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Abstract: This research explores the mass spectra of the 𝑏𝑐̅̅ meson using the neural 
network (NN) method that combines the Cornell potential with the addition of 
another quadratic potential term. By training the NN model on theoretical results 
and comparing its predictions with existing theoretical and experimental data from 
the literature, we demonstrate that this mixed-potential model effectively describes 
the 𝑏𝑐̅ ̅meson properties. Our treatment justifies the usefulness of merging machine 
learning methods with classical potential approaches for meson spectroscopy 
applications. In addition, the approach is generalized into an ideal four-dimensional 
space for its application in the study of the impact of more spatial dimensions on 
quarkonium systems. The results in this extended setting agree with expectations, 
confirming that the NN-type approach is strong and flexible with its application into 
more than three spatial dimensions for quantum systems. In all, our research proves 
the efficacy of neural network-facilitated models in promoting theoretical research 
in heavy meson physics and presents a door for further research into quantum 
systems in more dimensions. 

  
  

Birleştirilmiş Cornell ve Kuadratik Potansiyeller ile Sinir Ağı Kullanarak 𝐛𝐜̅ Mezon 
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Öz: Bu araştırma, Cornell potansiyelini başka bir kuadratik potansiyel terimi ile 
birleştiren sinir ağı (NN) yöntemini kullanarak bc̅ mezonunun kütle spektrumlarını 
incelemektedir. NN modelini teorik sonuçlar üzerinde eğiterek ve tahminlerini 
literatürdeki mevcut teorik ve deneysel verilerle karşılaştırarak, bu karışık 
potansiyel modelinin bc̅ mezonunun özelliklerini etkili bir şekilde tanımladığını 
göstermekteyiz. Çalışmamız, makine öğrenimi yöntemlerinin klasik potansiyel 
yaklaşımlarla birleştirilmesinin mezon spektroskopisi uygulamaları için yararlı 
olduğunu doğrulamaktadır. Ayrıca, bu yaklaşım, daha fazla uzaysal boyutun 
kuarkonyum sistemleri üzerindeki etkisinin incelenmesinde uygulanabilmesi için 
ideal bir dört boyutlu uzaya genelleştirilmiştir. Bu genişletilmiş ortamdaki sonuçlar 
beklentilerle uyumludur ve NN tipi yaklaşımın kuantum sistemleri için üçten fazla 
uzaysal boyutta uygulanabilirliği açısından güçlü ve esnek olduğunu 
doğrulamaktadır. Sonuç olarak, araştırmamız ağır mezon fiziğinde teorik 
araştırmayı teşvik etmede sinir ağı destekli modellerin etkinliğini kanıtlamakta ve 
daha fazla boyutta kuantum sistemleri üzerine daha fazla araştırma için bir kapı 
açmaktadır. 

  
 
1. Introduction 
 
The examination of heavy quarkonium systems, 

including 𝐵𝑐  ( 𝑏𝑐̅̅ ) mesons, is essential to 
understanding the quantitative dimensions of 
Quantum Chromodynamics (QCD) and the Standard 
Model. Quarkonium systems offer a testing ground for 
various theoretical techniques including lattice QCD, 
QCD sum rules, and other methods that provide 

insights into the strong interactions [1-9]. The 
Schrödinger equation (SE) is one of the most 
important tools for investigating the properties of the 
constituent particles and the dynamics of their 
interactions in nuclear and subnuclear physics. 
Nevertheless, the Schrödinger equation is difficult to 
solve exactly, especially if the centrifugal potential is 
taken into account [10-12]. Consequently, several 
approximation methods have been developed, such as 
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the asymptotic iteration method [10] and the 
Nikiforov-Uvarov method [13]. These methods are 
frequently used to derive analytical solutions for the 
Schrödinger equation with different potentials, 
including the Cornell potential and combinations of 
the Cornell potential with other potentials like the 
harmonic oscillator potential [12, 14-17]. 
 
The Cornell potential, distinguished by its Coulomb-
like short-range and linear large-range terms, has 
been widely employed to describe quark-antiquark 
systems, which include mesons [18-24]. The Coulomb 
potential stems from one-gluon exchange, whereas the 
linear potential is conjectured to come from higher 
orders, though its first-principle derivation from the 
rules of QCD has been left as an open question [14]. 
Even with its relevance to the underlying physics, the 
exact solutions of the Schrödinger equation with the 
Cornell potential continue to pose an on-going 
challenge. In addition to the Cornell potential, we take 
into account quadratic term owing to its additional 
harmonic confinements. 
 
