örtüsündeki değişimlerin kapsamlı bir analizini sunmakta olup, piksel tabanlı sınıflandırma 

olarak bilinen semantik segmentasyon yöntemi kullanılmıştır. Özellikle orman alanlarındaki 

dinamiklere odaklanılan çalışmada, 2019–2023 yılları arasındaki beş yıllık dönemi kapsayan 

Sentinel-2 uydu görüntüleri U-Net mimarisi ile işlenmiştir. Çalışma alanı; çeşitli orman 

ekosistemlerini, kentsel/yerleşim alanlarını, su kütlelerini, mera alanlarını, sulak alanları ve 

tarım arazilerini içermektedir. Gelişmiş uzaktan algılama tekniklerinin uygulanmasıyla, orman 

ve mera alanlarında sırasıyla 15.250 hektar ve 13.226 hektarlık bir azalma belirlenmiş ve nicel 

olarak ortaya konmuştur. Bu durum, söz konusu bölgede arazi kullanımındaki dönüşümleri 

etkileyen unsurları ve sonuçlarını ortaya koymaktadır. Buna karşılık, yerleşim ve tarım 

alanlarında ise beş yıllık süreçte sırasıyla 13.878 hektar ve 15.953 hektar artış tespit edilmiştir. 

Elde edilen bulgular, orman dinamiklerine ilişkin daha derin bir anlayış kazandırmakta ve 

İstanbul OBM sınırları içerisindeki ormanlık alanların ekolojik bütünlüğünü ve sosyo-

ekonomik değerini korumaya yönelik sürdürülebilir yönetim stratejilerinin geliştirilmesine 

katkı sağlamaktadır. Ayrıca, her bir arazi örtüsü sınıfı için ortalama F1-skorunun her yıl 

yaklaşık %90 düzeyinde olduğu, ormanlık alanlarda ise ortalama F1-skorunun yaklaşık %92 

olarak gerçekleştiği tespit edilmiştir. Bu durum, kullanılan sınıflandırma yönteminin 

sağlamlığını ve doğruluğunu ortaya koymaktadır. 

 

Anahtar kelimeler: Orman amenajmanı, uzaktan algılama, derin öğrenme, İstanbul, U-Net 

 

1. INTRODUCTION  

 

Monitoring land use and land use change is vital for a range of areas, including environmental 

sustainability, urban planning, agricultural management, and natural resource conservation. 

This monitoring helps us understand how natural and human-induced factors alter the 

landscape and aids in developing suitable policies and practices. Remote sensing techniques 

play a critical role in this monitoring process (Jensen & Lulla, 1987). Remote sensing 

platforms, including satellites and aircraft, can identify land use and changes across extensive 

areas. High-resolution imagery can be used to identify different land types and uses. 

"Additionally, changes over time can be identified through multiple image acquisitions and 

time series analyses (Hame, 1986). Remote sensing is valuable for the objective and 

comprehensive data it provides for monitoring land use change. These techniques support the 

monitoring, assessment, and management of land to achieve sustainable land use goals (Green 

et al., 1994). 

 

Türkiye has increasingly recognized the importance of Land Use, Land Use Change, and 

Forestry (LULUCF) regulation as a crucial component of sustainable development and 

environmental conservation efforts in recent decades (Schlamadinger et al., 2007). Within the 

context of LULUCF classification, Türkiye has made significant strides in adopting 

standardized methodologies and classification systems to effectively monitor and manage its 

diverse landscape (Zengin et al., 2013). These efforts involve the integration of remote sensing 
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data, geographic information systems (GIS), and ground-based surveys to delineate and 

classify various land cover types. Understanding Türkiye’s land use and land cover dynamics 

is crucial for assessing environmental changes and informing policies that promote sustainable 

land management, biodiversity conservation, and climate change mitigation strategies (Atalay 

et al., 2014). 

 

The Marmara region in Türkiye experiences continuous land use changes due to urbanization, 

agricultural expansion, and environmental factors (Bozkurt et al., 2023). Monitoring these 

changes is essential for sustainable development and informed decision-making by local 

authorities and policymakers. Traditional methods of land use classification often rely on 

manual interpretation of satellite imagery, which can be time-consuming and subjective. Forest 

land is among the most important, vulnerable, and pressured land classes, crucial for ecological 

balance, biodiversity, and essential ecosystem services (Atmis & Cil, 2013). However, these 

valuable ecosystems face increasing threats from deforestation, land degradation, and climate 

change. Effective forest management and conservation efforts require accurate and timely 

information on forest extent, distribution, and dynamics (Gunşen &  Atmis, 2019). Traditional 

forest mapping and monitoring methods are often labour-intensive, time-consuming, and 

limited in spatial and temporal resolution. Forest ecosystems are globally significant natural 

resources, making their sustainable management and protection crucial.  

