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ABSTRACT

The Simson point S of a quadrilateral Q is the point for which the pedal polygon of Q with respect
to S degenerates into a single line, called the Simson line. If we reflect the Simson point in the lines
containing the sides ofQ, then we get another line that is parallel to the Simson line. We refer to this
second line as the Reflection line of S. Ferrarello, Mammana, and Pennisi have conjectured that ifQ is
a cyclic quadrilateral that does not have parallel sides, then the reflection line of S passes through
the anticenter of Q. We give a positive answer to this conjecture. We also give characterizations
using the reflection line for a convex quadrilateral to be cyclic or to be semi-symmetric.
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1. Introduction

Let 2A1A2A3A4 denote a quadrilateral with vertices A1, A2, A3, and A4. Let P denote a point. Let F1, F2, F3,
and F4 denote the feet of the perpendiculars from P to the lines containing the sides A1A2, A2A3, A3A4, and
A4A1, respectively. If the points F1, F2, F3, and F4 form the vertices of a quadrilateral 2F1F2F3F4, then we call
2F1F2F3F4 the pedal quadrilateral of P with respect to 2A1A2A3A4. We call the point P the pedal point.

In [2], Ferrarello, Mammana, and Pennisi show that if Q is a quadrilateral that is not a parallelogram, then
there exists exactly one pedal point S with respect to which the points F1, F2, F3, and F4 are collinear. The point
S is called the Simson point of Q, and the line t containing the points F1, F2, F3, and F4 is called the Simson line
of Q. Ferrarello, Mammana, and Pennisi go on to prove that the reflections of the Simson point S with respect
to the lines containing the sides of Q are collinear and the line m containing these reflections is parallel to the
Simson line t. We refer to the line m as the reflection line (see Figure 1).

A cyclic quadrilateral is a quadrilateral Q all of whose vertices lie on a common circle K. We call K the
circumcircle of Q, and we call the center of K the circumcenter of Q.

Given a quadrilateral 2A1A2A3A4, then a maltitude (midpoint altitude) of 2A1A2A3A4 is the perpendicular
that we get by starting with the midpoint of a side of 2A1A2A3A4 and then drawing the perpendicular from
that midpoint to the opposite side. Note that any quadrilateral, cyclic or not, always has maltitudes (although
in the case of a rectangle or trapezoid, some of these maltitudes overlap). Micale and Pennisi [6] show that the
maltitudes of quadrilateral 2A1A2A3A4 are concurrent at a point H if and only if 2A1A2A3A4 is cyclic. The
point H of concurrency is called the anticenter of 2A1A2A3A4.

Ferrarello, Mammana, and Pennisi [2] conjecture that if Q is a cyclic quadrilateral without parallel sides,
then the reflection line m passes through the anticenter H of Q, and that the Simson line t bisects the segment
SH connecting the anticenter H with the Simson point S (see Figure 1). We give an affirmative answer to this
conjecture.

In [3] and [4], Josefsson gives several characteristics of when a quadrilateral is cyclic. We prove that if a
convex quadrilateralQ is not a parallelogram thenQ is cyclic if and only if the reflection line m passes through
the intersection point of the diagonals of Q.
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Figure 1. Simson point, Simson line, and reflection line of a quadrilateral

A cyclic quadrilateral 2A1A2A3A4 is called semi-symmetric if the vertices A1 and A3 are diametrically opposed
points. Several characterizations of semi-symmetric cyclic quadrilaterals are given in [1]. In particular, it is
shown that 2A1A2A3A4 is semi-symmetric if and only if the angles at vertices A2 and A4 are right angles. It is
also shown that if 2A1A2A3A4 is a complete semi-symmetric cyclic quadrilateral with right angles at vertices
A2 and A4, then the reflection line m of 2A1A2A3A4 passes through A2 and A4 (see Figure 2). We prove that
the converse is also true. In particular, if the reflection line m of a complete quadrilateral 2A1A2A3A4 passes
through A2 and A4, then 2A1A2A3A4 is a semi-symmetric cyclic quadrilateral with right angles at vertices A2

and A4. Consequently, we give a new characterization of semi-symmetric cyclic quadrilaterals.
Throughout the paper, when assuming that 2A1A2A3A4 is a complete quadrilateral, we denote the

intersection of lines
←−−→
A1A2 and

←−−→
A3A4 by the point A5, and we denote the intersection of lines

←−−→
A1A4 and

←−−→
A2A3

by the point A6. When assuming that 2A1A2A3A4 is a convex quadrilateral, we denote the intersection of the
diagonals A1A3 and A2A4 by the point D.