There has been a recent interest in applying the use of 
Neural Networks (NNs) as a novel approach to solving 
ordinary and partial differential equations, including 
the Schrodinger equation [25]. There are various 
advantages of using NNs over conventional numerical 
methods, including the capability to approximate 
universal functions, generate continuum solutions 
over the entire domain, and remain computationally 
efficient irrespective of the sample points or 
dimensions of the problem [26-30]. Numerous studies 
have demonstrated that NNs can solve quantum 
mechanical problems effectively [25-30] and 
therefore are a potential method to calculate meson 
mass spectra. 
 
In the present study, we seek to calculate the mass 
spectra of the 𝑏𝑐̅̅ mesons by solving the Schrödinger 
equation through an approach utilizing NNs with a 
combined Cornell and quadratic potential. The 
inclusion of the quadratic potential to the Cornell 
potential enables a more flexible and accurate 
description of the meson systems, with the possibility 
of better matching with the experimental results. This 
work extends the results of the quarkonium systems 
previously calculated and discusses the potential 
application of the method of neural networks to 
further advance the study of spectroscopy of the heavy 
mesons. 
 
2. Materials and Methods 
 
NNs are computational models consisting of 
interconnected units known as neurons. Each neuron 
receives multiple inputs and produces an output 
based on a nonlinear activation function, such as the 
sigmoid function. The sigmoid function is defined as: 
 

𝜎(𝑧) =
1

1 + 𝑒−𝑧
 (1) 

 
which is advantageous for its differentiability 
properties. 
 
Neurons are usually structured in layers in a neural 
network. A single neuron accepts many inputs and has 
a single output in the most basic model. More 
advanced forms of the setup, such as the multilayer 
perceptron neural networks (MLPNs), contain 
neurons grouped in various numbers of layers, with a 
neuron in a layer linked to all the neurons in the next 
layer. This feed-forward structure is very versatile and 
can implement intricate functions and is thus widely 
used in a variety of applications [26, 28, 31]. 
 
In MLPNs (see Figure 1), the output of each neuron is 
computed as the activation function applied to the 
weighted sum of its inputs. Mathematically, this can be 
described for neurons in different layers using the 
following relations: 
 

𝑜𝑖 = 𝜎(𝑛𝑖) (2) 
 

𝑜𝑗 = 𝜎(𝑛𝑗) 

 

(3) 

𝑜𝑘 = 𝜎(𝑛𝑘) (4) 
 
where 𝑖, 𝑗, and 𝑘 denote the input, hidden, and output 
layers, respectively. The inputs to neurons in the 
hidden and output layers are given by: 
 

𝑛𝑗 = ∑ 𝑤𝑖𝑗𝑜𝑖 + 𝜃𝑗

𝑁𝑖

𝑖=1

, (5) 

 

𝑛𝑗 = ∑ 𝑤𝑗𝑘𝑜𝑗 + 𝜃𝑘.

𝑁𝑗

𝑗=1

 
(6) 

 
Here, 𝑤𝑖𝑗  and 𝑤𝑗𝑘  are the weights connecting neurons 

between layers, and 𝜃𝑗  and 𝜃𝑘  are threshold 

parameters. 
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Figure 1. A representation of the DNN architecture, 
illustrating the input layer, hidden layers, and output layer. 

 
The overall output 𝑜𝑘  of the network can be expressed 
as a composite function of its inputs, weights, and 
thresholds: 
 

𝑜𝑘 = ∑ 𝑤𝑗𝑘𝜎 (∑ 𝑤𝑖𝑗𝑛𝑖 + 𝜃𝑗

𝑁𝑖

𝑖=1

) + 𝜃𝑘

𝑁𝑗

𝑗=1

 (7) 

 
This differentiable function allows the neural network 
to learn optimal parameters using training algorithms 
such as backpropagation. 
 
Applying neural networks to quantum mechanical 
systems, particularly for solving differential equations 
like the Schrödinger equation, enables the 
approximation of solutions using a neural network. 
For a differential equation of the form 
 

𝐻Ψ(𝑟) = 𝑓(𝑟) (8) 

 
where 𝐻  is a linear operator and 𝑓(𝑟)  is a known 
function, a trial solution Ψ𝑡(𝑟)  can be constructed 
using a neural network. This solution is parameterized 
by weights and biases represented by a vector 𝒑 and is 
designed to satisfy boundary conditions. 
 
