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Abstract

Malaria and Zika virus disease are infectious diseases transmitted among humans through the bites
of an infectious female Anopheles and Aedes aegypti mosquitoes, respectively. In areas where the
two diseases co-circulate, their coinfection is possible. Both diseases exhibit similar characteristic
symptoms, hence one can be misdiagnosed as the other. In this work, we use a system of nonlinear
ordinary differential equations to present a new model for the coinfection of the two diseases. The
dynamics of the individual diseases are also shown. The disease-free equilibrium (DFE) points of the
individual diseases are seen to be both locally and globally asymptotically stable when their respective
basic reproduction numbers are less than one. But, the coinfection-free equilibrium (CFE) is seen
to be only locally asymptotically stable when the basic reproduction number Rmz is less than one,
and unstable otherwise. However, the CFE may not be globally stable when Rmz < 1 due to the
reinfection of malaria-infected humans with Zika virus and vice versa. This shows that bringing down
the reproduction number, Rmz, to less than one may not be enough to eradicate the coinfection of the
two diseases. The effects of right and wrong treatment are also shown. It is also shown that where the
two mosquitoes co-exist, an increase in the population of one of them will lead to a corresponding
increase in the other, as both mosquitoes are affected by the same environmental conditions. Thus, an
increase in the spread of malaria will lead to an increase in the spread of Zika virus disease as both
diseases co-circulate.
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1 Introduction

Coinfection is said to be the simultaneous infection of a host by multiple pathogen species. It also
includes simultaneous infection of a single cell by two or more viruses, like in the coinfection
of liver cells with the hepatitis B virus and hepatitis D virus. According to [1], coinfections are
certainly the norm instead of a rare occurrence. Coinfection of human immunodeficiency virus
(HIV) and tuberculosis is common globally [2]. 80% of tuberculosis patients in most countries are
also HIV-positive [2]. There are established cases of coinfection which include; COVID-19 and
pneumonia, Hookworm and malaria, Chikungunya and Dengue, Dengue and HIV, Hepatitis C
and HIV, Hepatitis C and D, COVID-19 and flu, Malaria and Zika virus, Ebola and malaria, Dengue
and Zika virus, etc. [1, 3, 4]. In this work, however, we are concerned with the Malaria and Zika
virus disease coinfection. The coinfection of malaria and Zika virus disease occurs when humans
are bitten by infectious female Anopheles and infectious Aedes mosquitoes simultaneously and
are infected by both diseases. Since the two diseases exhibit similar characteristic symptoms as
shown below, the possibility of wrong diagnosis and wrong treatment of one disease as another
cannot be ruled out. Also, where the two diseases co-circulate, their coinfection is possible.
Malaria is an infectious disease caused by the Plasmodium parasite and transmitted between
humans through the bite of an infectious female Anopheles mosquito [5, 6]. Despite efforts at
controlling this deadly disease, malaria remains highly endemic in sub-Saharan Africa and Asia,
posing a threat globally. It was reported that almost half of the world’s population was at risk of
malaria. It is estimated that there are about 247 million cases globally, while the estimated number
of deaths due to malaria was 619,000 [7]. Tropical regions in Africa accounted for 92% cases and
93% deaths, respectively, out of which Nigeria had the highest with 25% and Uganda the lowest
with 4%. Symptoms of Malaria include morbidity, headache, fever, shaking chills, bloody stools,
jaundice, severe anaemia, profuse sweating, nausea, muscle pain, diarrhea, vomiting, abdominal
pain, fatigue, convulsions, coma, etc., [2].
Zika virus disease, as a flavivirus disease, is transmitted through the bites of infectious female
Aedes mosquitoes [8, 9]. It can also be transmitted through sex, blood transfusion, or by infectious
women to their newborns during pregnancy. It was reported in 2015 that over 69 countries had
Zika virus infection through mosquito bites, while human-to-human transmission cases occurred
in 13 countries, 29 countries had congenital transmission cases, and 20 countries had Guillain-
Barre syndrome (GBs) cases [10]. Symptoms of Zika virus disease include fatigue, headache,
maculopapular rash, mild fever, muscle and joint pain, retroorbital pain, oedema, vomiting, sore
throat, uveitis, lymphadenopathy, malaise, arthralgia, and conjunctivitis [8, 10, 11].
There are a number of models that have analyzed the control of malaria, such as [5], whose model
incorporated control strategies such as reduction of breeding sites of mosquitoes, awareness
campaigns against malaria, treatment strategies, and use of insecticides. Their work showed that
the control strategies were effective if sustained for a long time. [12] studied a transmission model
for malaria in the Democratic Republic of Congo, incorporating optimal control measures. Their
work showed that increasing the number of recovered individuals leads to a reduction in malaria
cases in the future. [13] worked on the transmission dynamics of malaria disease using a nonlinear
deterministic model. They used three control strategies, such as disease prevention through bed
nets, treatment, and insecticides, in their optimal control analysis. [14] studied a transmission
model for malaria using certain control strategies like campaign strategy for malaria control,
sufficient treatment of infected people with drugs, the use of insecticide-treated bed nets, spraying
of insecticides, and destruction of mosquito breeding sites, which are all capable of reducing
malaria transmission. [15] worked on the optimal control of a malaria model incorporating a
seasonal factor in mosquitoes. Optimal control analysis in their work showed that measures such
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as the use of insecticides, prevention of breeding of mosquitoes, and treatment of infected humans
will significantly reduce the spread of the disease in both human and mosquito populations
simultaneously. [6] looked at the effects of temperature on the population dynamics of malaria.
Their work showed that higher indoor temperature influences the efficacy of control measures.
[16] considered a malaria model to prevent relapse to the disease and saturated fumigation to
control the mosquitoes. Specifically, the work suggested using tafenoquine for treatment, such
that when its usage is increased, the basic reproduction number decreases and vice versa. Also,
[17] formulated a transmission model for malaria which incorporated the role of climatic change
in the optimal control of the disease. Their optimal control showed that the use of treated bed nets,
treatment of infected humans, and application of insecticides will reduce the rate of infection. [18]
developed a mathematical model for the control of the spread of malaria with treatment, drug
resistance, and the use of mosquito nets as control strategies. The model was fitted with data
from the incidence of malaria in Nigeria. Their results showed that malaria will likely remain
endemic in Nigeria except there is widespread use of mosquito nets, treatment of infectious
humans is improved, and more attention is given to reducing the spread of the dominant resistant
strain. [19] introduced the use of awareness campaigns against malaria, the use of insecticides and
treatment as intervention measures to control the spread of malaria. The cost-effective analysis
revealed that using social media to organize an awareness campaign performed better than other
control measures considered in their work. [20] formulated a deterministic mathematical model
to simulate the transmission of malaria between human and mosquito populations. Reducing
the contact rate between humans and mosquitoes, effective treatment of infectious humans, and
reducing the amount of mosquitoes in circulation were the recommendations given in his work for
effective control of malaria. [21] studied a stochastic model for the control of malaria. Their work
showed that the stability of the stochastic model holds more generally than a deterministic model.
Mathematical modelling of Zika virus disease has been carried out by many researchers. [22]
formulated a model for Zika that incorporates the use of insecticides to reduce the vectors and
vaccination as control strategies. Their analysis showed that the use of indoor and outdoor
insecticides increases the death rate of mosquitoes and also reduces the longevity of mosquitoes.
Vaccination was also seen to play a huge role in protecting susceptible humans from contracting
the virus. [23] proposed a model for Zika virus infection using delay differential equations with
fractional order. The numerical simulations showed that combining fractional order and time
delays in the epidemic model effectively enhances the dynamics and strengthens the stability
condition of the model. [8] worked on a mathematical model that incorporated sterile-insect
technology (SIT) to control the vector. Their numerical experiments showed that the release of
sterile-male mosquitoes in sufficient quantity into the target population reduces the spread of
mosquitoes and consequently Zika virus disease, as there are fewer vectors to transmit the disease.
[24] formulated and analyzed a mathematical model for Zika virus disease, which considered
both sexual and vector transmission. The model also incorporated vector control and human
awareness as control measures. The model result was fitted with real data from Colombia, while
they used the normalized forward sensitivity index to show that the biting rate of mosquitoes,
the rate of transmission, the recruitment rate of mosquitoes, the recovery rate of humans and
the awareness rate were more sensitive parameters. [25] studied the optimization of awareness
campaigns and the use of insecticides against the spread of the Zika virus in human and mosquito
populations. They fitted their results with real data obtained from an outbreak in Colombia and
explored the various control strategies for optimality. Their work showed that combining both
control strategies performed better than adopting only one of the controls. Other works modelling
Zika virus disease include [9, 26, 27].
For disease coinfection, [28] worked on malaria and Zika coinfection, which highlighted the
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importance of increasing the recovery rate of humans as a means of controlling the coinfection.
Also, [29] carried out a study to show the impact of COVID-19 and Malaria coinfection. They
conducted a cohort study with data collected from the Universal COVID-19 Treatment Center in
Khartoum, Sudan. Their work showed that most patients diagnosed with COVID-19 also had
malaria. [30] worked on a Zika and malaria coinfection model using a stratified survey of 100
sick persons in nine (9) secondary health centres in the southeast of Nigeria. Though no model
was analyzed, blood samples of the sick persons were tested, and it was discovered that there
are 20% with Zika virus, 55% with malaria, and 15% with coinfection. This study exposed the
high possibility of the occurrence of both diseases. Their findings underline the need for more
studies on the coinfection of malaria and Zika virus disease. [31] carried out a research study
to find out the possibility of co-circulation of Zika virus with other arboviruses and malaria.
Their work showed these diseases are increasingly endemic but are not well reported in some
places, while also highlighting that Zika virus, malaria, and other flavivirus can co-circulate in
Nigeria. [32] in their work investigated the impact of wrong treatment and misdiagnosis in the
coinfection of dengue fever and Zika virus disease. Their work showed that an increase in the
level of wrong treatment will lead to an increase in the total infectious population. This work
attempts a similar investigation on the co-circulation and coinfection of malaria and Zika virus
disease. [33] presented a mathematical model for the coinfection of malaria and Zika virus disease.
Their work incorporated vaccination against malaria, treatment of infectious humans, as well as
vector control through sterile-insect technology (SIT). The work established the cases of the impact
of one disease on the other, attributed to misdiagnosis. The work, however, did not investigate the
effect of misdiagnosis and wrong treatment. Hence, the novelty and contribution of this work are
studying how misdiagnosis and wrong treatment affect the infectious classes. For further study
on coinfections, see [34–36].
This work is motivated by the works of [32] and [33] as well as the works of [28, 30, 31], which
have proved beyond doubt the existence of the coinfection of malaria and Zika virus disease. In
this work, a new model to investigate the effects of wrong diagnoses and wrong treatment in
the coinfection of malaria and Zika virus disease was presented. We aim to show that where
Anopheles and Aedes mosquitoes co-exist and malaria co-circulate with Zika virus disease, then
their coinfection is possible. Also, since both diseases have similar symptoms, there is a possibility
of misdiagnosing one as the other and offering the wrong treatment. Then, we proceed to highlight
the effect of such wrong treatment on the infected population. The rest of this work is arranged
as follows: In Section 2, we present the malaria sub-model and analyze it, in Section 3, we look
at the Zika sub-model with its analysis, while in Section 4, we consider the coinfection model.
Numerical experiments are carried out in Section 5 while we conclude the work in Section 6.