2. The Reflection Line and the Anticenter

In this section we prove that if Q is a cyclic quadrilateral without parallel sides, and if S denotes the Simson
point of Q, then the reflection line m passes through the anticenter H of Q, and the Simson line passes through
the midpoint of segment SH . We begin with the following lemma.

Lemma 2.1. Let 2A1A2A3A4 be a cyclic quadrilateral without parallel sides. Let S and H denote the Simson point and
anticenter of 2A1A2A3A4, respectively. Let M denote the midpoint of segment SH . Let t and m denote the Simson line
and reflection line, respectively. Then the point H is on the reflection line m if and only if the point M is on the Simson
line t.

Proof. Let F1, F2, F3, and F4 denote the feet of the perpendiculars from S to the lines containing the sides A1A2,
A2A3, A3A4, and A4A1, respectively (See Figure 1). Since lines

←→
SF1,

←→
SF2,

←→
SF3, and

←→
SF4 are distinct and have

intersection point S, then H is on at most one of these four lines. We may assume without loss of generality
that H is not on

←→
SF1. Let K denote the reflection of S in the line

←−−→
A1A2.

dergipark.org.tr/en/pub/iejg 404

https://dergipark.org.tr/en/pub/iejg


P. Csiba, J. Donnely & L. Németh

Figure 2. Semi-symmetric cyclic quadrilateral

First assume that H is on the reflection line m. Let l denote the line through M that is parallel to the reflection
line m. Since m intersects both lines

←→
SH and

←→
SK, and since m and l are parallel, then l intersects both lines

←→
SH

and
←→
SK. Let T denote the point of intersection of lines l and

←→
SK. Again, since m and l are parallel, then angles

∠STM and ∠SKH are congruent, and angles ∠SMT and ∠SHK are congruent. Thus, it follows by Angle-
Angle-Angle that triangles △SMT and △SHK are similar triangles. Since M is the midpoint of segment SH ,
then T is the midpoint of segment SK. However, F1 is the midpoint of segment SK, which implies that T =
F1. Hence, l is the line passing through F1 which is parallel to m. Since t is the unique line passing through F1

which is parallel to m, then it follows that l = t. Consequently, t passes through the midpoint M .
Conversely, assume that the point M is on the line t. Since lines m and t are parallel, then m intersects line
←→
SH at a point B. Similar to above, we have by Angle-Angle-Angle that triangles △SMF1 and △SBK are
similar triangles. This implies that M is the midpoint of segment SB. Hence, B = H , and it follow that m passes
through the anticenter H .

Theorem 2.1. Let 2A1A2A3A4 be a cyclic quadrilateral without parallel sides. Let S and H denote the Simson point
and anticenter of 2A1A2A3A4, respectively. Then the midpoint M of segment SH lies on the Simson line.

Proof. We prove the statement analytically. Since incidence and collinearity are preserved by translations,
rotations and dilations, then without loss of generality we can choose a coordinate system with origin at
A1 = (0, 0), and unit point on the x-axis at A2 = (1, 0).

Let A3 = (a, b) and A5 = (c, 0), where a, b, c ∈ R, are such that b > 0, c ̸= 0 and c ̸= 1.
The three parameters a, b, and c can be used to express all the other coordinates and equations.
The center O of the circumcircle of triangle △A1A2A3 is the intersection of perpendicular bisectors of sides

A1A2 and A2A3. Thus, O has coordinates

O =

(
1

2
,
a2 − a+ b2

2b

)
.

Thus, the circumcircle K of triangle△A1A2A3 has equation

(
x− b

2b

)2

+

(
y −

(
a2 + b2 − a

)
2b

)2

=
a4 + b4 + 2a2b2 − 2a3 − 2ab2 + a2 + b2

4b2
.
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The coordinates of the vertex A4 can be calculated by computing the intersections of the circle K and the line
←−−→
A3A5:

A4 =

(
a2c− ac2 − ac+ b2c+ c2

a2 − 2ac+ b2 + c2
,

bc2 − bc

a2 − 2ac+ b2 + c2

)
.