 

In the 21st century, sustainable forest management has become increasingly important, and it 

emphasizes the need to continuously monitor the changes caused by natural factors or human 

impacts on forest assets at regional, national, and international levels (Watson et al., 2000). To 

enable international assessments and comparisons, this monitoring should be based on 

inventory information collected according to certain norms and standards. Forest inventory 

does not only mean stand measurements based on sample areas in a small region but also 

includes all the measurement, observation, counting, and evaluation works carried out to 

determine the physical existence of forest areas that can reach thousands of hectares in size. It 

also involves the products and services spontaneously formed within these forests, together 

with factors that play a role in their formation, by using all data sources, including data 

processing and storage methods based on remote sensing technologies and GIS (Jensen &  

Lulla, 1987). 

 

In the context of the Istanbul RDF overseeing extensive forested areas in a dynamic urban 

landscape, the need for efficient and reliable forest mapping and monitoring tools is particularly 

acute. Rapid urbanization, infrastructure development, and land-use change pose significant 

challenges to forest conservation and management efforts in the region (Akyurek et al., 2018). 

Therefore, adopting advanced technologies is essential to enhance forest monitoring and 

management. Remote sensing technologies are particularly valuable for continuous 

monitoring, as traditional methods are costly and time-consuming for extensive areas.  

 

Over recent years, the intersection of remote sensing technologies and artificial intelligence 

has brought about a transformative shift in forest monitoring methodologies. With the advent 

of sophisticated algorithms and advanced image processing techniques, the field has witnessed 

remarkable progress in the accurate and efficient analysis of forest ecosystems (Green et al., 

1994). Semantic segmentation, also known as pixel-based classification, plays a fundamental 

role in remote sensing, similar to traditional image classification methods (Yuan et al., 2021). 

Semantic segmentation assigns labels to each pixel in a raster image, providing an 

understanding of pixel class membership, unlike traditional classification methods such as 

random forest and maximum likelihood classifiers. Semantic segmentation is a critical 
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technique that requires two primary inputs, namely a raster image comprising multiple bands 

and a corresponding label image that contains pixel-level annotations. There are several 

algorithms available for performing semantic segmentation, including U-Net, Mask R-CNN, 

and Feature Pyramid Network. These algorithms have been developed and proven to be 

efficient in the task of semantic segmentation. Among these, U-Net stands out as a prominent 

choice, renowned for its effectiveness in segmenting images (Ronneberger et al., 2015). This 

guide primarily focuses on U-Net because of its wide recognition and similarities to other 

segmentation algorithms, providing comprehensive insights into semantic segmentation in 

remote sensing.  Deep learning algorithms, U-Net architecture, have shown promise in 

automating the process of forest mapping and change detection using satellite imagery 

(Diakogiannis et al., 2020). By leveraging large volumes of high-resolution imagery and 

ground-truth data, these algorithms can accurately delineate forested areas and track changes 

over time with unprecedented speed and accuracy (Xie et al., 2019).   

A study proposed using the U-Net algorithm with Sentinel-2 imagery to monitor land use and 

its changes over five years within the Istanbul RDF. This algorithm is known for its 

effectiveness in image segmentation tasks and offers a promising approach to accurately 

classify various land use categories such as water, forest, snow/ice, pasture/grassland, wetland, 

agriculture, cloud, settlement, and open space. By utilizing high-resolution satellite imagery, 

this study aims to provide detailed and up-to-date information on land cover dynamics in the 

region. 

 

The primary aim of this study is threefold. Firstly, (1) it endeavours to develop an automated 

land use classification system utilizing the U-Net deep learning algorithm. Through the training 

of the model on annotated satellite imagery, the objective is to achieve precise classification of 

various land use categories. Additionally, (2) the study seeks to detect and quantify land use 

changes over time within the boundaries of the Istanbul RDF. Through the analysis of temporal 

variations in land cover, the aim is to discern trends and patterns associated with urban 

expansion, deforestation, agricultural intensification, and other pertinent land use dynamics. 

Finally, (3) the study aims to evaluate the performance of the developed classification model 

using quantitative metrics, including overall accuracy, precision, recall, and F1 score. The 

model's validation will be conducted using ground-truth datasets to assess its proficiency in 

accurately classifying land use categories and detecting changes over time. 

 

2. MATERIALS AND METHODS  

 

2.1 Study Site 

 

The Istanbul RDF encompasses a variety of ecosystems, ranging from forests and water bodies 

to urban areas, which are continuously affected by land use changes due to urbanization, 

agriculture, and environmental factors. The geographical coordinates of the Istanbul RDF are 

26019'48'' and 29057'31'' east longitudes and 40048'38'' and 42006'21'' north latitudes, covering 

an area of approximately two million hectares. The RDF spans six provinces - Istanbul, 

Adapazarı, İzmit, Edirne, Kırklareli, and Tekirdağ - and includes ten forestry operation 

directorates: Bahcekoy, Catalca, Demirkoy, Edirne, Istanbul, Kanlica, Kirklareli, Sile, 

Tekirdag, and Vize. There are no significant mountains within the boundaries of the RDF 

(General Directorate of Forestry 2021) (Figure 1). 
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Figure 1. Geospatial overview of Istanbul RDF and subdivisional boundaries. 