2 Malaria sub-model

The Malaria sub-model is made up of seven compartments comprising the susceptible humans
(Sh), malaria infectious humans (Ihm), malaria infectious humans undergoing wrong treatment
due to misdiagnosis (Tz), malaria infectious humans receiving right treatment (Thm), recovered
humans (Rh), susceptible mosquitoes (Sm) and infectious mosquitoes (Im). Humans are recruited
into the susceptible population at the rate πh while mosquitoes are recruited into the susceptible
population at the rate πm. It is assumed that when mosquitoes bite humans at the rate α1, they
either infect or get infected with the parasite. The parameter, β1 is the probability of transmission
of the malaria parasite from infectious mosquitoes to humans. The malaria-infected humans, Ihm,
malaria humans undergoing the right treatment, Thm and humans wrongly treated for malaria,
Tz infect the mosquitoes at the probabilities β2, β3 and β4, respectively. Furthermore, τ1 is the
rate at which infectious humans are receiving the right treatment for malaria, and τ2 is the rate at
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which infectious humans receive wrong treatment due to misdiagnosis. Those who are not treated
can recover naturally at the rate ϕ1. The rate of recovery for humans who are receiving the right
treatment for malaria is γ1, while the recovery rate of humans who are being treated wrongly is
γ2. The natural mortality rates for all humans and mosquitoes are µh and µm, respectively, while
µ1 is the disease-induced death rate, µ2 is the death rate of those undergoing the right treatment,
and µ3 is the death rate due to wrong treatment. The following system of nonlinear ordinary
differential equations describes the disease transmission dynamics:

dSh(t)
dt

= πh − α1β1 Im(t)Sh(t)− µhSh(t) + θRh(t),

dIhm(t)
dt

= α1β1 Im(t)Sh(t)− (τ1 + τ2 + ϕ1 + µh + µ1)Ihm(t),

dThm(t)
dt

= τ1 Ihm(t)− (γ1 + µh + µ2)Thm(t),

dTz(t)
dt

= τ2 Ihm(t)− (γ2 + µh + µ3)Tz(t), (1)

dRh(t)
dt

= ϕ1 Ihm(t) + γ2Tz(t) + γ1Thm(t)− (µh + θ)Rh(t),

dSm(t)
dt

= πm − α1(β2 Ihm(t) + β3Thm(t) + β4Tz(t))Sm(t)− µmSm(t),

dIm(t)
dt

= α1(β2 Ihm(t) + β3Thm(t) + β4Tz(t))Sm(t)− µm Im(t),

with the initial conditions to system (1) given as X0 = (S0
h, I0

hm, T0
hm, T0

z , R0
h, S0

m, I0
m).

Figure 1. Malaria-only flow diagram
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Table 1. Description of variables and parameters

Variables Description
Sh Susceptible humans
Ihm Infectious humans with malaria
Ihz Infectious humans with Zika virus disease

Ihmz Coinfectious humans with both diseases
Thm Infectious humans with malaria undergoing right treatment
Thz Infectious humans with Zika undergoing right treatment
Tm Infectious humans with Zika undergoing wrong treatment
Tz Infectious humans with malaria undergoing wrong treatment

Thmz Coinfectious humans with both diseases undergoing treatment
Rh Recovered humans
Sm Susceptible Anopheles mosquitoes
Im Infectious Anopheles mosquitoes
Sz Susceptible Aedes mosquitoes
Iz Infectious Aedes mosquitoes

Parameters Description
πh Level of recruitment of humans into susceptible population
πm Level of recruitment of Anopheles mosquitoes
πz Level of recruitment of Aedes mosquitoes
θ Rate of loss of immunity to malaria from recovered class

α1 Contact rate of Anopheles mosquitoes with humans
α2 Contact rate of Aedes mosquitoes with humans
β1 Probability of transmission from infectious Anopheles mosquitoes to humans
β2 Probability of transmission from infectious humans to Anopheles mosquitoes
β3 Probability of transmission from humans undergoing treatment to Anopheles mosquitoes
β4 Probability of transmission from humans undergoing wrong treatment to

Anopheles mosquitoes
η1 Probability of transmission from infectious Aedes mosquitoes to humans
η2 Probability of transmission from infectious humans to Aedes mosquitoes
η3 Probability of transmission from humans undergoing treatment to Aedes mosquitoes
η4 Probability of transmission from humans undergoing wrong treatment to

Aedes mosquitoes
µh Natural death rate of humans
µm Natural death rate of mosquitoes
µ1 Disease-induced death rate in infectious humans with malaria only
µ2 Disease-induced death rate in infectious humans with malaria only undergoing

right treatment
µ3 Disease-induced death rate in infectious humans with malaria only undergoing

wrong treatment
µ4 Disease-induced death rate in infectious humans with Zika only
µ5 Disease-induced death rate in infectious humans with Zika only undergoing

right treatment
µ6 Disease-induced death rate in infectious humans with Zika only undergoing

wrong treatment
µ7 Disease-induced death rate in coinfectious humans
µ8 Disease-induced death rate in coinfectious humans undergoing treatment
τ1 Rate at which infectious humans with malaria undergo the right treatment
τ2 Rate at which infectious humans with malaria undergo the wrong treatment
τ3 Rate at which infectious humans with Zika undergo the right treatment
τ4 Rate at which infectious humans with Zika undergo the wrong treatment
τ5 Rate at which coinfectious humans undergo treatment for both diseases
τ6 Rate at which coinfectious humans undergo treatment for only malaria
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τ7 Rate at which coinfectious humans undergo treatment for only Zika virus
γ1 Rate of recovery of infectious humans with malaria undergoing the right treatment
γ2 Rate of recovery of infectious humans with malaria undergoing wrong treatment
γ3 Rate of recovery of infectious humans with Zika undergoing the right treatment
γ4 Rate of recovery of infectious humans with Zika undergoing wrong treatment
γ5 Rate of recovery of coinfectious humans undergoing treatment
ϕ1 Rate at which infectious humans with malaria not undergoing treatment
ϕ2 Rate at which infectious humans with Zika virus not undergoing treatment

Positivity of solutions and invariant region

Lemma 1 Given that the initial conditions (S0
h, I0

hm, T0
hm, T0

z , R0
h, S0

m, I0
m) > 0 at t = 0 lies in the region,

Ω, then the solution set (Sh(t), Ihm(t), Thm(t), Tz(t), Rh(t), Sm(t), Im(t)) to the system remains positive
∀ t > 0.