The point A6 is the intersection of the lines
←−−→
A1A4 and line

←−−→
A2A3. Thus, A6 has coordinates

A6 =

(
a2 − ac− a+ b2 + c

a2 − 2ac+ b2 + 2c− 1
,

bc− b

a2 − 2ac+ b2 + 2c− 1

)
.

The Simson point S of cyclic quadrilateral 2A1A2A3A4 is the common intersection point of the circumcircles
of triangles△A1A2A6,△A2A3A5,△A3A4A6, and△A1A4A5, respectively (Figure 3).

Figure 3. For proof of Theorem 2.1

We calculate the equations of the circumcircles of △A2A3A5 and △A1A2A6, which we denote by K1 and K2,
respectively.

We denote the centers of K1 and K2 by O1 and O2, respectively. We note that O1 is the intersection of the
perpendicular bisectors

←−−→
A3A5 and

←−−→
A2A5, and similarly that O2 is the intersection of the perpendicular bisectors

←−−→
A1A2 and

←−−→
A2A6. One intersection of these circles is the point A2, and the other intersection is the Simson point

S. Thus, S has coordinates S = (u, v), where

u =
−a3c+ 2a2c2 + 2a2c− ab2c− 4ac2 − ac+ 2b2c+ 2c2

a4 − 4a3c− 2a3 + 2a2b2 + 4a2c2 + 8a2c+ a2 − 4ab2c− 2ab2 − 8ac2 − 4ac+ b4 + 4b2c+ b2 + 4c2

and

v =
a2bc− 2abc2 + b3c+ 2bc2 − bc

a4 − 4a3c− 2a3 + 2a2b2 + 4a2c2 + 8a2c+ a2 − 4ab2c− 2ab2 − 8ac2 − 4ac+ b4 + 4b2c+ b2 + 4c2
.

We denote the pedal point of the Simson point S to the line
←−−−→
AiAi+1 by Hi. In particular, H1 is the intersection

of the line
←−−→
A1A2 with the perpendicular from S to line

←−−→
A1A2, and H2 is the intersection of the line

←−−→
A2A3 with

the perpendicular from S to line
←−−→
A2A3. Thus, H1 has coordinates H1 = (u1, v1), where

u1 =
−a3c+ 2a2c2 + 2a2c− ab2c− 4ac2 − ac+ 2b2c+ 2c2

a4 − 4a3c− 2a3 + 2a2b2 + 4a2c2 + 8a2c+ a2 − 4ab2c− 2ab2 − 8ac2 − 4ac+ b4 + 4b2c+ b2 + 4c2
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and v1 = 0. Similarly, H2 has coordinates H2 = (u2, v2), where

u2 =
−a3c+ a2b2 + 2a2c2 + 2a2c− 3ab2c− 4ac2 − ac+ b4 + 3b2c+ 2c2

a4 − 4a3c− 2a3 + 2a2b2 + 4a2c2 + 8a2c+ a2 − 4ab2c− 2ab2 − 8ac2 − 4ac+ b4 + 4b2c+ b2 + 4c2

and

v2 =
−a3b+ 3a2bc+ a2b− ab3 − 2abc2 − 3abc+ b3c+ b3 + 2bc2

a4 − 4a3c− 2a3 + 2a2b2 + 4a2c2 + 8a2c+ a2 − 4ab2c− 2ab2 − 8ac2 − 4ac+ b4 + 4b2c+ b2 + 4c2
.

Since the points Hi are collinear, we use the points H1 and H2 to compute the equation of the Simson line t.
Thus, t =

←−−→
H1H2 has equation y = kx+ q, such that

k =
−a3 − ab2 − 2ac2 + 3a2c+ b2c+ a2 + b2 + 2c2 − 3ac

b3 + a2b− 2abc+ bc

and
q =

(−c)(q1)(q2)
(b)(q3)(q4)

,

where
q1 = 2a2c− 4ac+ 2c− a3 + 2a2 − ab2 − a+ 2b2,

q2 = ac2 − 2c2 − 3a2c+ 3ac− b2c+ a3 − a2 + ab2 − b2,

q3 = 2ac− c− a2 − b2,

and

q4 = (a2)(4c2 − 4ac+ 8c+ a2 − 2a+ 2b2 + 1)− 8ac2 + 4c2 − 4ab2c− 4ac+ 4b2c− 2ab2 + b4 + b2.