 

2.2. Workflow 

 

The workflow for this study encompassed four key stages aimed at robustly monitoring land 

cover changes within the Istanbul RDF through the integration of U-Net deep learning 

architecture with satellite imagery. Firstly, the process began with data acquisition and 

preprocessing, involving the retrieval of Sentinel-2 satellite imagery covering the study area 

and ground-truth data. These data underwent preprocessing to mitigate noise, correct 

atmospheric effects, and ensure spatial alignment, facilitating subsequent analysis. Labeled 

masks were also generated through an image segmentation platform. Secondly, the U-Net 

architecture and implementation phase focused on implementing the U-Net deep learning 

model, renowned for its efficacy in semantic segmentation tasks. This involved training the 

model with the preprocessed satellite images and corresponding ground-truth data, with further 

optimization and fine-tuning to adapt to the unique characteristics of the study area. 

Postprocessing techniques were then applied to refine the classification results, addressing 

artifacts and enhancing spatial coherence. Lastly, validation and model evaluation formed the 

final stage, where the accuracy of land cover classifications was validated against ground-truth 

data. The model's performance was evaluated using metrics such as precision, recall, and F1-

score for each land cover class. Overall accuracy and reliability were assessed through 

comprehensive validation and evaluation processes, ensuring the integrity and effectiveness of 

the classification model in monitoring land cover changes within the Istanbul RDF. 

 

2.2.1. Data Acquisition and Preprocessing 

 

Sentinel-2 imagery was obtained from the Copernicus Open Access Hub (ESA, 2019) in this 

study. The geographic area of interest was defined using coordinates or by drawing a bounding 

box on the platform's map interface. The imagery was selected for a specific period from the 

beginning of June until the end of September within the 5-year interval from 2019 to 2023. 

Filters were also applied to select scenes with minimal cloud cover to ensure the quality of the 

imagery. A maximum threshold for cloud cover, typically set to 5%, was specified to prioritize 
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images with clear visibility and minimal atmospheric interference. Additional filters, such as 

sensor mode (e.g., MSI Level-1C) and acquisition type (e.g., Level-2A processed data), were 

applied as needed to refine the selection of Sentinel-2 imagery. The selected imagery 

underwent a preview process to visually inspect the scenes for cloud cover and overall clarity. 

Only images meeting the quality criteria were included in the final selection for download and 

analysis.  

 

We acquired the dataset comprising 15,056 images, each with dimensions of 256x256 pixels 

and belonging to 8 classes and we preprocessed the dataset by standardizing the pixel values, 

handling some missing data, and augmenting the dataset if necessary to increase diversity. Data 

acquisition and preprocessing of the Sentinel-2 imagery was firstly conducted by Google Earth 

Engine and secondly manipulated by R 4.2.2 to ensure data consistency and accuracy (R Core 

Team 2013).  

 

The process of creating labelled masks is often meticulous and time-consuming. It entails 

delineating regions within each image that correspond to predefined land cover classes 

(Voelsen et al., 2020). To streamline this task, we utilized the image segmentation platform 

segments.ai. Initially, we converted Sentinel-2 RGB images, obtained from Google Earth 

Engine, into .png format for compatibility with the segmentation platform. Subsequently, 

utilizing the platform, we conducted image segmentation and identified regions to be masked 

for each image within our dataset. Upon labelling the masks, the platform generated a .json file 

containing the URLs for downloading the binary images. This approach facilitated efficient 

and systematic annotation of land cover classes across the imagery dataset. 

 

The preprocessed satellite imagery is divided into training, validation, and test sets. From these 

sets, training patches or tiles are extracted, each containing a portion of the satellite image along 

with its corresponding ground truth labels. To enhance the diversity of the training dataset, data 

augmentation techniques such as rotation, flipping, and scaling are applied. This increases the 

variability of the training samples and improves the robustness of the trained model. Data have 

split the dataset into a training set containing 75% of the images and a validation set containing 

the remaining 25%. This ensures a portion of the data is held out for evaluation during model 

training. The data for each year has been evaluated and processed separately. 

 

2.2.2. U-Net Architecture and Implementation 

 

U-Net, a novel architecture composed of convolutional neural network layers, offers a more 

successful approach to pixel-based image segmentation than classical models, even with a 

limited number of training images. The presentation of this architecture is based on biomedical 

images (Ronneberger et al., 2015). 