Proof We see from the first and second equation in (1) that

dSh(t)
dt

≥ −(α1β1 Im(t) + µh)Sh(t), and

dIhm(t)
dt

≥ −(τ1 + τ2 + ϕ1 + µh + µ1)Ihm(t),

which we solve to get

Sh(t) ≥ S0
he−

∫t
0(α1β1 Im(t)+µh)dt > 0, and

Ihm(t) ≥ I0
hme−(τ1+τ2+ϕ1+µh+µ1)t > 0,

respectively. Therefore, the solutions Sh(t) and Ihm(t) will remain positive for all t with the given
positive initial conditions. Similar results can be obtained for the other components. Hence, the
solution to the model system remains positive at all times provided the initial solution set is
positive [37, 38].

Lemma 2 Every solution to the system (1) lies within the region Ω. That is, the region Ω is bounded.

Proof We want to prove that the region, Ω is positively invariant by showing that all the solutions
to the model system will enter and remain in Ω. Let (Sh, Ihm, Thm, Tz, Rh) ∈ R5, be the solution
to the human component of the system, with positive initial values and (Sm, Im) ∈ R2. It can be
shown that the total human and mosquito populations satisfy the differential equations

dNh
dt

= πh − µhNh − N1, (2)

dNm

dt
= πm − µmNm,

respectively, where N1 = µ1 Ihm + µ2Thm + µ3Tz. Then, from (2), we have dNh(t)
dt ≤ πh − µhNh(t),

whose solution is Nh(t) ≤ πh
µh

+
(

N(0)− πh
µh

)
e−µht. This shows that as t → ∞, we have 0 < Nh ≤

πh
µh

. Thus, all feasible solutions to the human-only component of the model system enter and

remain in the region Ωh =
{
(Sh, Ihm, Thm, Tz, Rh) ∈ R5 : Nh ≤ πh

µh

}
.

Using the same procedure, we can show that all feasible solutions to the mosquito components of
the equation enter and remain in the region Ωm =

{
(Sm, Im) ∈ R2 : Nm ≤ πm

µm

}
. Thus, all possible
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solutions to the system will remain bounded in the region Ω = Ωh × Ωm and prove that the region
Ω is positively invariant with respect to the flow generated by (1). The results of Lemma 1 and
Lemma 2 are sufficient conditions to consider and analyze the system in this feasible region Ω
because it is epidemiologically and mathematically well-posed in the region, hence can be studied
and analyzed [4, 39, 40].

Malaria basic reproduction number

The malaria-free equilibrium point (MFE) is the steady state solution of (1) where there is no
malaria in the system [41, 42]. It is obtained by equating Ihm = Thm = Tz = Im = 0 and solving to
obtain the values of state variables. Thus, the malaria-free equilibrium point denoted here by E0

m

is given by E0
m =

(
πh
µh

, 0, 0, 0, 0, πm
µm

, 0
)

.
The malaria basic reproduction number, R0m is the average number of new cases of malaria that
can be caused by one new infectious case of the disease introduced into an entirely susceptible
population [33]. This important threshold number is calculated using the next-generation matrix
approach. The malaria basic reproduction number is calculated as the spectral radius of the
Next-Generation matrix (F0mV−1

0m ), where F0m and V0m are the Jacobian matrices obtained from
the diseased classes in the system [43, 44]. The matrices of F0m and V0m are given as

F0m =


0 0 0 A1
0 0 0 0
0 0 0 0

A2 A3 A4 0

 , and V0m =


B1 0 0 0
−τ1 B2 0 0
−τ2 0 B3 0

0 0 0 µm

 ,

where A1 = α1β1πh
µh

, A2 = α1β2πm
µm

, A3 = α1β3πm
µm

, A4 = α1β4πm
µm

, B1 = τ1 + τ2 + ϕ1 + µ1 + µh,
B2 = γ1 + µh + µ2, B3 = γ2 + µh + µ3. The Next-Generation matrix is obtained to be

F0mV−1
0m =


0 0 0 A1

µm

0 0 0 0
0 0 0 0

A2
B1

+ A3τ1
B1B2

+ A4τ2
B1B3

A3
B2

A4
B3

0

 ,

with the eigenvalues 0, 0,±
√

A1(A2B2B3+A3τ1B3+A4τ1B2)
µmB1B2B3

. Therefore, the malaria basic reproduction
number is

R0m =

√
A1(A2B2B3 + A3τ1B3 + A4τ2B2)

µmB1B2B3
, (3)

which can be rewritten as

R2
0m =

A1 A2

µmB1
+

A1τ1 A3

µmB1B2
+

A1τ2 A4

µmB1B3
. (4)

The term A1 A2
µmB1

in (4) is the total expected number of humans that will be infected at the malaria-
free equilibrium point by a single newly infected human whilst they are infectious but before
entering treatment, A1τ1 A3

µmB1B2
is the total expected number of humans that will be infected at the

malaria-free equilibrium point by a single newly infected human whilst they are undergoing right
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treatment for malaria while A1τ2 A4
µmB1B3

is the total expected number of humans that will be infected at
the malaria-free equilibrium point by a single newly infected human whilst they are undergoing
incorrect treatment for malaria.

Local asymptotic stability of malaria-free equilibrium point

Theorem 1 The malaria-free equilibrium point is locally asymptotically stable if R0m < 1, and unstable if
R0m > 1.

Proof The Jacobian matrix of malaria sub-model evaluated at the malaria-free equilibrium point is

J(E0
m) =



−µh 0 0 0 θ 0 −A1
0 −B1 0 0 0 0 A1
0 τ1 −B2 0 0 0 0
0 τ2 0 −B3 0 0 0
0 0 γ1 γ2 −B4 0 0
0 −A2 −A3 −A4 0 −µm 0
0 A2 A3 A4 0 0 −µm


,

with B4 = θ + µh and all the A
′
i s and B

′
i s are the same as in Section 2. The Jacobian matrix,

J(E0
m) can be reduced to a submatrix if the rows and the columns with one entry are removed.

The eigenvalues of the system corresponds to −µh,−µm,−(µh + θ) and the eigenvalues of the
submatrix

J1(E0
m) =


−B1 0 0 A1
τ1 −B2 0 0
τ2 0 −B3 0
A2 A3 A4 −µm

 .

The characteristics polynomial that corresponds to the submatrix, J1(E0
m) is given by

P(λ) = λ4 + Q3λ3 + Q2λ2 + Q1λ + Q0, (5)

where

Q3 = µm + B1 + B2 + B3,

Q2 = µm(B2 + B3) + B1(B2 + B3) + B2B3 +
A1τ1 A3

B2
+

A1τ2 A4

B3
+ µmB1[1 − R2

0m],

Q1 = B1B2(µm + B3) +
A1τ1 A3B3

B2
+

A1τ2 A4B2

B3
+ µmB1(B2 + B3)[1 − R2

0m],

Q0 = µmB1B2B3[1 − R2
0m].