Let H denote the anticenter of quadrilateral 2A1A2A3A4. Let M12 and M34 denote the midpoints of segments
A1A2 and A3A4, respectively. Let l12 denote the line through M12 which is perpendicular to A3A4, and let l34
denote the line through M34 which is perpendicular to A1A2. Thus, H is the point of intersection of lines l12
and l34. Therefore, H has coordinates H = (uH , vH), where

uH =
a3 − a2c+ ab2 − ac+ b2c+ c2

2a2 − 4ac+ 2b2 + 2c2
,

and

vH =
−a4 + 2a3c+ a3 − a2b2 − a2c2 − 2a2c+ ab2 + ac2 + b2c2 − b2c

2a2b− 4abc+ 2b3 + 2bc2

Let M denote the midpoint of segment HS. Thus, M has coordinates M = (Mx,My), where Mx = hx

kx
and

My =
hy

ky
.

We have that hx = hx,1 + hx,2 + hx,3 + hx,4 + hx,5, where

hx,1 = (a2c2)(8c2 − 4a2c− 10ac+ 4b2c+ 32c+ 8a3 − 3a2 + 4ab2 − 18a),

hx,2 = (ac2)(10ab2 − 16c2 − 14b2c− 18c+ 13a− 4b4 − 22b2),

hx,3 = (b2c)(12c2 + 5b2c+ 5c− 9a4 − 3a2b2 − 3a+ b4),

hx,4 = (ab2)(6ac− b2c+ 3a4 − 4a3 + 3a2b2 + 2a2 − 2ab2 + b4 + b2 + 6a2c),

and
hx,5 = 8c4 − 3a3c+ a4c+ 5b4c+ a5 − 2a6 + a7 − 5a6c+ 7a5c.

We also have that kx = 4(c2 − 2ca+ a2 + b2)(kx,1 + kx,2), where

kx,1 = (ac)(4ac− 8c− 4a2 + 8a− 4b2 − 4),

and
kx,2 = 4c2 + 4b2c+ a4 − 2a3 + 2a2b2 + a2 − 2ab2 + b4 + b2.
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We have that hy = −(hy,1 + hy,2)(hy,3 + hy,4), where

hy,1 = (a)(2c2 − 3ac+ 3c+ a2 − a+ b2),

hy,2 = −(2c2 + b2c+ b2),

hy,3 = (ac)(2a2c− 4ac− 2b2c+ 2c+ 6a2 − 3a3 − 2ab2 − 3a+ 2b2),

and
hy,4 = 4b2c2 + b4c− 3b2c+ a5 − 2a4 + 2a3b2 + a3 − 2a2b2 + ab4 + ab2.

Finally, we have that ky = 4b(c2 − 2ca+ a2 + b2)(ky,1 + ky,2), where

ky,1 = (c)(4a2c− 8ac+ 4c− 4a3 + 8a2 − 4ab2 − 4a+ 4b2)

and
ky,2 = a4 − 2a3 + 2a2b2 + a2 − 2ab2 + b4 + b2.

We now see by substituting Mx and My into the equation of line t, that the point M is a point on t. Thus, the
Simson line t bisects segment HS at M .

3. A Characterization of Cyclic Quadrilaterals

In this section we use the reflection line of a convex complete quadrilateral 2A1A2A3A4 to give a necessary
and sufficient condition for 2A1A2A3A4 to be cyclic. In particular, we show that if 2A1A2A3A4 is a convex
complete quadrilateral without parallel sides, then 2A1A2A3A4 is cyclic if and only if the reflection line passes
through the point of intersection D of the diagonals A1A3 and A2A4.