 

Conventionally, in a convolutional neural network model, down-sampling operations, such as 

pooling layers employing different approaches like maximum, average, or median pooling are 

applied throughout the model, followed by up-sampling in the latter half of the model 

(Diakogiannis et al., 2020). These layers aim to increase the resolution of the output. For 

localization, high-resolution features sampled throughout the model are combined, and 

subsequent convolutional layers aim to produce a more precise output based on this 

information. U-Net derives its name from its architecture, resembling the letter "U" where input 

images are obtained as segmented output maps in Figure 2. A distinctive aspect of its 

architecture is the absence of fully connected layers; only convolutional layers are utilized, 

with each standard convolution operation being activated by a rectified linear unit (ReLU). To 
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ensure seamless segmentation of images, pixels at the boundary are symmetrically added 

around the image, facilitating complete segmentation.  

 

 
Figure 2. Schematic diagram of U-net convolutional network architecture for image 

segmentation. 

 

To ensure seamless segmentation of images using the U-Net model, pixels are symmetrically 

added around the image perimeter. This strategy expands the segmentation area, enabling the 

model to handle large images without compromising resolution or accuracy due to GPU 

memory limitations. This approach enhances the scalability and applicability of the U-Net 

architecture for various image analysis tasks, such as satellite imagery or medical imaging 

(Farmer et al., 2013). 

 

In this study, we firstly utilized a 3x3 filter with a Smoothed ReLU activation function, 

secondly employed a 2x2 filter with max pooling for size reduction helping to down-sample 

the feature maps, capturing the most important information, thirdly applied a 2x2 filter for 

classification used as the output layer activation function for multi-class classification problems 

and providing probabilities for each class, fourthly, a default stride value of 1 and padding 

value of 0 were used. This configuration ensures that the feature map generated by the 

convolutional layers remains the same size as the input image, and finally, the training process 

was set to run for 50 epochs referring to one complete pass through the entire training dataset 

during the training process. All steps were carried out in R for training the model, with 

TensorFlow as the backend for Keras. 

 

2.2.3. Postprocessing 

 

To apply the trained U-Net model to new remote sensing images for inference and generate 

thematic maps illustrating the distribution of different land cover classes across the study area, 

we first loaded the new images into the model. Through inference, the model predicted land 

cover classes at each pixel, generating probability distributions for each class. Subsequently, 

we refined the segmentation results through post-processing techniques, including the removal 
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of small, isolated regions and smoothing of boundaries using morphological operations and 

filters like Gaussian blur (Maragos & Pessoa, 1999). 

 

Following post-processing, we assigned land cover classes to each pixel based on the highest 

predicted probability obtained from the inference step. Thematic maps were then generated, 

where the pixel-wise predictions were converted into raster format and overlaid onto a base 

map. By interpreting these maps, patterns, trends, and anomalies in land cover distribution were 

identified. Comparison with ground truth data or expert knowledge helped assess the accuracy 

and reliability of the model predictions. Further analysis, such as area statistics calculation or 

spatial queries, was performed to extract meaningful insights and inform decision-making 

processes based on the generated thematic maps. 

 

2.2.4. Validation and Model Evaluation 

 

Initially, the Sentinel-2 imagery was overlaid with the current forest management plan and 

cadastral data to verify the accuracy of land class assignments along the borders of Istanbul 

RDF for each year. This step ensured alignment with existing land management boundaries 

and administrative divisions within the Istanbul RDF. The accuracy of the land use and land 

cover classifications, particularly in forested areas, was mainly assessed by comparing them 

with data from the National Forest Inventory (NFI). This validation step provided a 

comprehensive evaluation of the classification results against ground-truth information 

collected through ground surveys and field measurements. Subsequently, the classification 

outputs were further validated by local experts using high-resolution Google Earth images for 

each year within the 5-year interval (2019-2023). This qualitative assessment enabled the 

identification of any discrepancies or inaccuracies in the classification results, particularly in 

areas where ground conditions may have changed over time.  

 

The NFI has provided us with an essential database for this study in terms of the exact 

identification of forest lands. Briefly, the NFI in Türkiye is typically conducted at 5-year 

intervals to track changes in forest resources over time and inform forest management and 

conservation strategies. The NFI is designed to operate on a 5-year cycle, with permanent 

sample plots covering a total of 825 designated locations (Figure 3). These plots are primarily 

determined based on the prevailing land use patterns validated by NFI experts each year. 

 

The performance evaluation of the proposed method for land cover classification was 

conducted using a range of evaluation metrics, with a focus on the precision and recall 

measured over consecutive years. The accuracy rate, serving as a fundamental metric, gauges 

the classifier's overall correctness in predictions. Precision, another key metric, quantifies the 

accuracy of class predictions, indicating the proportion of correctly predicted instances among 

all instances identified as positive. A high precision value signifies fewer false positives, 

essential for reliable land cover classification (Macleod & Congalton, 1998). 

 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
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Figure 3. Distribution of national forest inventory sample plots across the Istanbul RDF. 

 

 

The F1-score, calculated as the harmonic mean of precision and recall, offers a balanced 

assessment of classifier performance. It is particularly valuable when dealing with imbalanced 

datasets or when both false positives and false negatives are significant.  

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

By analyzing the average F1-score over multiple years, the method's consistency and reliability 

in land cover classification can be thoroughly assessed, enabling effective monitoring of land 

cover changes, and facilitating comparisons with alternative classification techniques. 

