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Abstract

We present the asymptotic estimates of the eigenvalues for an eigenvalue problem that the problem has also the eigenparameter in the second
boundary condition, rationally. The potential of the problem is integrable.
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INTRODUCTION
In this paper, we consider the following eigenvalue problem:

y'(8) + A —q®)]y(t) = 0.t € [0,1] M

y(0)cosa — ¢/ (0)sina =0, € [0, ) @)
ORI

w0 ()= ®

where X is a real parameter; the potential € is a real-
valued L7 function on the interval , also has a mean value
zero, i.e. folq t)dt =0, 9 and h are polynomials with real
coefficients and no common zeros. When a =0, the
boundary condition Equation (2) is taken as y(O) =0 and
when S()\) = 00 the boundary condition Equation (3) is
accepted as y(1) = 0. In addition, if M = deg(g) > deg(h)
let h(\) = Ay AM + - + Ao Where Ajr € R (it may be zero)
and assume that 9 is monic, and if deg(g) < deg(h) = M, let
g(A) = Ay A P+ + 4Ap where Ap—1 € R (it may be
zero) and assume that h is monic.

The above eigenvalue equation (1) are common to many areas
of application. For example, Hooke’ s law describes a mass on
a spring as

F=-Kz

where K is the spring constant. Also, for the potential energy
V() of the spring, we have

V(z) = %sz
and in classical mechanics we can write the force as
ov
T oz

The differential equation from Newton’ s law as

mi=—Kzx
or
. s
x+wz=0
» K
where ¥ = 7., Thus, the potential energy can be expressed

as the following:
1
V(x) = Emwzxz
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The time-independent Schrédinger equation for the one-
dimensional simple harmonic oscillator is given as

B Lz = By

2m d=2?

or

a2y 2mE  miw?z? _
dx? hz B2 Y= 0

h
If we take w-’—t\/—7¢<ﬂc>:—y<t) the Schrodinger
mw

equation becomes
y'(t) + [A—t*]y(t) =0 (4)

where A = % is the dimensionless energy. Equation (4) is
an eigenvalue equation in the form of Equation (1).

The problem Equation (1)-Equation (3) is different from
the usual regular eigenvalue problem because eigenvalue
parameter A is held in the second boundary condition. Such
problems often arise from physical problems, quantum
mechanics and geophysics and are studied by a lot of
researchers. Some of them are [1]-[16]. We especially refer
to [1], [13] and [16]. In [1], the asymptotic eigenvalues of
the problem Equation (1)-Equation (3) with 9 € AC [Oa 1]
are given and it is shown that the Weyl m-function uniquely
determines a, f and 4; and is in turn uniquely determined
by either two spectra from different values of a or by the
Prafer angle. In [13], the asymptotic eigenfunctions of the
problem Equation (1)-Equation (3) with 4 € Ly [0, 1] are
found. And [16] introduces the inverse problem associated
with the problem Equation (1)-Equation (3) by providing
the eigenvalues and the corresponding eigenfunctions to
uniquely determine the potential (I(t) thatis be acontinuously
differentiable function on.

Our aim is to obtain asymptotic expansions of the eigenvalues
of the problem Equation (1)-Equation (3) with better error
terms than previous works.

MATERIAL AND METHODS
Our method is based on [7]. Let us associate Equation (1) with
the Riccati equation

V(tA) =X +g—v?
and define

S(t,A): = Re[v(t, A)], 5)
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T(t,A) := Im[v(t, A)]. (6)

It is shown in [7] that any real-valued solution of Equation (1)
isin the form

y(t,A) = R(t,\) cos0(t, A)
with
R(t,)\)
S<t’ A) T RGN @
T(t,A) =0'(t,\). ®

Our approach to calculating A, is to approximate A those
which are such that

(e2) o) 7o)

We suppose that there exist functions A(t) and nN(A) so that

/t SV ( )dm <A(t>n<>\>,t€ [0,1]

Al [ )

i A(t) € L[O 1,

dz is @ decreasing function of

iy M(A) = 0as A — oo.