Theorem 3.1. Let 2A1A2A3A4 be a convex complete quadrilateral. Assume that rays
−−−→
A1A2 and

−−−→
A4A3 intersect at a

point A5, and that rays
−−−→
A4A1 and

−−−→
A3A2 intersect at a point A6. Let S denote the Simson point of 2A1A2A3A4. Let D

denote the point of intersection of the diagonals A1A3 and A2A4. Let m denote the reflection line of S with respect to
2A1A2A3A4. Then 2A1A2A3A4 is cyclic if and only if m passes through D.

Proof. For the proof, we again use the tools of analytic geometry. As above, we note that since translations,
rotations, and dilations in the plane do not alter incidence, then we may assume that A3 = (0, 0) and A2 = (1, 1).
Let A1 = (c, d) and A4 = (a, b). Since not three of A1, A2, A3, and A4 are collinear, then it follows that a ̸= b and
c ̸= d.

If b = d− 1 and a ≤ c− 1, then rays
−−−→
A3A2 and

−−−→
A4A1 do not intersect at A6, contradicting our hypothesis. If

b = d− 1 and a > c− 1, then rays
−−−→
A1A2 and

−−−→
A4A3 do not intersect at A5, again contradicting our hypothesis.

Thus, we see that b ̸= d− 1.
First assume that a, c ̸= 0, a, c ̸= 1, and a ̸= c.
We see that

←−−→
A1A2 has equation y =

(
d−1
c−1

)
x+

(
c−d
c−1

)
,
←−−→
A2A3 has equation y = x,

←−−→
A3A4 has equation y =

(
b
a

)
x,

←−−→
A1A4 has equation y =

(
b−d
a−c

)
x+

(
ad−bc
a−c

)
,
←−−→
A1A3 has equation y =

(
d
c

)
x, and

←−−→
A2A4 has equation y =

(
b−1
a−1

)
x+(

a−b
a−1

)
.

Since 2A1A2A3A4 is convex, then the diagonals A1A3 and A2A4 intersect at a point D [5]. We see that D has
coordinates

D =

(
ac− bc

ad− bc+ c− d
,

ad− bd

ad− bc+ c− d

)
.

The points A5 and A6 have coordinates

A5 =

(
ad− ac

ad− a− bc+ b
,

bd− bc

ad− a− bc+ b

)
and A6 =

(
ad− bc

a− b− c+ d
,

ad− bc

a− b− c+ d

)
.

Let H1 and H2 denote the points on the circumcircles of triangles△A2A3A5 and△A3A4A6, respectively, that
are diametrically opposed to A3. Let H3 and H4 denote the points on the circumcircles of triangles △A1A4A5

and △A1A2A6, respectively, that are diametrically opposed to A1 (Figure 4). It is shown in [1] that S is the
intersection of lines

←−−→
H1H2 and

←−−→
H3H4. The points H1 and H2 have coordinates

H1 =

(
−ac+ ad− bc− bd+ 2b

ad− a− bc+ b
,
ac+ ad− 2a− bc+ bd

ad− a− bc+ b

)
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Figure 4. When Q is not cyclic

and

H2 =

(
a2 − ac+ ad+ b2 − bc− bd

a− b− c+ d
,
−a2 + ac+ ad− b2 − bc+ bd

a− b− c+ d

)
.

Thus, the line
←−−→
H1H2 has equation

y =

(
−a2 − b2 + ac+ ad− bc+ bd− 2a

a2 + b2 − ac+ ad− bc− bd+ 2b

)
x+

(
2a2 + 2b2

a2 + b2 − ac+ ad− bc− bd+ 2b

)
.

The points H3 and H4 have coordinates

H3 =

(
a2d− a2 − acd+ ad+ b2d− b2 − bd2 + bd

ad− a− bc+ b
,
−a2c+ a2 + ac2 − ac− b2c+ b2 + bcd− bc

ad− a− bc+ b

)
and

H4 =

(
ad+ bd− 2b− cd− d2 + 2d

a− b− c+ d
,
−ac+ 2a− bc+ c2 + cd− 2c

a− b− c+ d

)
.