 

 

3. RESULTS AND DISCUSSION  

 

3.1 Results 

 

The application of the U-Net algorithm to satellite imagery enables accurate segmentation of 

land use categories within the Istanbul RDF. By analyzing temporal changes in land cover over 

5 years, we could make inferences about trends and patterns associated with urban expansion, 

deforestation, agricultural intensification, and other land use dynamics. Quantitative metrics 

such as precision, recall, and F1-score are computed to assess the performance of the 

classification model and validate the consistency of the results. The class maps generated 

through the land cover classification process provided detailed insights into the spatial 

distribution of various land cover classes within the study area. Each land cover class, including 

water, forest, wetland, agricultural land, built-up areas, bare ground, snow/ice, clouds, and 

rangeland, was accurately delineated and visualized on the maps. 
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The analysis of land use changes from 2019 to 2023 encompasses both spatial mapping (Figure 

4.) and quantitative assessment (Table 1.) for precision and recall metrics were assessed across 

various land cover classes.  

 

 
Figure 4. Thematic land cover map of the Istanbul RDF, 2019 to 2023. 

 

These maps serve as valuable tools for identifying changes in land cover patterns, such as 

deforestation, urban expansion, or agricultural encroachment, over the specified period. 

Additionally, numerical analysis techniques are employed to quantify the extent and magnitude 

of land use changes, providing statistical insights into the rates of change and the relative 

contributions of different land use categories to overall landscape dynamics. By integrating 

both map-wise and numerical approaches, a comprehensive understanding of land use changes 

from 2019 to 2023 is achieved, facilitating informed decision-making and land management 

strategies within the study area. 
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Table 1. Annual land cover classification accuracy and F1-scores from 2019 to 2023 

Year Classes Area (ha) Precision  Recall F1-Score Overall F1-Score 

2019 

Water 23,76 0.83 0.98 89.9 

91.54 

Forest 599,31 0.93 0.94 93.5 

Wetland 350,00 0.62 0.68 64.9 

Agricultural 1,192,377 0.91 0.9 90.5 

Built Area 194,61 0.96 0.79 86.7 

Bare Ground 11,02 0.84 0.87 85.5 

Snow/Ice 1,00 0.96 0.97 96.5 

Clouds 12,00 0.98 0.96 97.0 

Rangeland 177,25 0.74 0.55 63.1 

2020 

Water 27,48 0.85 0.91 87.9 

92.21 

Forest 603,17 0.91 0.95 93.0 

Wetland 364,00 0.58 0.62 59.9 

Agricultural 1,192,674 0.88 0.91 89.5 

Built Area 198,71 0.97 0.8 87.7 

Bare Ground 12,04 0.78 0.88 82.7 

Snow/Ice 1,00 0.99 0.97 98.0 

Clouds 42,00 0.97 0.95 96.0 

Rangeland 164,20 0.89 0.56 68.7 

2021 

Water 26,34 0.86 0.92 88.9 

89.47 

Forest 603,72 0.92 0.89 90.5 

Wetland 300,00 0.48 0.66 55.6 

Agricultural 1,190,590 0.9 0.88 89.0 

Built Area 203,40 0.89 0.79 83.7 

Bare Ground 10,59 0.59 0.77 66.8 

Snow/Ice 2,00 0.98 0.98 98.0 

Clouds 16,00 0.96 0.95 95.5 

Rangeland 163,73 0.89 0.59 71.0 

2022 

Water 22,30 0.84 0.96 89.6 

92.89 

Forest 575,28 0.93 0.91 92.0 

Wetland 214,00 0.68 0.72 69.9 

Agricultural 1,197,516 0.92 0.9 91.0 

Built Area 207,72 0.94 0.89 91.4 

Bare Ground 10,09 0.68 0.81 73.9 

Snow/Ice 1,00 0.97 0.96 96.5 

Clouds 11,00 0.96 0.97 96.5 

Rangeland 185,54 0.82 0.51 62.9 

2023 

Water 25,23 0.91 0.94 92.5 

90.36 

Forest 584,06 0.88 0.92 90.0 

Wetland 261,00 0.58 0.67 62.2 

Agricultural 1,208,330 0.89 0.92 90.5 

Built Area 208,49 0.95 0.81 87.4 

Bare Ground 8,27 0.66 0.83 73.5 

Snow/Ice 1,00 0.96 0.94 95.0 

Clouds 15,00 0.92 0.94 93.0 

Rangeland 164,03 0.78 0.48 59.4 

 

 In 2019, the precision scores ranged from 0.62 to 0.98, while recall scores varied between 0.55 

and 0.98 in Table 1. The highest precision score of 0.98 was achieved for the agricultural class, 

indicating a high proportion of correctly predicted positive instances among all instances 

predicted as positive on a proportional basis in terms of the area it covers. Conversely, the 

rangeland class exhibited the lowest recall score of 0.55, suggesting that the model missed a 

considerable proportion of actual positive instances within this land cover category. It is 

noteworthy that the overall F1-score, calculated as the harmonic mean of precision and recall, 

attained a commendable value of 91.54%.  The precision score for the forest class is at an 

impressive 0.93, indicating a high level of accuracy in correctly identifying forested areas 
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among all instances predicted as positive. Similarly, the recall score for the forest class is 

notably high at 0.94, signifying the model's effectiveness in capturing the most actual forested 

areas within the study region. 