For 4 € L[0,1] the existence of the functions A and n
may be established for A positive as follows. It is clear that

/ 20V ( )dz _/1 q<z> hence, if we define
t t

Jle Peq(e)aa| g
W if [, |q<z)‘dcc7$0

0 ifft1|q(:1:)‘dcc:0

dr < 0o

Flt,A]|:= (9)

we gain 0 < F(t,A) < 1. Also, if we set"(/\> n A F(t7 )‘)
we have 77()‘) is well defined by Equation (9) and 7(A) = 0 as
A — oo[7].

Ourmethodofapproximatingasolutionofv' (¢, A) = —=A + ¢ — v?
on [0,1] is similar to [7], so we set
v(t,A) =AY+ 377 v, (¢, ). (10)

When we put this serie into the Riccati equation and solve
differential equations, we hold

vy (t, A) = —e 2N fl eZiAI/qu(:c> dz,
Cp) (t, )\) ( A) dz,
formn >3

on (t, ,\) -

Also from Equation (6), Equation (8) and Equation (10),

722)\1/2t fl 21)\1/2
o2t ftl Q2N [Un

,12(2:,/\) + 20y, 1(:5 )\) S 211)m<1 )\)}dz.
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we have ¢(1,)) -4 0,/\) = [IA2 4 I Y2 va (2, M) ]dz, then
0 1,)\270?),)\ SN2 45 T flu(2,0)dz and from  this
equation, [2] proves that

o1.) ~0(0) ~ 41 ofs) [+ (i)

Let us consider the following theorem:
Theorem: [2] If v(t, A) asin (2.6),as A — o0

v(t,A) =AY + v (£, ) + O(n? (X))
where

vi(t,A) =
% J? [cos(2A1/22) + isin(2X22) g (= )dz + O (v (1) ).

After some calculations by using the last theorem, with
Equation (5) we gain

[isin(2A1/2¢) — cos(2A1/2¢) ]

S(t,A) = —sin(2AY2t + &) + O(n*(N)) a2

where

: g 1/2

sing; := [, (cos2A m)q(a:)da:,

cos&; = ftl (sin2/\1/29:)q<a:)da:.

Similarly, with Equation (6) we find T'(¢, A) as
T(t,A)

SO We can write
S(O, )\) = — fol (cos 2)\1/29:)q<z)dx + 0(772 ()\)) 14)

T(O,A) :x/X—/1 sin 2V )z q(z>dz+0(n2(A)),(15)
S(1,4) = O(n*(¥)), (16)

r) - olr() o

RESULTS AND DISCUSSION

We approximate the eigenvalues of the problem Equation
(1)-Equation (3), in this section. It is shown in [7] that any real
valued solution y(ta )\) of Equation (1) is of the form

— A2 —cos(2A2t + &) + O(2(N))  (13)

y(t,A) = R(t, X) cosO(t, A), (18)

hence

y (t, )\)

We now determine the conditions under which the first
boundary condition Equation (2) and the second boundary
condition Equation (3) are satisfied.

= R'(t,\) cosO(t,\) — R(t,A)6'(t,\) sin6(t, \). 19)

Considering Equation (18) and Equation (19), one observes
that Equation (2) holds if

R(O, )\) {cos@(O,A) [cosa - %, (O, )\) sina] + sinG(O, A)G'(O,A) sina} = 0(20)
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i) For a # 0:
We can write Equation (20) as

R(0,X)- sin [#(0,\) —y1] =0
where
R'(0,))

sin y; := ———" sin a— cos q,

R(0,))
cos 1 :=6'(0,A) - sina.

From Equation (7) and Equation (8)

siny; = 5(0,A) - sina — cosa, n
cosy1 =T(0,)) - sine (22)

And we also from Equation (20)
6(0,A) = 71. (23)

Substituting the values of S(0,A) and T(0,\) given by
Equation (14) and Equation (15) into Equation (21) and
Equation (22), one obtains

siny; —cosa—sinafol (cosQAl/zm)q(z)dz+O(n2 ()\))

COSTL \1/2ginq — sinozfo1 (sin 2)\1/2x)q(z) dz + 0(772 ()\))

—cosa — sina fol cos Zﬁmq(z) dz + 0(172 (A)
Vsina- [1 —A® fol sin2ﬁzq(z)dw+ 0] ()\’% -n?