Thus, the line
←−−→
H3H4 has equation y = ux+ v, where

u =
−c3 + 2ac2 − cd2 − a2c− b2c+ 2bcd+ a2 + b2 + 2c2 − 3ac− ad− bc− bd+ 2cd+ 2a− 2c

d3 − 2bd2 + a2d+ b2d+ c2d− 2acd− a2 − b2 − 2d2 + ac+ ad+ bc+ 3bd− 2cd− 2b+ 2d

and

v =
−ac2 + ad2 + bc2 − bd2 + a2c+ a2d+ b2c+ b2d− 2acd− 2bcd− 2a2 − 2b2 + 2ac+ 2bd

d3 − 2bd2 + a2d+ b2d+ c2d− 2acd− a2 − b2 − 2d2 + ac+ ad+ bc+ 3bd− 2cd− 2b+ 2d
.

Therefore, the point S has coordinates (Sx, Sy), where

Sx =
a2 − ac− ad+ 2a+ b2 + bc− bd

a2 − 2ac+ 2a+ b2 − 2bd+ 2b+ c2 − 2c+ d2 − 2d+ 2
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and

Sy =
a2 − ac+ ad+ b2 − bc− bd+ 2b

a2 − 2ac+ 2a+ b2 − 2bd+ 2b+ c2 − 2c+ d2 − 2d+ 2
.

The reflection line m of S has equation

y =

(
−a+ c− 1

b− d+ 1

)
x+

(
a+ b

b− d+ 1

)
.

The circumcircle K of triangle△A2A3A4 has equation

x2 −
(
a2 + b2 − 2b

a− b

)
x+ y2 −

(
a2 + b2 − 2a

b− a

)
y = 0.

We have that 2A1A2A3A4 is cyclic if and only if A1 = (c, d) is on K. The point A1 is on K if and only if

c2 −
(
a2 + b2 − 2b

a− b

)
(c) + d2 +

(
a2 + b2 − 2a

a− b

)
(d) = 0.

Equivalently, A1 is on K if and only if

ac2 − a2c+ a2d+ ad2 + b2d− bd2 − bc2 − b2c+ 2bc− 2ad

a− b
= 0

which is true if and only if ac2 − a2c+ a2d+ ad2 + b2d− bd2 − bc2 − b2c+ 2bc− 2ad = 0.
Also, m passes through D if and only if the coordinates of D satisfy the equation of m. Thus, m passes

through D if and only if

ad− bd

ad− bc+ c− d
=

(
−a+ c− 1

b− d+ 1

)(
ac− bc

ad− bc+ c− d

)
+

(
a+ b

b− d+ 1

)
.

Equivalently, m passes through D if and only if

ac2 − a2c+ a2d+ ad2 + b2d− bd2 − bc2 − b2c+ 2bc− 2ad

(b− d+ 1)(ad− bc+ c− d)
= 0

which is true if and only if ac2 − a2c+ a2d+ ad2 + b2d− bd2 − bc2 − b2c+ 2bc− 2ad = 0.
Hence, quadrilateral 2A1A2A3A4 is cyclic if and only if m passes through D if and only if ac2 − a2c+ a2d+

ad2 + b2d− bd2 − bc2 − b2c+ 2bc− 2ad = 0. Figure 5 shows when the quadrilateral 2A1A2A3A4 is cyclic.
Now assume that a = 0. Since A1, A3, and A4 are not collinear, then it follows that c ̸= 0. In this case, line

←−−→
A3A4

has equation x = 0, line
←−−→
A1A4 has equation y =

(
d−b
c

)
x+ b, and line

←−−→
A2A4 has equation y = (1− b)x+ b. Using

an argument similar to the one just given, we have that A1 is on K if and only if b2d− bd2 − bc2 − b2c+ 2bc =
0, and that m passes through D if and only if b2d− bd2 − bc2 − b2c+ 2bc = 0. Thus, we again have that
quadrilateral 2A1A2A3A4 is cyclic if and only if m passes through D. The cases where c = 0, a = 1, c = 1, or
a = c are similar, and are left to the reader.

Many of the above calculations were performed using a computer algebra system (the CAS view of
GeoGebra).