According to [45, 46], Routh-Hurwitz criterion for stability states that all roots of the characteristic
polynomial P(λ) will have negative real parts if Q3 > 0, Q2 > 0, Q1 > 0, Q0 > 0 and Q3Q2 > Q1.
These conditions are satisfied if R0m < 1. This shows that E0

m is locally asymptotically stable if
R0m < 1, and unstable if R0m > 1. Hence, if R0m < 1, then malaria can die out in the system
depending on the initial size of the infected population.
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Global asymptotic stability of malaria-free equilibrium point

The method of Castillo-Chavez [47] summarized in Lemma 3 below, was employed to check if the
MFE is globally asymptotically stable (GAS) or not.

Lemma 3 Consider the system of differential equations

dX1

dt
= F1(X1, 0), (6)

dX2

dt
= F2(X1, X2), F2(X1, 0) = 0, (7)

where (6) is the system of differential equations, satisfied by non-diseased classes such that X1 = (Sh, Rh, Sm)

and (7) is the system of differential equations satisfied by the diseased classes so that X2 = (Ihm, Thm, Tz, Im).
The malaria-free equilibrium point (MFE), E0

m is globally asymptotically stable if (6) is globally asymptoti-
cally stable, and if in (7), BX2 − F1(X1, X2) = 0, where B is the Jacobian matrix of F2(X1, X2), evaluated
at E0

m.

Theorem 2 The malaria-free equilibrium point of the model (1) is globally asymptotic stable if R0m < 1
and unstable if R0m > 1.

Proof We only need to employ Lemma 3 and show that the conditions on (6) and (7) holds if
R0m < 1. At the malaria-free equilibrium point, the corresponding differential equations for
X1 = (Sh, Rh, Sm), taking note that Ihm = Thm = Tz = Rh = 0, become

dSh(t)
dt

= πh − µhSh(t),

dRh(t)
dt

= 0,

dSm(t)
dt

= πm − µmSm(t).

(8)

Solving the resulting differential equations of (7) by integration gives

Sh(t) =
πh
µh

+ (S0
h −

πh
µh

)e−µht,

Rh(t) = R0
h = 0,

Sm(t) =
πm

µm
+

(
S0

m −
πm

µm

)
e−µmt.

(9)

As t → ∞, we will have Sh → πh
µh

, Rh → 0 and Sm → πm

µm
respectively which corresponds to the

values of these state variables at the MFE. Thus, (6) is GAS.
Also, the matrix B corresponds to our Jacobian submatrix, J1(E0

m). Hence, the expression BX2 −

F1(X1, X2) becomes

BX2 − F1(X1, X2) =


α1β1(

πh
µh

− Sh)Im

0
0

α1(β2 Ihm + β3Thm + β4Tz)(
πm
µm

− Sm)

 .
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Since Sh → πh
µh

, and Sm → πm

µm
then, πh

µh
≥ Sh and πm

µm
≥ Sm respectively. Thus, BX2 − G(X1, X2) ≥

0. Hence, the malaria-free equilibrium point is globally asymptotical stable. This shows that the
model has a unique endemic equilibrium which exists if R0m > 1. This rules out the possible
occurrence of backward bifurcation in the model, since backward bifurcation requires at least two
endemic equilibria to occur. Epidemiologically, this means that having R0m < 1 is a necessary
and sufficient condition for eradicating malaria in the population [48].

Endemic equilibrium point of the malaria-only model

The malaria endemic equilibrium points (MEEPs) are steady-state solutions in the population
where malaria persists, that is, where all state variables are positive. The malaria endemic
equilibrium point is denoted in this work by E∗

m = (S∗
h, I∗hm, T∗

hm, T∗
z , R∗

h, S∗
m, I∗m) and expressed in

terms of I∗hm. Thus we have

S∗
h =

(πh + f4 I∗hm)[ f1 I∗hm + f2]

α1β1 f3R2
0m I∗hm + µh[ f1 I∗hm + f2]

, T∗
hm =

τ1 I∗hm
B2

, T∗
z =

τ2 I∗hm
B3

, R∗
h = f4 I∗hm,

S∗
m =

πmB2B3

f1 I∗hm + f2
, I∗m =

f3R2
0m I∗hm

f1 I∗hm + f2
,

where B4 = µh + θ, f1 = α1β2B2B3 + α1β3τ1B3 + α1β4τ2B2, f2 = µmB2B3, f3 =
µmB1B2B3

A1
,

f4 =
B3γ1τ1 + B2γ2τ2

B2B3B4
with the other A

′
i s and B

′
i s same as in Section 2. In the above expressions

for the state variables at the endemic points, if we set I∗hm = 0, we could see that all the state

variables (Sh, Ihm, Thm, Rh, Sm, Im) → (
πh
µh

, 0, 0, 0, 0,
πm

µm
, 0) which corresponds to the malaria-free

equilibrium point. When I∗hm ̸= 0, we have the endemic equilibrium point for the malaria
sub-model.

Theorem 3 The malaria endemic equilibrium point exists and is unique if R0m > 1.

Proof Substituting the values for the state variables into the equation for I∗hm in (1) gives;

G1 I∗2
hm + G2 I∗hm = 0, (10)

where G1 = A1 f3(B1 − f4)R2
0m + πh f1B1 and G2 = µmB1B2B3πh(1 −R2

0m).
Case 1: If G1 > 0 and G2 < 0, a unique endemic equilibrium point exists at R0m > 1.
Case 2: If G1 > 0 and G2 > 0, then R0m < 1 and no endemic equilibrium point will exist.
Case 3: Similarly, if G1 < 0 and G2 < 0, then no endemic equilibrium point will exist at R0m > 1.
Case 4: If G1 < 0 and G2 > 0, then an endemic equilibrium point exists when R0m < 1. This
situation cannot be regarded as backward bifurcation since the latter occurs for more than one
endemic equilibrium point. Hence, the endemic equilibrium point for the malaria sub-model
exists when R0m > 1.

3 Zika sub-model

The Zika disease sub-model is made up of seven compartments: the susceptible humans Sh, Zika
infectious humans Ihz, Zika infectious humans receiving wrong treatment due to misdiagnosis
Tm, Zika infectious humans receiving right treatment Thz, recovered humans Rh, susceptible
mosquitoes Sz and infectious mosquitoes with Zika, Iz. The level of recruitment of humans into
the susceptible class is πh. The infectious mosquitoes bite humans at the rate α2 and transmit
Zika virus with probability η1. We assume that the rate at which Zika-infected humans receive
the right treatment is τ3, while the rate of receiving wrong treatment due to misdiagnosis is τ4.
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The rates of recovery for Thz and Tm are put at γ3 and γ4, respectively. The untreated humans
in Ihz recover at the rate, ϕ2. Also, µh and µz are the natural mortality rates for humans and
mosquitoes, respectively, while µ4, µ5 and µ6 are the disease-induced death rates for infectious
humans, humans undergoing treatment for Zika, and humans wrongly treated, respectively. In
the mosquito population, the level of recruitment of mosquitoes into the susceptible class is
πz. The susceptible class of mosquitoes contracts Zika virus with the probabilities η2, η3 and η4
respectively, when they bite humans in the infectious classes Ihz, Thz and Tm at the biting rate α2.
The above assumptions on the transmission dynamics of Zika lead to the following system of
nonlinear ordinary differential equations:

dSh(t)
dt

= πh − α2η1 Iz(t)Sh(t)− µhSh(t),

dIhz(t)
dt

= α2η1 Iz(t)Sh(t)− (τ3 + τ4 + ϕ2 + µh + µ4)Ihz(t),

dThz(t)
dt

= τ3 Ihz(t)− (γ3 + µh + µ5)Thz(t),

dTm(t)
dt

= τ4 Ihz(t)− (γ4 + µh + µ6)Tm(t), (11)

dRh(t)
dt

= ϕ2 Ihz(t) + γ3Tm(t) + γ4Thz(t)− µhRh(t),

dSz(t)
dt

= πz − α2(η2 Ihz(t) + η3Thz(t) + η4Tm(t))Sz(t)− µzSz(t),

dIz(t)
dt

= α2(η2 Ihz(t) + η3Thz(t) + η4Tm(t))Sz(t)− µz Iz(t),

with the initial conditions to the system (11) given as Y0 = (S0
h, I0

hz, T0
hz, T0

m, R0
h, S0

z , I0
z ).