 

In 2020, precision scores ranged from 0.58 to 0.99, while recall scores varied between 0.56 and 

0.95. The forest class attained the highest precision score of 0.91, indicating a high proportion 

of correctly predicted positive instances among all instances predicted as positive. Conversely, 

the wetland class exhibited the lowest precision score of 0.58, suggesting potential 

misclassification of non-wetland areas as wetlands. Notably, the forest class demonstrated 

exceptional performance with a recall score of 0.95, indicating the model's effectiveness in 

capturing most actual forested areas within the study region. Overall, the classification model 

achieved an impressive F1-score of 92.21%, highlighting its accuracy and reliability in 

delineating land cover classes for the year 2020. 

 

In 2021, precision scores spanned from 0.48 to 0.98, with recall scores ranging between 0.59 

and 0.92. The agricultural class notably achieved the highest precision score of 0.92, indicating 

a significant proportion of accurately predicted positive instances relative to its area coverage. 

Conversely, the wetland class yielded the lowest precision score of 0.48. Interestingly, the 

forest class displayed a slightly diminished recall score of 0.89 compared to previous 

assessments, suggesting a minor decline in the model's capability to identify all genuine 

forested areas within the study vicinity. Overall, the classification model garnered an F1-score 

of 89.47%, underscoring its efficacy in delineating land cover classes for the year 2021. 

 

In 2022, precision scores ranged from 0.68 to 0.97, while recall scores varied between 0.51 and 

0.9. The highest precision score of 0.97 was achieved for the built area class, signifying a 

notable accuracy in correctly identifying built areas among all instances predicted as positive, 

especially considering the considerable area it covers. Specifically, the forest class 

demonstrated a precision score of 0.93 and a recall score of 0.91, underscoring the model's 

capability in accurately delineating forested areas. Overall, the classification model attained an 

impressive F1-score of 92.89%, indicative of its robust performance in delineating land cover 

classes for the year 2022.  

 

In 2023, precision scores ranged from 0.58 to 0.96, while recall scores varied between 0.48 and 

0.94. Particularly, the water class achieved the highest precision score of 0.91, indicating a high 

proportion of correctly predicted positive instances among all instances predicted as positive. 

In terms of recall, the built area class demonstrated the highest score of 0.81, indicating the 

model's effectiveness in capturing many actual built-up areas within the study region. 

Additionally, the forest class exhibited respectable precision and recall scores of 0.88 and 0.92, 

respectively, underscoring the model's accuracy in identifying forested areas. The overall F1- 

score for the classification model in 2023 was 92.89%, reflecting its robust performance in 

delineating land cover classes.  

 

Over the 5 years under study, notable changes in land cover dynamics were observed, 

particularly concerning forest, rangeland, agricultural, and built-up areas. The analysis revealed 

a decrease of approximately 16 ha. in forested areas and a corresponding decline of 

approximately 14 ha. in rangeland areas. In contrast, agricultural and built-up areas experienced 

an increase of approximately 16 and 14 ha., respectively. These findings underscore the 

dynamic nature of land cover changes within the study area and highlight the ongoing 

urbanization and agricultural expansion trends. The observed decrease in forest and rangeland 

areas signals potential environmental concerns, such as habitat loss and ecosystem degradation, 
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while the expansion of agricultural and built-up areas reflects the growing human footprint and 

land use intensification.  

 

In a Sentinel-2 satellite image of 2023 in Figure 5, a detailed comparison will be conducted 

with the finer scale prediction results obtained from 2019 to 2023 years within the same area. 

This comparative analysis aims to elucidate any discrepancies or classification challenges 

encountered in the land cover classification process. Notable emphasis will be placed on 

identifying areas where the classification model exhibits inconsistencies or inaccuracies in 

predicting specific land cover classes. It is observed that rangeland areas often exhibit 

characteristics that may lead to misclassification, appearing as buffer or transition zones 

between forested and agricultural areas. However, upon closer validation, it becomes evident 

that these transitions are not gradual but rather abrupt. This discrepancy highlights a significant 

classification problem wherein rangeland areas are inaccurately represented within the 

classification model. Such misclassifications can distort the understanding of land cover 

dynamics and hinder effective land management strategies. Thus, addressing this issue is 

imperative for enhancing the accuracy and reliability of land cover classification techniques 

within the study area. This observation underscores the importance of rigorous validation 

procedures and continual refinement of classification methodologies to ensure an accurate 

depiction of land cover types and transitions.  