4. A Characterization of Semi-Symmetric Quadrilaterals

Several characterizations of semi-symmetric cyclic quadrilaterals are given in [1]. It is also shown that if
2A1A2A3A4 is a complete semi-symmetric cyclic quadrilateral with right angles at vertices A2 and A4, then
the reflection line m of 2A1A2A3A4 passes through A2 and A4 (see Figure 2). In this section, we extend this
result. In particular, given complete quadrilateral 2A1A2A3A4, we prove that A2 and A4 are the midpoints
of the reflections of the Simson point S in the sides of 2A1A2A3A4 if and only if 2A1A2A3A4 is a semi-
symmetric cyclic quadrilateral with right angles at vertices A2 and A4. Thus, Theorem 4.1 below gives a new
characterization of semi-symmetric cyclic quadrilaterals.
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Figure 5. When Q is cyclic

Lemma 4.1. Let 2A1A2A3A4 be a complete quadrilateral. Assume that rays
−−−→
A1A2 and

−−−→
A4A3 intersect at a point A5,

and that rays
−−−→
A1A4 and

−−−→
A2A3 intersect at a point A6. Let E be a point in the interior of angle ∠A5A3A6. Let F1, F2, F3,

and F4 denote the feet of the perpendiculars from E to the lines
←−−→
A1A2,

←−−→
A2A3,

←−−→
A1A4, and

←−−→
A3A4, respectively. Let R1, R2,

R3, and R4 denote the reflections of E in the lines
←−−→
A1A2,

←−−→
A2A3,

←−−→
A1A4, and

←−−→
A3A4, respectively. Then the vertex A2 is the

midpoint of segment R1R2 if and only if ∠A1A2A3 is a right angle. Similarly, the vertex A4 is the midpoint of segment
R3R4 if and only if ∠A1A4A3 is a right angle.

Note that the point E is not necessarily the Simson point of 2A1A2A3A4, and that 2A1A2A3A4 is not
necessarily cyclic.

Proof. We prove the lemma for the vertex A2 and the segment R1R2. The proof for the vertex A4 and the
segment R3R4 is similar, and is left to the reader.

First assume that ∠A1A2A3 is a right angle (see Figure 6). Since ∠A1A2A3 is a right angle and since F1 and F2

are the feet of the perpendiculars from E to lines
←−−→
A1A2 and

←−−→
A2A3, respectively, then quadrilateral 2A2F1EF2 is

a rectangle.
This implies that ∠R1ER2 = ∠F1EF2 is a right angle.
Let M denote the midpoint of side R1R2 of△ER1R2. Also, we have that F1 and F2 are the midpoints of sides

ER1 and ER2, respectively. It follows that △MF1R1 and △R2ER1 are similar, which implies that ∠MF1R1 is
a right angle. Also, △MF2R2 and △R1ER2 are similar. This implies that ∠MF2R2 is a right angle. Thus,

←−→
MF1

is the perpendicular from M to
←−→
ER1. Since lines

←−−→
A1A2 and

←−→
MF1 are perpendicular to line

←−→
ER1 at F1, then

←−→
MF1

=
←−−→
A1A2, which implies that M is on

←−−→
A1A2. Similarly,

←−→
MF2 is the perpendicular from M to

←−→
ER2, which implies

that M is on
←−−→
A2A3. Therefore, M is the unique point of intersection of lines

←−−→
A1A2 and

←−−→
A2A3, which implies that

M = A2.
Conversely, assume that A2 is the midpoint of segment R1R2. Suppose to the contrary that ∠A1A2A3 is not a

right angle. We may assume that ∠A1A2A3 is acute. The argument when ∠A1A2A3 is obtuse is similar.
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Figure 6. ∠A1A2A3 is a right angle

Let A7 be a point on the same side of line
←−−→
A1A2 as E such that ∠A1A2A7 is a right angle (see Figure 7). We

may assume without loss of generality that A7 is a point on ray
−−−→
A4A3. Since ∠A1A2A3 is acute and ∠A1A2A7 is

a right angle, then we have that A4 −A3 −A7 −A5. In particular, points A1, A3, A4, F2, A6, and R2 are on the
same side of line

←−−→
A2A7. Let F5 denote the foot of the perpendicular from E to

←−−→
A2A7. Let R5 denote the reflection

of E in the line
←−−→
A2A7.