Figure 2. Zika-only flow diagram
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Positivity of solutions and invariant region

The positivity of solutions to the Zika sub-model can be established using the same procedure
for the malaria sub-model and shown to be positive at all times. Also, all feasible solutions
to the human and mosquito components of the equation enter and remain in the region Ωh ={
(Sh, Ihz, Thz, Tm, Rh) ∈ R5 : Nh ≤ πh

µh

}
and Ωz =

{
(Sz, Iz) ∈ R2 : Nz ≤ πz

µz

}
respectively. Thus,

all possible solutions to the system will remain bounded in the region Ω = Ωh × Ωz and prove
that the region Ω is positively invariant with respect to the flow generated by (11). Thus, the
system is epidemiologically well-posed in the region [39].

Zika-free equilibrium point and basic reproduction number of Zika

The zika-free equilibrium point is given by E0
z =

(
πh
µh

, 0, 0, 0, 0, πz
µz

, 0
)

and the Next-Generation
matrix for Zika sub-model, following the same procedure as that of malaria, is

F0zV−1
0z =


0 0 0 C1

µz

0 0 0 0
0 0 0 0

C2
D1

+ C3τ3
D1D2

+ C4τ4
D1D3

C3
D2

C4
D3

0

 ,

where C1 = α2η1πh
µh

, C2 = α2η2πz
µz

, C3 = α2η3πz
µz

, C4 = α2η4πz
µz

, D1 = τ3 + τ4 + ϕ2 + µ4 + µh,
D2 = γ3 + µh + µ5, D3 = γ4 + µh + µ6.
The eigenvalues of the next-generation matrix, F0zV−1

0z is

(
0, 0,±

√
C1(C2D2D3 + C3τ3D3 + C4τ4D2)

µzD1D2D3

)
.

Therefore, the Zika control number is

R0z =

√
C1(C2D2D3 + C3τ3D3 + C4τ4D2)

µzD1D2D3
, (12)

which can be rewritten as

R2
0z =

C1C2

µzD1
+

C1τ3C3

µzD1D2
+

C1τ4C4

µzD1D3
.

The term C1C2
µzD1

, in (12) is the total expected population of humans that will be infected at the

Zika-free equilibrium point by one newly infectious human before entering treatment, C1τ3C3
µzD1D2

is
the total expected number of humans that will be infected at the Zika-free equilibrium point by
one newly infectious human whilst they are undergoing treatment for Zika while C1τ4C4

µzD1D3
is the

total expected number of humans that will be infected at the Zika-free equilibrium point by one
newly infectious human whilst they are undergoing incorrect treatment for Zika.

Local asymptotic stability of the Zika-free equilibrium point

Theorem 4 The Zika-free equilibrium point is locally asymptotically stable if R0z < 1, and unstable if
R0z > 1.



92 | Bulletin of Biomathematics, 2025, Vol. 3, No. 1, 79–110

The Jacobian matrix of the Zika sub-model evaluated at the Zika-free equilibrium point is

J(E0
z ) =



−µh 0 0 0 0 0 −C1
0 −D1 0 0 0 0 C1
0 τ3 −D2 0 0 0 0
0 τ4 0 −D3 0 0 0
0 0 γ3 γ4 −µh 0 0
0 −C2 −C3 −C4 0 −µz 0
0 C2 C3 C4 0 0 −µz


.

The eigenvalues of the Jacobian matrix, J(E0
z ) are −µh,−µh,−µz, and the eigenvalues of the

sub-matrix

J1(E0
z ) =


−D1 0 0 C1

τ3 −D2 0 0
τ4 0 −D3 0
C2 C3 C4 −µz

 .

The submatrix, −J1(E0
z ), is similar to the Jacobian submatrix, J1(E0

m) obtained in (2.3). This implies
that all the eigenvalues of J1(E0

z ) are negative or have a negative real part if R0z < 1. Therefore,
the zika-free equilibrium point, E0

z is locally asymptotically stable if R0z < 1, and unstable if
R0z > 1.

Global asymptotic stability of Zika-free equilibrium point

Following the same procedure used in establishing the global stability of the malaria-free equilib-
rium, the corresponding differential equations for Y1 = (Sh, Rh, Sz), taking note that Ihz = Thz =

Tm = Rh = 0, become

dSh(t)
dt

= πh − µhSh(t),

dRh(t)
dt

= 0,

dSz(t)
dt

= πz − µzSz(t).

(13)

Solving the resulting differential equations of (7) by integration gives

Sh(t) =
πh
µh

+ (S0
h −

πh
µh

)e−µht,

Rh(t) = R0
h = 0,

Sz(t) =
πz

µz
+

(
S0

z −
πz

µz

)
e−µzt.

(14)

As t → ∞, we will have Sh → πh
µh

, Rh → 0 and Sz → πz

µz
respectively which corresponds to the

values of these state variables at the ZFE. Thus, (6) is GAS.
Also, the matrix B corresponds to our Jacobian submatrix, J1(E0

z ). Hence, the expression BX2 −

F1(X1, X2) becomes
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BX2 − F1(X1, X2) =


α1β1(

πh
µh

− Sh)Iz

0
0

α2(η2 Ihz + η3Thz + η4Tm)(
πz
µz

− Sz)

 .

Since Sh → πh
µh

, and Sz → πz

µz
then, πh

µh
≥ Sh and πz

µz
≥ Sz respectively. Thus, BX2 − G(X1, X2) ≥ 0.

Hence, the Zika-free equilibrium point is globally asymptotical stable. This shows that the model
has a unique endemic equilibrium which exists if R0z > 1. This rules out the possible occurrence
of backward bifurcation in the model, since backward bifurcation requires at least two endemic
equilibria to occur. Epidemiologically, this means that having R0z < 1 is a necessary and sufficient
condition for eradicating Zika virus disease in the population.

Endemic equilibrium point of the Zika sub-model

The Zika endemic equilibrium point is a steady-state solution in the population where Zika
persists, that is, where all state variables are positive. The Zika endemic equilibrium points
denoted in this work by E∗

z = (S∗
h , I∗hz, T∗

hz, T∗
m, R∗

h, S∗
z , I∗z ) is gotten in terms of I∗hz as

S∗
h =

πh[g1 I∗hz + g2]

α2η1g3R2
0z I∗hz + µh[g1 I∗hz + g2]

, T∗
hz =

τ3 I∗hz
D2

, T∗
m =

τ4 I∗hz
D3

, R∗
h = g4 I∗hz, S∗

z =
πzD2D3

g1 I∗hz + g2
,

I∗z =
g3R2

0z I∗hz
g1 I∗hz + g2

, where g1 = α2η2D2D3 + α2η3τ3D3 + α2η4τ4D2, g2 = µzD2D3, g3 =
µzD1D2D3

C1
,

and g4 =
D3γ3τ3 + D2γ4τ4

µhD2D3
.

Theorem 5 The Zika endemic equilibrium point exist and is unique if R0z > 1.

Proof If we substitute the values of the state variables at the Zika endemic equilibrium into the
equation for I∗hz in (11), we have;

H1 I∗2
hz +H2 I∗hz = 0, (15)

where H1 = C1g3D1R2
0z + πhg1D1 and H2 = µzD1D2D3πh(1 −R2

0z). Since H1 > 0, a unique
endemic equilibrium point will exist if H2 < 0, that is, if R0z > 1.

4 The coinfection model

The coinfection model is a combination of the two sub-models, the malaria sub-model and the Zika
sub-model, with the addition of human compartments that are coinfected with malaria and Zika
virus disease. Precisely, the compartments, humans who are coinfected with both malaria and
Zika, Ihmz, and coinfectious humans receiving treatment, Thmz, are added to the human population.
Since there are different mosquitoes that transmit the malaria parasite and Zika virus, there will
not be a coinfection case for mosquitoes. Humans that are coinfected with malaria and Zika
virus disease can either transmit malaria to susceptible Anopheles mosquitoes or Zika virus to
susceptible Aedes mosquitoes at the probabilities β5 and η5 respectively. Similarly, coinfectious
humans that are undergoing treatment for malaria and Zika virus diseases can either transmit
malaria to susceptible Anopheles mosquitoes or Zika virus to susceptible Aedes mosquitoes at the
probabilities β6 and η6 respectively. The proportion τ5 of Ihmz receive treatment for both malaria
and Zika virus diseases and recovers at the rate γ5 while the proportions τ6 and τ7 of Ihmz receive
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treatments for only malaria and only zika virus disease respectively. Coinfection of humans occurs
when mosquitoes infected with malaria bite humans already infected with the Zika virus and
infect them with the malaria parasite or vice versa.