  

 
Figure 5. Comparative analysis of land cover classifications from 2019 to 2023 in the Istanbul 

RDF, with a specific focus on the highlighted area of interest (red boundary). Within 

highlighted area, built-up land expanded by approximately 7% between 2019 and 2023, while 

forested regions decreased by about 3%, and rangeland exhibited variable annual fluctuations. 

For this reason, despite rangeland accuracy yielding the highest precision, it consistently 

registers the lowest accuracy rates. This discrepancy underscores the complexity and 

challenges associated with accurately classifying rangeland areas within the land cover 

classification model. The observed discrepancy between precision and accuracy highlights the 
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inherent difficulty in precisely delineating rangeland boundaries and distinguishing them from 

adjacent land cover types. Such challenges may arise due to the heterogeneous nature of 

rangeland landscapes, characterized by diverse vegetation types and land use practices. 

Additionally, the abrupt transitions between rangeland, forested, and agricultural areas further 

compound classification difficulties. Consequently, despite achieving high precision, the 

classification model struggles to accurately capture the true extent and distribution of rangeland 

areas, resulting in lower overall accuracy rates. Addressing this inconsistency requires a 

concerted effort to refine classification methodologies, incorporate additional contextual 

information, and improve validation procedures to enhance the accuracy of rangeland 

classification within the study area. 

 

3.2 Discussion 

 

The comprehensive analysis of land cover classification results spanning from 2019 to 2023 

sheds light on the efficacy and challenges associated with remote sensing techniques and the 

U-Net algorithm, particularly in the context of the Istanbul RDF. Precision and recall metrics 

were utilized to evaluate the performance of the classification model across various land cover 

classes, including water bodies, forests, wetlands, agricultural areas, built-up areas, bare 

ground, snow/ice, clouds, and rangeland. Especially, precision and recall scores exhibited 

considerable variability across different land cover classes and years, indicating the complexity 

of accurately delineating land cover types within the study area. 

 

Comparisons between land cover and land use change patterns observed in Istanbul RDF and 

other major global cities highlight shared urbanization-driven transformations. Istanbul, similar 

to European cities such as London and Paris, has experienced rapid urbanization and population 

growth, significantly transforming its landscape (Bozkurt et al., 2023). Bozkurt et al. (2023) 

documented significant urban expansion in Istanbul between 1990 and 2018, resulting in a 

3.02% decrease in agricultural areas and a 6.66% decrease in forested areas, while urban areas 

expanded by 9.69%. Projections suggest that this trend will continue until 2030, emphasizing 

the urgent need for sustainable urban development plans to mitigate further natural area 

conversion. 

 

The use of U-Net enhanced the efficiency and accuracy of forest inventory and monitoring 

processes within the RDF. Traditional methods of forest inventory, which rely on manual 

interpretation of satellite imagery or field surveys, are often time-consuming, labour-intensive, 

and prone to errors. In contrast, U-Net offered a more automated and scalable approach to land 

cover classification, allowing for the rapid analysis of large-scale imagery datasets with high 

spatial resolution (Solórzano et al., 2021). This enabled forestry authorities to make informed 

decisions based on up-to-date and reliable information, leading to more effective resource 

allocation and management planning. By providing accurate and timely information on forest 

cover dynamics, the U-Net model assisted policymakers and stakeholders in formulating 

targeted interventions to address deforestation, mitigate the impacts of climate change, and 

promote biodiversity conservation. Additionally, by integrating remote sensing technology and 

deep learning algorithms into forestry management workflows, the RDF enhanced its capacity 

for data-driven decision-making and adaptive management in the face of environmental 

challenges. 

 

The thematic maps generated through this study (Figure 4) served as crucial foundational 

resources for future NFI in Türkiye initiatives and detailed international reporting of forested 

areas. These maps provide essential data for assessing the extent and distribution of forest cover 
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in Türkiye, forming the basis for national and international reporting obligations regarding total 

forest area. Particularly in Türkiye, where land use and change exhibit year-to-year variability, 

RDF assessments, especially in metropolitan regions, hold significant importance (Tolunay et 

al., 2011). The implementation of U-Net automation within the RDF study area has yielded 

results with consistently high average accuracy rates. This high level of accuracy can be 

attributed to several factors, including precise masking of trained datasets and optimization of 

the U-Net algorithm. Moreover, the validation process involved rigorous cross-referencing 

with forest management maps, cadastral data, NFI ground measurements, and manual 

observation using Google Earth. These meticulous validation procedures have bolstered the 

reliability and high accuracy of the study's findings.  