To find an approximate solution, the problem is 
converted into a minimization problem where the 
objective is to minimize the error function: 
 

𝐸(𝒑) = ∑
[𝐻Ψ𝑡(𝑟𝑖 , 𝒑) − 𝑓(𝑟𝑖)]2

∫ |Ψ𝑡|2𝑑𝒓 
𝑖

 (9) 

 
This transformation is achieved using the collocation 
method, where the differential equation is solved by 
adjusting the network parameters to minimize the 
discrepancy between the network output and the 
target function. 
 
Specifically for the Schrödinger equation, this 
approach involves defining a trial wavefunction Ψ𝑡(𝑟) 
using a neural network and optimizing its parameters 
to minimize the energy eigenvalues. The trial 
wavefunction can be represented as: 
 

Ψ𝑡(𝑟) = 𝐵(𝒓, 𝜆)𝑁(𝒓, 𝒑) (10) 

 
where 𝐵(𝒓, 𝜆)  ensures the boundary conditions are 
met, and 𝑁(𝒓, 𝒑)  is the neural network output. By 
optimizing this network using backpropagation, we 
can find the parameters that best approximate the 
eigenvalues of the system under study. 
 
Moreover, this method enables the calculation of 
multiple energy states by projecting out the already 

computed levels from the trial wavefunction. If we 
have computed orthonormal states | Ψ0⟩, |Ψ1⟩, … ,
|Ψ𝑘⟩, a trial state |Ψ𝑡⟩ orthogonal to all of them can be 
constructed by projecting out their components from 

a general function |Ψ̃𝑡⟩  that satisfies the boundary 

conditions: 
 

|Ψ𝑡⟩ = (1 − |Ψ0⟩⟨Ψ0|)(1 − |Ψ1⟩⟨Ψ1|) … 
 

              × (1 − |Ψ𝑘⟩⟨Ψ𝑘|)|Ψ̃𝑡⟩ 
(11) 

 
This can also be expressed as: 
 

|Ψ𝑡⟩ = (1 − |Ψ0⟩⟨Ψ0| − ⋯ − |Ψ𝑘⟩⟨Ψ𝑘|)|Ψ̃𝑡⟩ (12) 

 
This projection method ensures that the new trial 
wavefunction is orthogonal to all previously computed 
states, facilitating the systematic calculation of higher 
energy levels [26-28, 32]. 
 
Neural networks, particularly multilayer perceptrons, 
offer a powerful framework for modeling and solving 
complex problems in both classical and quantum 
domains due to their flexibility, differentiability, and 
capacity to approximate nonlinear functions [26-28, 
31]. 
 
The Schrödinger equation (SE) for two particles 
interacting through a symmetric potential in an N-
dimensional space can be formulated to describe the 
quantum states of systems like quarkonium. This 
equation, as described in Ref. [2], takes the following 
form: 
 

𝑑2Ψ(𝑟)

𝑑𝑟2
+

𝑁 − 1

𝑟

𝑑Ψ(𝑟)

𝑑𝑟
−

𝑙(𝑙 + 𝑁 − 2)

𝑟2
Ψ(𝑟)

+2𝜇(𝐸 − 𝑉(𝑟))Ψ(𝑟) = 0

 (13) 

 
where 𝑙 is the angular momentum quantum number, 
𝑁  is the number of spatial dimensions, and 𝜇  is the 
reduced mass of the interacting particles, such as 
quarks in a quarkonium system. 
 
To simplify the SE for radial solutions, we set the wave 
function Ψ(𝑟)  in terms of a radial function 𝑅(𝑟)  as 

Ψ(𝑟) =  𝑟
1−𝑁

2
 𝑅(𝑟) . Substituting this into Eq. (13) 

yields the radial Schrödinger equation: 
 

𝑑2𝑅(𝑟)

𝑑𝑟2
= 2𝜇(𝑉(𝑟) − 𝐸)𝑅(𝑟)

                      +
(𝑙 +

𝑁−2

2
)

2

−
1

4

2𝜇𝑟2
𝑅(𝑟)

 (14) 

 
To explore the properties of quarkonium, the potential 
energy function 𝑉(𝑟)  often combines the Cornell 
potential term. On the other hand, the quadratic 
potential introduces additional effects. The potential 
𝑉(𝑟) is given by: 
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𝑉(𝑟) = 𝑎𝑟 −
𝑏

𝑟
+ 𝑐̅𝑟2 (15) 

 
where 𝑎, 𝑏 , and 𝑐̅  are constants that can be adjusted 
based on the specific properties of the system [5-7]. 
 