()]

and

siny1 = {7/\’% cota— A7 /1cos2ﬁ$q(x)da¢+ (6] (/\7%7)2 (/\))}
0

cos Y1

><{1 +A? /Olsin2\/qu(m)dx+ 0 (A n? ()\))}

SO

tany; = —A Y2 cot o — A71/2 /01 (cos 2)\1/2z)q<z>dz + 0(()\71/27])2 (A)>(24)
i)Fora=10

In this case, Equation (20) reduces

R(0,\) cos8(0,A) =0

and from this equation, the first boundary condition Equation
(2) is satisfied for

o(0.) =2

Considering Equation (18) and Equation (19), one observes
that the second boundary condition Equation (3) holds if

)] ) ()]sl

iii) For deg(h) < deg(g) = M:

The Equation (26) is expressed as

R(1,\)sin[0(1,A) =y _2] =0 @7
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where
R'(1,))

zan () +0)

cosyz == 0'(1,X)g(A).

sin-ys 1=

From the definitions of 9(A) and h()) one writes

siny, = S(1,A) A + By A - Bo] — [AaAM + Ay M 4 4 A
cosyz = T(1,A) [AM + By A -+ By

and substitution of Equation (16) and Equation (17) into the
last equations gives

sinys = — Ay MM+ 0 AMp2 (X)),
cosyz = AMHE4 0 (AMi?(N))

hence
siny, — Ay 2M+ 0 (WMy?) _ — Ay 2M4+ 0 (WMy?)
ST N0 (W) i [14 0 (1)

- {7AM)\’%+ 0 (AT (A))} : {17 0 (AT (A))}

then
tanys = —Ay AT+ 0 (A" (A)). (28)
Also from Equation (27), we have
6(L,A) =(n+1)r+ 7 (29)
iv) For deg(g) < deg(h) = M:

The Equation (26) is obtained as
R(1,\)sin[0(1,A) — 3] =0

where
cosys == 0'(1,X)g(A)
so that
O(L,A)=(n+1)m+s (30)
From the definitions of and one writes
sinys = S(1,A) [Aya A 4+ Ay oA 4+ A
_[/\M +BM,1)\M’1 +"'+Bo}

cosyz = T(L,A) [Ap i A+ Apr s A2 4 A

and substitution of Equation (16) and Equation (17) into the
last equations gives

sinyg = =AM = By AMT O 12 (V)

cosy3 = AM,l)\M’% + O(AM’17I2 (A))

thus
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A0 ()

siny;  —AM — By AM-1 1 O(AM-12()))
Ay AT 4 O(AM*%Z (A))

T TNM(1+ By a + OOVIZ (V)

then
cotys = —Au A F +0(A T (3) ) &)

Theorem: The asymptotic formulae for the eigenvalues of
the problem Equation (1)-Equation (3) satisfy, asn — oo

(i) if a # 0 and deg(h) < deg(g) = M,

A2 = (n + 1)7r+ ﬁ [,AM + cota + ;/Olq<z) cos<2<n+ 1)m¢>dm]
+O(n’1n2 (n)) + O(n*2n(n))

(i) if o # 0and deg(g) < deg(h) = M,

2n+3 2 3 [t
—— Ay — 2
3 T+ 2n+37r[ M-1+cota+ 2/0 q<w) cos(( n+3)7rz>dw]

+0 (n’ln2 (n)) + O(n*2n(n))

A2 =

(i) if a = 0and deg(h) < deg(g) = M,

2n+1 2 1!
V2 _ T % A= o +1 d
An 3 T+ 2n+17r[ M+ 2/0 q(z) cos(( n + 1)mz |dz

+0 (n’ln2 (n)) + O(n*2n(n))

(V) if o= 0and deg(g) < deg(h) =M,

A2 = (n+ 1)7r+ ﬁ [AM,l + % /Olq(z) cos(2(n+ 1>ﬂw)dz]

+0 (n’ln2 (n)) + O(n*2n(n))

Proof: Theorem (i) is proved by using Equation (11), Equation
(23), Equation (24), Equation (28), Equation (29) together
with inverse trigonometric series and reversion. Theorem
(ii) is proved by using Equation (11), Equation (23), Equation
(24), Equation (30), Equation (31) together with inverse
trigonometric series and reversion. Theorem (iii) is proved by
using Equation (11), Equation (25), Equation (28), Equation
(29) together with inverse trigonometric serie and reversion.
Theorem (iv) is proved by using Equation (11), Equation
(25), Equation (30), Equation (31) together with inverse
trigonometric serie and reversion.