 

Despite promising results, spatial heterogeneity within land cover types remains a major 

challenge in remote sensing-based classification. Variations in vegetation structure, 

topography, and land management practices can result in mixed pixels, particularly at the 

boundaries between distinct land cover types. This ambiguity contributes to classification 

errors, especially in transitional zones. Scientific evidence suggests that model accuracy is 

strongly influenced by the quality, diversity, and representativeness of training datasets (Foody, 

2002; Belgiu & Drăguţ, 2016). Insufficient or imbalanced training data that fail to capture intra-

class variability—particularly for complex classes like rangeland and forest—can limit the 

generalizability and predictive capacity of classification models. To address these limitations, 

future research should prioritize refining deep learning architectures with enhanced spatial-

contextual modeling (e.g., attention mechanisms), improving data quality through active 

learning and data augmentation techniques, and adopting advanced preprocessing methods 

such as radiometric correction and terrain normalization. Moreover, integrating ancillary data 

sources—including vegetation indices like NDVI and EVI, texture metrics, and topographic 

parameters such as slope and aspect—has been shown to markedly improve class 

separability. For example, Jin et al. (2018) combined core spectral bands with ancillary 

variables—multi-temporal vegetation indices (NDVI, EVI), GLCM-derived texture measures, 

and DEM-based slope and elevation—in a Random Forest framework and increased overall 

accuracy to approximately 89 %; summer NDVI, a near-infrared band, elevation, and texture 

statistics were identified as the most influential predictors. Finally, ensemble or hybrid 

approaches that combine multiple classifiers (e.g., U-Net with Random Forest or CNN-LSTM 

architectures) can leverage the complementary strengths of different models, often resulting in 

higher classification accuracy and robustness in complex landscapes (Zhu et al., 2017). 

 

Furthermore, it was observed that rangeland areas often appeared as buffer zones between 

forested and agricultural areas, not only leading to misclassifications but also resulting in a 

decline in prediction accuracy, which can be attributed to several underlying factors. Upon 

closer validation, it became evident that these transitions were not gradual but rather abrupt, 

highlighting a significant classification problem within the model. Another significant 

contributor is the inherent similarity in spectral signatures exhibited by these land cover types, 

particularly in areas where forest edges blend into open grasslands or where sparse tree cover 

characterizes the landscape (Kilic et al., 2006). This spectral resemblance poses a challenge for 

the classification algorithm, hindering its ability to accurately discriminate between rangeland 

and forest land pixels.  

 

In Türkiye, approximately 99% of forests are state-owned, managed for diverse economic, 

ecological, and socio-cultural purposes, while privately-owned forests present unique 

management challenges. Enhanced regulatory measures and policy interventions are needed to 

address complexities related to land ownership, management practices, and land cover 



 

Journal of Architecture, Engineering & Fine Arts 

Cankaya et al., 2025 7(1): 26-44  

 

41 

 

dynamics (Zengin et al., 2013). Discrepancies between forest area data reported by the General 

Directorate of Forestry and actual measurements highlight limitations in current forest 

management plan data. Specifically, polygon logic methods used in management plans often 

misclassify bare ground, rangeland, or agricultural lands as forest areas. Furthermore, 

privately-owned urban forests are frequently misclassified as built-up areas. Addressing illegal 

logging, deforestation, improving data collection and monitoring systems, and refining 

cadastral and forest management plans will be crucial for achieving accurate forest assessments 

and sustainable management within Istanbul RDF and beyond (Atmis & Cil, 2013). 

 

4. CONCLUSIONS AND RECOMMENDATIONS 

 

This study demonstrates the effectiveness of the U‑Net deep‑learning architecture for 

automating land‑use and land‑cover (LULC) monitoring in the Istanbul RDF.  Leveraging 

high‑resolution Sentinel‑2 imagery, the model achieved consistently high classification 

accuracy across five successive years (2019–2023), thereby providing reliable, up‑to‑date 

information for environmental management and spatial planning. 

 

To facilitate transparent dissemination and stakeholder engagement, all annual LULC maps, 

accuracy tables, and code have been deployed in an interactive R Shiny application that can be 

accessed at https://ergin.shinyapps.io/LULC/.  Users can visualise class‑level changes, 

download geospatial layers, and explore precision‑recall metrics, making the workflow fully 

reproducible and policy‑relevant. 

 

Future research should focus on scaling the methodology to larger regions and incorporating 

complementary data sources—such as LiDAR‑derived canopy metrics, multi‑temporal SAR 

backscatter, and high‑resolution DEM derivatives—to further improve class separability in 

heterogeneous landscapes. Methodological advances such as attention‑augmented U‑Net 

variants, adversarial training, and active‑learning sample selection could also mitigate class 

imbalance and data‑scarcity issues.  Finally, ensemble or hybrid architectures (e.g., U‑Net 

features combined with Random Forest or Transformer backbones) deserve exploration, as 

recent studies report consistent gains of 3 to 7 percentage points in overall accuracy when such 

combinations are applied to complex LULC tasks. 

 

In summary, by uniting deep‑learning image segmentation with an open, web‑based delivery 

platform, this work provides a scalable blueprint for near‑real‑time forest‑land monitoring in 

Türkiye and sets the stage for broader adoption of AI‑driven decision‑support tools in the 

forestry sector. 
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