Suppose that E is on ray
−−−→
A2A7. This implies that A2 is the foot of the perpendicular from E to line

←−−→
A1A2,

which in turn implies that A2 = F1. It follows that E −A2 −R1, which implies that lines
←−−→
R1R2 and

←−→
EA2 cross

at the point R1, not at the point A2. Since this point of intersection is unique, then it follows that
←−−→
R1R2 does not

pass through A2, a contradiction.
Now suppose that A2 and E are on the same side of line

←−−→
A2A7. Since angles ∠EF1A1 and ∠A7A2A1 are right

angles, then lines
←−→
ER1 and

←−−→
A2A7 are parallel. In this case, it follows that R1 and R2 are on the same side of line

←−−→
A2A7. This implies that segment R1R2 does not pass through A2, again a contradiction. In either case, we have
a contradiction, and it follows that E and A3 are on opposite sides of line

←−−→
A2A7.

Let A8 denote a point on ray
−−−→
A2A7 such that A2 −A7 −A8, and such that A8 is in the interior of angle

∠A4A1A3. Let A9 denote the point of intersection of rays
−−−→
A1A8 and segment A4A3. It follows immediately

that E is in the interior of ∠A5A7A8, and also that 2A1A2A7A9 is a complete quadrilateral. Since ∠A1A2A7 is a
right angle, then it follows by the argument given above that A2 is the midpoint of segment R1R5. Moreover,
we have that A3, R2 and R5 are all on the same side of line

←−−→
A2A7.

Since both
←−−→
R1R2 and

←−−→
R1R5 pass through A2, then

←−−→
R1R2 =

←−−→
R1A2 =

←−−→
R1R5 =

←−−→
R2R5. This implies that R1, R2,

R5, and A2 are all collinear. Since A2 is the midpoint of segment R1R2, then R1 −A2 −R2 and R1A2 = R2A2.
Similarly, since A2 is the midpoint of segment R1R5, then R1 −A2 −R5 and R1A2 = R5A2. Thus, R2 = R5,
which implies that ER2 = ER5. Since E is in the interior of ∠A5A3A6, then F2 is on ray

−−−→
A2A3 and F5 is on ray

−−−→
A2A7. Since ray

−−−→
A2A3 is in the interior of angle ∠A1A2A7, then E − F5 − F2 −R2. Thus, we have right triangle

△A2F2F5 with right angles at both vertices F2 and F5. Hence, we have a contradiction and it follows that
∠A1A2A3 is a right angle.

Theorem 4.1. Let 2A1A2A3A4 be a complete quadrilateral. Assume that rays
−−−→
A1A2 and

−−−→
A4A3 intersect at a point A5,

and that rays
−−−→
A1A4 and

−−−→
A2A3 intersect at a point A6. Let S denote the Simson point of 2A1A2A3A4. Let F1, F2, F3,

and F4 denote the feet of the perpendiculars from S to the lines
←−−→
A1A2,

←−−→
A2A3,

←−−→
A1A4, and

←−−→
A3A4, respectively. Let R1, R2,
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Figure 7. Suppose that ∠A1A2A3 is not a right angle

R3, and R4 denote the reflections of S in the lines
←−−→
A1A2,

←−−→
A2A3,

←−−→
A1A4, and

←−−→
A3A4, respectively. Then 2A1A2A3A4 is a

semi-symmetric cyclic quadrilateral if and only if A2 and A4 are the midpoints of segments R1R2 and R3R4, respectively.

Proof. First assume that A2 and A4 are the midpoints of segments R1R2 and R3R4, respectively.

Figure 8. 2A1A2A3A4 is a semi-symmetric cyclic quadrilateral

Since A2 is the midpoint of segment R1R2, then it follows by Lemma 4.1 that angle ∠A1A2A3 is a right angle.
Similarly, since A4 is the midpoint of segment R3R4, then it follows by Lemma 4.1 that angle ∠A1A4A3 is a right
angle (See Figure 8). Since angles ∠A1A2A3 and ∠A1A4A3 are right angles, then it follows that 2A1A2A3A4 is a
semi-symmetric cyclic quadrilateral [1].
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Conversely, assume that 2A1A2A3A4 is a semi-symmetric cyclic quadrilateral. Since 2A1A2A3A4 is a semi-
symmetric cyclic quadrilateral, then ∠A1A2A3 and ∠A1A4A3 are right angles [1]. It follows by Lemma 4.1 that
A2 and A4 are the midpoints of segments R1R2 and R3R4, respectively.
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