Figure 3. Coinfection flow diagram where f1 = α1β1 Im(t), f2 = α2η1 Iz(t), f3 = α2η1 Iz(t), f4 = α1β1 Im(t), f5 =
α1(β2 Ihm(t) + β3Thm(t) + β4Tz(t) + β5 Ihmz(t) + β6Thmz(t)) and f6 = α2(η2 Ihz(t) + η3Thz(t) + η4Tm(t) +
η5 Ihmz(t) + η6Tmz(t))

The following system of ordinary differential equations describes the coinfection dynamics of the
two diseases;

dSh(t)
dt

= πh − (α1β1 Im(t) + α2η1 Iz(t))Sh(t)− µhSh(t) + θRh(t),

dIhm(t)
dt

= α1β1 Im(t)Sh(t)− α2η1 Iz(t)Ihm(t)− (τ1 + τ2 + ϕ1 + µh + µ1)Ihm(t),

dIhz(t)
dt

= α2η1 Iz(t)Sh(t)− α1β1 Im(t)Ihz(t)− (τ3 + τ4 + ϕ2 + µh + µ4)Ihz(t),

dIhmz(t)
dt

= α2η1 Iz(t)Ihm(t) + α1β1 Im(t)Ihz(t)− (τ5 + τ6 + τ7 + µh + µ7)Ihmz(t),

dThm(t)
dt

= τ1 Ihm(t) + τ6 Ihmz(t)− (γ1 + µh + µ2)Thm(t),
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dTz(t)
dt

= τ2 Ihm(t)− (γ2 + µh + µ3)Tz(t),

dThz(t)
dt

= τ3 Ihz(t) + τ7 Ihmz(t)− (γ3 + µh + µ5)Thz(t), (16)

dTm(t)
dt

= τ4 Ihz(t)− (γ4 + µh + µ6)Tm(t),

dThmz(t)
dt

= τ5 Ihmz(t)− (γ5 + µh + µ8)Thmz(t),

dRh(t)
dt

= ϕ1 Ihm(t) + ϕ2 Ihz(t) + γ1Thm(t) + γ2Tz(t) + γ3Thz(t) + γ4Tm + γ5Thmz(t)− (µh + θ)Rh(t),

dSm(t)
dt

= πm − α1(β2 Ihm(t) + β3Thm(t) + β4Tz(t) + β5 Ihmz(t) + β6Thmz(t))Sm(t)− µmSm(t),

dIm(t)
dt

= α1(β2 Ihm(t) + β3Thm(t) + β4Tz(t) + β5 Ihmz(t) + β6Thmz(t))Sm(t)− µm Im(t),

dSz(t)
dt

= πz − α2(η2 Ihz(t) + η3Thz(t) + η4Tm(t) + η5 Ihmz(t) + η6Tmz(t))Sz(t)− µzSz(t),

dIz(t)
dt

= α2(η2 Ihz(t) + η3Thz(t) + η4Tm(t) + η5 Ihmz(t) + η6Tmz(t))Sz(t)− µz Iz(t),

with initial conditions of the system, Z0 = (S0
h, I0

hm, I0
hz, I0

hmz, T0
hm, T0

z , T0
hz, T0

m, T0
hmz, R0

h, S0
m, I0

m, S0
z , I0

z ).

Positivity of solutions and Invariant region for the coinfection model

Lemma 4 Given that the initial conditions (S0
h, I0

hm, I0
hz, I0

hmz, T0
hm, T0

z , T0
hmz, T0

hz, T0
m, R0

h, S0
m, S0

z , I0
m, I0

z ) >

0 to the system, (16) at t = 0 lies in the region, Ω, then the solution set (Sh(t), Ihm(t), Ihz(t), Ihmz(t), Thm(t),
Tz(t), Thmz(t), Thz(t), Tm(t), Rh(t), Sm(t), Im(t), Sz(t), Iz(t)) to the system remains positive ∀t > 0.

Proof From (16), we will have that

dSh(t)
dt

≥ −(α1β1 Im(t) + α2η1 Iz(t) + µh)Sh(t), and
dIz(t)

dt
≥ −µz Iz(t),

which we solve to get

Sh(t) ≥ S0
he−

∫t
0(α1β1 Im(t)+α2η1 Iz(t)+µh)dt > 0, and Iz(t) ≥ I0

z e−µzt > 0,

respectively. Therefore, the solutions Sh(t) and Iz(t) will remain positive for all t with the given
positive initial conditions. Similar results can be obtained for the other variables. This shows that
the solution to the coinfection system will remain positive ∀t provided the initial condition is
positive.
Then, from (16), we have that the total human population, Nh(t), total Anopheles population
Nm(t) and total Aedes population Nz(t) satisfy the following differential equations

dNh(t)
dt

= πh − µhNh(t)− N∗
1 (t),

dNm(t)
dt

= πm − µmNm(t), (17)

dNz(t)
dt

= πz − µzNz(t),



96 | Bulletin of Biomathematics, 2025, Vol. 3, No. 1, 79–110

where N∗
1 (t) = µ1 Ihm(t)+µ2Thm(t)+µ3Tz(t)+µ4 Ihz(t)+µ5Thz(t)+µ6Tm(t)+µ7 Ihmz(t)+µ8Thmz(t)

is the total number of diseased-induced deaths in humans.
Then,

dNh(t)
dt

≤ πh − µhNh(t),

with

Nh(t) ≤
πh
µh

+

(
N(0)−

πh
µh

)
e−µht.

As t → ∞, then, 0 < Nh ≤ πh
µh

.
Thus, all feasible solutions to the human component of (16) enter and remain in the region Ωh ={
(Sh, Ihm, Ihz, Ihmz, Thm, Tz, Thmz, Thz, Tm, Rh) ∈ R10 : Nh ≤ πh

µh

}
. Similarly, all feasible solutions to

the mosquito components will enter and stay in the region Ωm =
{
(Sm, Im) ∈ R2 : Nm ≤ πm

µm

}
and

Ωz =
{
(Sz, Iz) ∈ R2 : Nz ≤ πz

µz

}
respectively. Thus, the region, Ω = Ωh × Ωm × Ωz is positively

invariant and is an attractor of all possible solutions to system (16). This is a sufficient condition
to study the system in this feasible region Ω because it is epidemiologically and mathematically
well-posed.

Reproduction number of the coinfection model

The coinfection-free equilibrium point of (16) is the steady state where there is no malaria and
Zika virus disease in the system. It is given by E0

mz =
(

πh
µh

, 0, 0, 0, 0, 0, 0, 0, 0, 0, πm
µm

, 0, πz
µz

, 0
)

. The
coinfection reproduction number is the average number of humans that can be infected with
malaria, Zika, or both when a new case of malaria, Zika, or both comes into an entirely susceptible
population. The matrices Fmz and Vmz of the infectious classes in (16) obtained by using the
next-generation matrix approach are given by

Fmz =



0 0 0 0 0 0 0 0 A1 0
0 0 0 0 0 0 0 0 0 C1
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

A2 0 A5 A3 A4 0 0 A6 0 0
0 C2 C5 0 0 C3 C4 C6 0 0


,

and

Vmz =



B1 0 0 0 0 0 0 0 0 0
0 D1 0 0 0 0 0 0 0 0
0 0 B5 0 0 0 0 0 0 0

−τ1 0 −τ6 B2 0 0 0 0 0 0
−τ2 0 0 0 B3 0 0 0 0 0

0 −τ3 −τ7 0 0 D2 0 0 0 0
0 −τ4 0 0 0 0 D3 0 0 0
0 0 −τ5 0 0 0 0 D5 0 0
0 0 0 0 0 0 0 0 µm 0
0 0 0 0 0 0 0 0 0 µz


,
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respectively, where A5 = α1β5πm
µm

, A6 = α1β6πm
µm

, B5 = τ5 + τ6 + τ7 + µh + µ7, C5 = α2η5πz
µz

,

C6 = α2η6πz
µz

and D5 = γ5 + µh + µ8. The other As
i , Bs

i , Cs
i and Ds

i are as described in Section 2
and Section 3 respectively. The non-zero eigenvalues of FmzV−1

mz are {±R0m,±R0z}. Hence, the
reproduction number of the coinfection is

Rmz = max(R0m,R0z),

where R0m and R0z are as defined in Section 2 and Section 3, respectively.