The Cornell potential, represented by the terms 𝑎𝑟 −
𝑏 𝑟⁄ , encapsulates two fundamental characteristics of 
the strong force between quarks: confinement and 
asymptotic freedom. The linear term, 𝑎𝑟, dominates at 
large distances, reflecting the confinement 
phenomenon where quarks are bound together. The 
inverse term, − 𝑏 𝑟⁄ , is significant at short distances, 
illustrating asymptotic freedom, where quarks behave 
almost independently due to the decreasing 
interaction strength as they get closer [7, 33]. 
 
The quadratic potential, represented by the term 𝑐̅𝑟2 
and where the parameter 𝑐̅ is related to the mass 𝑚 of 
the particle and the square frequency of the 
oscillation. This potential term is crucial in fine-tuning 
the model to reflect various quarkonium properties, as 
noted in Refs. [20, 34, 35]. 
 
Substituting the potential function 𝑉(𝑟) from Eq. (15) 
into the radial Schrödinger Eq. (14), we obtain: 
 

𝑑2𝑅(𝑟)

𝑑𝑟2
= 2𝜇 (𝑎𝑟 −

𝑏

𝑟
+ 𝑐̅𝑟2 − 𝐸                         

                         +
(𝑙 + (𝑁 − 2 2)⁄ ) 2 − 1 4⁄

2𝜇𝑟2
) 𝑅(𝑟)

 (16) 

 
This modified Schrödinger equation allows for the 
exploration of the energy levels and wave functions of 
quarkonium systems under the influence of both the 
Cornell and quadratic potentials. The interplay of 
these potentials enables a detailed study of the quark-
antiquark interaction, incorporating both the long-
range confinement and short-range asymptotic 
freedom characteristic of strong interactions, along 
with additional harmonic confinement effects [34, 36, 
37]. 
 
The radial wave function corresponding to this 
equation can be expressed in the form: 
 

𝑅𝑛𝑙(𝑟) = 𝐶𝑛𝑙𝑟
−

𝐵

√2𝐴
−1

𝑒√2𝐴 𝑟 (𝑟2
𝑑

𝑑𝑟
)

𝑛

    ×  (𝑟
−2𝑛+

2𝐵

√2𝐴𝑒−2√2𝐴 𝑟)

 (17) 

 
This solution is obtained by applying the Nikiforov-
Uvarov method to Eq. (16) in [14]. The normalization 
constant 𝐶𝑛𝑙  is determined by ensuring 
∫ |𝑅𝑛𝑙(𝑟)|2 𝑑𝑟 = 1 . The parameters 𝐴  and 𝐵  in the 
radial Schrödinger equation are defined as: 
 

𝐴 = −𝜇 (𝐸 −
3𝑎

𝛿
−

6𝑐̅

𝛿2
) ,

𝐵 = 𝜇 (
3𝑎

𝛿3
+

8𝑐̅

𝛿3
+ 𝑏) ,

 (18) 

 
where 𝛿 =  1/𝑟0, with 𝑟0 being a characteristic radius 
of the meson [14, 17]. 
 
By analyzing solutions to this equation, one can derive 
important properties of quarkonium, such as energy 
eigenvalues and wavefunctions, which are essential 
for understanding the behavior of heavy quark pairs 
bound by the strong force [18, 33, 38]. 
 
In the comparison with Eq. (17), we parameterize the 
trial function as: 
 

𝑅𝑡(𝑥) = 𝑥𝛼 𝑒−𝛽𝑥2
𝑁(𝑥, 𝒖, 𝒘, 𝒗), 𝛽 > 0, 𝛼 𝜖 ℝ, (19) 

 
where 𝑁  denotes a feed-forward artificial neural 
network with one hidden layer and 𝑚 sigmoid hidden 
units, represented as: 
 

𝑁(𝑥, 𝒖, 𝒘, 𝒗) = ∑ 𝜈𝑗𝜎(𝑤𝑗𝑥 + 𝑢𝑗)

𝑚

𝑗=1

. (20) 

 
The minimization problem for this trial function is 
defined as: 
 

∑
[𝐻𝑅𝑡(𝑥𝑖 − 𝜖𝑅𝑡(𝑥𝑖))]

2

∫|𝑅𝑡(𝑥)|2𝑑𝑥
𝑖

 (21) 

 
This formulation leverages the pattern of the radial 
wave function to optimize the neural network 
parameters. 
 