CONCLUSION

In this work, asymptotic expansions of the eigenvalues of an
eigenvalue problem are calculated with better error terms
than previous works.

41 Hitit Journal of Science ¢ Volume 2 « Number 2

References

1.

Binding P. A., Browne P. J. and Watson B. A., 2004. Equivalence
of Inverse Sturm-Liouville Problems with Boundary Conditions
Rationally Dependent on the Eigenparameter. Journal of
Mathematical Analysis and Applications, 291, 246-261.

Coskun H. and Baskaya E., 2010. Asymptotics of eigenvalues
for regular Sturm-Liouville problems with eigenvalue parameter
in the boundary condition for integrable potential. Mathematica
Scandinavica, 107, 209-223.

Coskun H., Baskaya E. and Kabatas A., 2019. Instability intervals
for Hill’s equation with symmetric single well potential. Ukrainian
Mathematical Journal, 71 (6), 977-983.

Coskun H. and Kabatas A., 2013. Asymptotic approximations
of eigenfunctions for regular Sturm-Liouville problems with
eigenvalue parameter in the boundary condition for integrable
potential. Mathematica Scandinavica, 113 (1), 143-160.

Coskun H. and Kabatas A., 2016. Green’s function of regular
Sturm-Liouville problem having eigenparameter in one
boundary condition. Turkish Journal of Mathematics and
Computer Science, 4, 1-9.

Coskun H., Kabatas A. and Baskaya E., 2017. On Green’s function
for boundary value problem with eigenvalue dependent
quadratic boundary condition. Boundary Value Problems, 71.
Harris B. J.,1997. The Form of the Spectral Functions Associated
with Sturm-Liouville Problems with Continuous Spectrum.
Mathematika, 44 (1), 149-161.

Kabatas A., 2022. On eigenfunctions of Hill' s equation with
symmetric double well potential. Communications Faculty
of Sciences University of Ankara-Series Al Mathematics and
Statistics, 71 (3), 634-649.

Kabatas A., 2022. Eigenfunction and Green’ s function
asymptotics for Hill' s equation with symmetric single-well
potential. Ukrainian Mathematical Journal, 74 (2), 218-231.
Kabatas A., 2023. One boundary value problem including
a spectral parameter in all boundary conditions. Opuscula
Mathematica, 43 (5), 651-661.

Kabatas A., 2023. Sturm-Liouville problems with polynomially
eigenparameter dependent boundary conditions. Sakarya
University Journal of Science, 27 (6), 1235-1242.

Kabatas A., 2023. Sturm-Liouville problems including boundary
conditions polynomially dependent on the eigenparameter with
differentiable potential. International Research and Reviews in
Science and Mathematics, Sertiven Publishing, Ankara, 1-16.
Kabatas A., 2023. On eigenfunctions of the Sturm-Liouville
problems with boundary conditions rationally dependent on the
eigenparameter. International Theory, Research and Reviews in
Science and Mathematics, Sertiven Publishing, Ankara, 263-281.
Kabatas A., 2023. On Sturm-Liouville problems including the
square-root of the eigenvalue parameter in one boundary
condition. New Frontiers in Natural Science and Mathematics,
Duvar Publishing, izmir, 233-251.

Kabatas A., 2024. Green’s function asymptotics for a boundary
value problem contained eigenvalue parameter in the boundary
condition. Advances in Mathematics Research Volume 35, NOVA
Science Publishers Inc., New York, 43-53.

Mosazadeh S. and Akbarfam A. J., 2020. Inverse and Expansion
Problems with Boundary Conditions Rationally Dependent
on the Eigenparameter. Bulletin of the Iranian Mathematical
Society, 46, 67-78.