Local stability analysis of the coinfection-free equilibrium point

Theorem 6 The coinfection-free equilibrium point of the model (16) is locally asymptotically stable if
Rmz < 1, and unstable if Rmz > 1.

Proof The Jacobian matrix of the coinfection model, evaluated at the coinfection-free equilibrium
point E0

mz has some of its eigenvalues as −µh,−(µh + θ),−µz, and − µz. These eigenvalues are
from the non-disease compartments, and the other eigenvalues of the Jacobian matrix are obtained
from the submatrix

J1(E0
mz) =



−B1 0 0 0 0 0 0 0 A1 0
0 −D1 0 0 0 0 0 0 0 C1
0 0 −B5 0 0 0 0 0 0 0
τ1 0 τ6 −B2 0 0 0 0 0 0
τ2 0 0 0 −B3 0 0 0 0 0
0 τ3 τ7 0 0 −D2 0 0 0 0
0 τ4 0 0 0 0 −D3 0 0 0
0 0 τ5 0 0 0 0 −D5 0 0

A2 0 A5 A3 A4 0 0 A6 −µz 0
0 C2 C5 0 0 C3 C4 C6 0 −µz


,

where As
i , Bs

i , Cs
i and Ds

i are as described in Section 2, Section 3 and Section 4 respectively.
The matrix J1(E0

mz) = Fmz − Vmz. According to [44], all the eigenvalues of J1(E0
mz) will have

negative real parts if ρ(FmzV−1
mz ) < 1. Hence, E0

mz, is locally asymptotically stable if Rmz < 1, and
unstable if Rmz > 1. The implication of this result is that a small number of malaria and Zika
virus-infected humans introduced into the human population will not lead to an outbreak if the
reproduction number is less than one, depending on the initial sizes of the infected individuals.

Global stability analysis of coinfection-free equilibrium point

Lemma 3 was employed in investigating the global stability of the coinfection-free equilibrium
point (CFE).
Consider the system of differential equations

dX
dt

= F(X, 0), (18)

dY
dt

= G(X, Y), G(X, 0) = 0, (19)
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where X = (Sh, Rh, Sm, Sz) and Y = (Ihm, Ihz, Ihmz, Thm, Tz, Thz, Tm, Thmz, Im, Iz) are the non-disease
and disease classes respectively,

F =


πh − (α1β1 Im + α2η1 Iz)Sh − µhSh + θRh

γ1Thm + γ2Tz + γ3Thz + γ4Tm + γ5Thmz − (µh + θ)Rh
πm − α1(β2 Ihm + β3Thm + β4Tz + β5 Ihmz + β6Thmz)Sm − µmSm

πz − α2(η2 Ihz + η3Thz + η4Tm + η5 Ihmz + η6Tmz)Sz − µzSz

 ,

and

G =



α1β1 ImSh − α2η1 Iz Ihm − (τ1 + τ2 + µh + µ1)Ihm
α2η1 IzSh − α1β1 Im Ihz − (τ3 + τ4 + µh + µ4)Ihz

α2η1 Iz Ihm + α1β1 Im Ihz − (τ5 + τ6 + τ7 + µh + µ7)Ihmz
τ1 Ihm + τ6 Ihmz − (γ1 + µh + µ2)Thm

τ2 Ihm − (γ2 + µh + µ3)Tz
τ3 Ihz + τ7 Ihmz − (γ3 + µh + µ5)Thz

τ4 Ihz − (γ4 + µh + µ6)Tm
τ5 Ihmz − (γ5 + µh + µ8)Thmz

α1(β2 Ihm + β3Thm + β4Tz + β5 Ihmz + β6Thmz)Sm − µm Im
α2(η2 Ihz + η3Thz + η4Tm + η5 Ihmz + η6Tmz)Sz − µz Iz


.

Solving F for (Sh, Rh, Sm, Sz) as t → ∞ to get Sh(t) → πh
µh

, Rh(t) → 0, Sm(t) → πm
µm

, Sz(t) → πz
µz

which corresponds to the values of this state variables at CFE already proven to be locally
asymptotically stable. Thus, Eq. (18) is shown to be globally asymptotically stable.
In the system (19), it is required that Ĝ(X, Y) = BY − G(X, Y) ≥ 0, where B is the Jacobian matrix
of G(X, Y) evaluated at the coinfection-free equilibrium of the model.
Therefore,

Ĝ(X, Y) =



α1β1

(
πh
µh

− Sh

)
Im + α2η1 Iz Ihm

α2η1

(
πh
µh

− Sh

)
Iz + α1β1 Im Ihz

−α2η1 Iz Ihm − α1β1 Im Ihz
0
0
0
0
0

α1

(
πm
µm

− Sm

)
(β2 Ihm + β3Thm + β4Tz + β5 Ihmz + β6Thmz)

α2

(
πz
µz

− Sz

)
(η2 Ihz + η3Thz + η4Tm + η5 Ihmz + η6Thmz)



.

From Ĝ(X, Y), we see that Sh(t) ≤ πh
µ1

, Sm(t) ≤ πm
µm

and Sz(t) ≤ πz
µz

. Thus, only the 3rd row is
non-negative, and this shows that E0

mz may not be globally asymptotically stable. Hence, the
occurrence of backward bifurcation in the model is a possibility, and the model may not have a
unique endemic equilibrium. The possibility of backward bifurcation appearing may be because
infectious humans with malaria are re-infected with the Zika virus and vice versa.

Sensitivity analysis of the model

The sensitivity indices of the parameters in the coinfection reproduction number are shown
in Table 2. This analysis helps us to know which parameters have the highest impact on the
reproduction number so that they can be targeted as the most effective intervention measure for
each case study. By definition, given any dynamical system of infectious disease, the normalized
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forward sensitivity index according to [33] of R that depends on the parameter p is given by

SR
p =

∂R
∂p

× p
R , (20)

where R is the associated reproduction number of the system in discussion and p is any sys-
tem parameter in R. For our system, the coinfection reproduction number is given by Rmz =

max(R0m,R0z), hence, the sensitivity analysis will be performed on both R0m and R0z, respec-
tively. The parameters with a positive sensitivity index increase the endemicity of the coinfection,
while the parameters with a negative sensitivity index decrease the endemicity of the coinfection.

Table 2. Sensitivity index of R0m and R0z

Parameter Values Sensitivity index Parameter Values Sensitivity index
πh 30 0.5 πh 100 0.5
πm 30 0.5 πz 100 0.5
α1 0.2 1 α2 0.1 1
β1 0.034 0.5 η1 0.009 0.5
β2 0.013 0.2201 η2 0.07 0.1210
β3 0.0022 0.0923 η3 0.03 0.1976
β4 0.0044 0.1876 η4 0.05 0.1814
τ1 0.62 -0.2339 τ3 0.45 -0.0410
τ2 0.28 0.0403 τ4 0.35 0.0290
µh 0.0556 -0.5001 µh 0.0000391 -0.5001
µm 0.0556 -1 µz 0.0556 -1
µ1 0.0003454 -0.000182 µ4 0.0001727 -0.000021
µ2 0.0001151 -0.000042 µ5 0.00004 -0.000017
µ3 0.00001 -0.0003 µ6 0.00002 -0.000022
γ1 0.142 -0.0923 γ3 0.1667 -0.1976
γ2 0.111 -0.1872 γ4 0.118 -0.1813
ϕ1 0.05 -0.0263 ϕ2 0.1429 -0.0758

Hence, to control the coinfection, the parameters with negative values need to be increased while
those with positive values need to be reduced. This means that those parameters with positive
values needs much attention as controlling them will significantly reduce the spread of the disease.
The parameter with the highest impact on the spread of the disease is the contact rate of humans
with the mosquitoes, denoted by α1 and α2, with sensitivity indices of 1 respectively. Thus, success-
ful control of the coinfection or the individual infections will require ensuring that the mosquitoes
have minimal contact with humans. This will also reduce the probabilities of transmission of
malaria and Zika virus disease from humans to mosquitoes and vice versa, represented by the
parameters, β

′
i s and η

′
i s whose sensitivity indices are all positive. We could also see that wrong

diagnoses and wrong treatment, represented by τ2 and τ4 respectively, also increase the individual
infections as well as the coinfection of humans. The sensitivity results also showed that an increase
in the rate of recruiting humans or mosquitoes will definitely make the diseases persist, as more
human and vector carriers are made available. The parameters with negative values do not
increase the persistence of the coinfection. The parameter with the least negative value is µm
and µz, which represent the natural death rate of mosquitoes. This means that to control the
disease, efforts should also be focused on ensuring that the mosquitoes die more often, as this will
also reduce the population of the mosquitoes and hence the contact rate of the mosquitoes with
humans. The sensitive indices for πh, πm and πz which represents recruitment rates for humans,
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Figure 4. Sensitivity plots of parameters of R0m

Figure 5. Sensitivity plots of parameters of R0m cont’d

anopheles and aedes mosquitoes respectively showed that one strategy to curb the coinfection is
for humans to avoid areas where these mosquitoes are prevalent and efforts should be made to
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Figure 6. Sensitivity plots of parameters of R0z

Figure 7. Sensitivity plots of parameters of R0z cont’d

reduce the recruitment of more mosquitoes into human environment.
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5 Numerical simulations

Numerical simulations are carried out in this section to graphically illustrate some of the results
obtained in this work. The simulations were done using the assumed initial data; Sh = 500,
Ihm = 32, Ihz = 29, Ihmz = 24, Thm = 13, Tz = 17, Thmz = 12, Thz = 15, Tm = 12 Rh = 20,
Sm = 500, Im = 90, Sz = 500, and Iz = 50 and parameter values in Table 3. The results of the
numerical experiments are shown in Figure 8-Figure 14 below. The simulations were carried
out using MATLAB© R2014b, where the fourth-order Runge-Kutta integration scheme is used to
obtain a numerical solution to the non-linear system. Some of the parameter values were obtained
from the literature, while others were assumed to be within a reasonable and realistic range for
the purpose of the simulation.

Table 3. Parameter values used in this model

Parameter Value Source Parameter Value Source
πh 100 assumed α1 0.2 assumed
πm 100 [42] α2 0.1 [33]
πz 100 [39] τ1 0.62 [33]
µ1 0.0003454 [6, 42] τ2 0.28 assumed
µ2 0.0001151 assumed τ3 0.45 assumed
µh 0.0000391 [9, 41] τ4 0.35 assumed
µ3 0.0001727 assumed τ5 0.35 assumed
µ4 0.00004 assumed τ6 0.32 assumed
µ5 0.00001 assumed τ7 0.28 assumed
µ6 0.00002 assumed θ 0.143 [5]
µ7 0.0003454 assumed µ8 0.0001927 assumed
µm 0.0556 [9] γ1 0.25 [5]
µz 0.0556 [9] γ2 0.111 assumed
γ3 0.118 [33] γ4 0.1667 [9]
β1 0.0022 [28] η1 0.09 [33, 35]
β2 0.013 [6] η2 0.07 [9]
β3 0.0022 [41] η3 0.03 [33]
β4 0.0044 [41] η4 0.05 assumed
β5 0.0022 assumed η5 0.03 assumed
β6 0.0044 assumed η6 0.02 assumed
γ5 0.111 [33] ϕ1 0.05 assumed
ϕ2 0.1429 [26]

Sub-models

The simulation of the malaria and Zika sub-models is shown in Figure 8 and Figure 9 below. In
Figure 8, it is shown that an increase in wrong treatment increases the total infectious human
population with malaria, while an increase in right treatment reduces the total infectious human
population with malaria. Figure 9a shows how increasing the rate of right treatment reduces the
infectious human population with Zika, while Figure 9b shows the impact of wrong treatment
on the infectious human population. An increase in the rate of wrong treatment leads to an
increase in the infectious human population, thereby making it difficult to control the disease.
This result shows that effective treatment is significant in controlling infectious diseases and
must be encouraged by health practitioners. Hence, proper diagnosis of the disease is crucial to
controlling it, and efforts should be made by health practitioners to discourage self-diagnosis and
self-treatment.
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(a) (b)

Figure 8. Effect of increase in rate of (a) right treatment, τ1 and (b) wrong treatment, τ2

(a) (b)

Figure 9. Effect of increase in right treatment, τ3 and wrong treatment, τ4

Coinfection model

The effect of misdiagnoses and wrong treatment in the coinfected human population is shown in
Figure 10 and Figure 11, where we see that as the rate at which infectious humans with malaria
or Zika undergoing right treatment, τ1 or τ3 increases, the total infected humans also decreases.
This shows that the right treatment reduces the population of the total infectious classes. Similarly,
as the rate at which infectious humans with malaria or Zika, that undergo the wrong treatment
τ2 or τ4, increases, the total infected humans also increases. This implies that wrong diagnoses
and wrong treatment play a significant role in the dynamics of the diseases and hence should be
avoided. Figure 12 shows the impact of the increase in the population of Anopheles mosquitoes
on Aedes mosquitoes and vice versa.

Particularly, it shows that in any environment where Anopheles and Aedes mosquitoes coexist,
an increase in the population of one will lead to an increase in the other. This proportionality
relationship is in line with real-life situations, as both mosquito populations are affected by the
same environmental factors.

In Figure 13, we see that an increase in the contact rate of humans with Anopheles mosquitoes
increases the total infectious classes of both humans and mosquitoes with malaria. This is because
the more mosquitoes come in contact with humans during a blood meal, the more the chances of
humans infecting mosquitoes or mosquitoes infecting humans. This result corroborates existing
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(a) (b)

Figure 10. Malaria-infected humans for increasing τ1 and τ2

(a) (b)

Figure 11. Zika-infected humans for increasing τ3 and τ4

(a) (b)

Figure 12. (a) Graph of Im vs Iz and (b) Graph of Iz vs Im

knowledge that one of the effective ways of controlling malaria is to adopt strategies that reduce
human contact with the vector.

In Figure 14, it is also shown that as the rate of contact between humans and Aedes mosquitoes
increases, the infectious class with Zika virus disease in both humans and mosquitoes also
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(a) (b)

Figure 13. Effect of increase in human contact rate with Anopheles mosquitoes

(a) (b)

Figure 14. Effect of increase in human contact rate with Aedes mosquitoes

increases. This increase is because the more humans come in contact with mosquitoes, the higher
the probability of infection. This shows that one of the ways of controlling the spread of the
disease is to ensure the rate of contact of humans with mosquitoes is reduced by implementing
measures that will reduce the population of mosquitoes.

6 Conclusion

In this paper, we presented a new model that describes the dynamics of malaria, Zika virus, and
their coinfection in the presence of wrong treatment. The diseases were modeled using systems of
nonlinear ordinary differential equations, which describe their dynamics in human and mosquito
populations. The disease-free equilibria of the individual models were shown to be both locally
and globally asymptotically stable when their basic reproduction numbers were less than one.
However, for the coinfection model, the disease-free equilibrium is locally asymptotically stable
but may not be globally stable when the Rmz < 1. This possibility of global instability is a result
of the reinfection of malaria-infected humans with the Zika virus and vice versa. This is also an
indication that the coinfection model may not possess a unique endemic equilibrium, which is
locally asymptotically stable when Rmz > 1. The result of the effect of misdiagnosis of each of the
diseases shows that if the proportion of those who are wrongly diagnosed and wrongly treated
increases, the total infected population of humans with that disease also increases. The results
also showed that an increase in the rate of right treatment increases the recovery rate of infectious
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humans and reduces the population of the infectious class. Plots from the numerical experiments
were used to show these results. Sensitivity analysis also showed that mosquito contact rate with
humans and the probability of infecting humans during such contacts were the more sensitive
parameters in the system, hence efforts in effective controlling of the diseases or their coinfection
must incorporate reduction of these parameters. The wrong treatment of each disease as the
other is shown to also affect the endemicity of the two diseases. The sensitivity analysis further
highlights that if there is less recruitment of mosquitoes or their natural death rates are increased,
then the diseases can be controlled.
Conclusively, wrong treatment has been shown to play a major role in the spread of malaria and
Zika virus diseases, as well as their coinfection in any environment where the two diseases coexist.
Therefore, it is recommended that treating infectious humans with respect to the symptoms they
manifest should be avoided. Clinical analysis should always be conducted to avoid a wrong
diagnosis. In addition, since the disease-free equilibrium may not be globally asymptotically
stable, extra effort should be made in order to eradicate the two diseases. Further research work
in this regard will require investigating the effects of other control measures, other than treatment,
in the co-circulation and coinfection of the diseases.
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