Optimization of the trial wavefunction parameters is 
done through the Broyden– Fletcher– Goldfarb– 
Shanno (BFGS) algorithm, a quasi-Newton method 
with the advantage of being efficient when dealing 
with problems described by a nonlinear function. We 
aim to minimize the total error function 𝐸𝑡𝑜𝑡𝑎𝑙  by 
optimizing the trial wavefunction's parameters [28, 
29]. 
 
Optimization for each quantum state begins with a 
group of initial random parameters, and the BFGS 
algorithm iteratively updates the parameters to 
minimize the total error. This optimization is run for a 
specified number of trials to guarantee convergence to 
the global minimum [26]. 
 
The optimum parameters provide a trial wavefunction 
that most accurately represents the actual 
wavefunction of the quantum state in question. These 
optimized parameters are used to calculate the 
energy, and the results are compared to experimental 
results to verify the validity of the model. 
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This method enables the systematic calculation of 
energy levels and wavefunctions and offers useful 
information regarding the 𝑏𝑐̅̅ meson system [21, 22, 
28]. 
 
3. Results 
 
In this section, we present the mass spectra 
calculations for the 𝑏𝑐̅̅ states using the neural network 
approach with the combined Cornell and quadratic 
potentials. The results are displayed in Tables 1 and 2 
for different quantum states, and we compare them 
with those from other theoretical studies and 
available experimental data. The constants used, as 
presented in [14], are: 
 

𝑚𝑏 = 4.823 𝐺𝑒𝑉,
𝑚𝑐 = 1.209 𝐺𝑒𝑉,

𝑎 = 0.2 𝐺𝑒𝑉2,
𝑏 = 1.2,

𝑐̅ = 0.04 𝐺𝑒𝑉3.

 (22) 

 
We trained the network using 200 evenly spaced 
points with 𝑚 = 10  over the interval −10 ≤ 𝑟 ≤ 10 
and solved Eq. (16) (see Table 1). The loss function 
curve resulting from the training process, as 
illustrated in Figure 2, offers valuable insights into the 
convergence of the neural network. Furthermore, the 
learning curve of the plot of the error function versus 
BFGS iteration (Figure 3) also supports and plots the 
optimizer convergence path. At first, the error 
function falls very rapidly, dropping sharply over the 
initial epochs, suggesting that the neural network 
converges to an optimal value close to the global 
minimum very rapidly. Following around 50 epochs, 
the loss converges to a consistently low error plateau. 
Such consistency validates the effectiveness and 
stability of the optimization process utilized, 
showcasing the applicability of having modeled the 
combined Cornell and quadratic potentials using 
neural networks. Our method reaches consistent 
convergence before epoch 50; however, when 
considering the all 𝑏𝑐̅̅ states—which follow the same 
pattern of convergence—it is generally necessary to 
extend training up to 300 epochs to ensure stability 
across all cases. Such stability provides assurance over 
calculated- 𝐵𝑐  meson mass spectra, supporting the 
robustness and precision of the methodology under 
consideration. 
 
Table 1. NN Architecture 

Hidden 
Layer 

Hidden 
Units 

Epoch 
BFGS 

Iteration 
1 10 300 100 

 
 

 
Figure 2. Loss curve illustrating convergence of the neural 
network training over epochs for the 𝑛 = 0, 𝑙 = 0 state. 

 

 
Figure 3. Learning curve illustrating convergence of the 
neural network training over BFGS iterations for the 𝑛 = 0, 
𝑙 = 0 state. 
 

Table 2 shows the calculated mass spectra of the 𝑏𝑐̅̅ 
meson for 𝑁 = 3  spatial dimensions, which 
corresponds to our three-dimensional space. The 
results from our present work are compared with 
those from other studies, including the NNs used in 
[25], as well as theoretical models in [10, 14, 19, 39]. 
Where available, comparisons with experimental data 
from [12] are also included. 
 
In the first excited state (2𝑆), we calculated the mass 
to be 7.043 𝐺𝑒𝑉 , which is consistent with other 
theoretical calculations but somewhat greater than 
the experimental value of 6.842 𝐺𝑒𝑉 [14, 18, 19, 25]. 
 

 
Table 2. Mass spectra of 𝐵𝑐  meson (in 𝐺𝑒𝑉) for 𝑁 = 3. 

State Present 
Work 

[25] [10] [14] [18] [19] Exp. 
[12] 

1S 6.276 6.274 6.362 6.277 6.264 6.270 6.275 
1P 6.669 6.743 6.792 6.666 6.700 6.699 - 
1D 7.052 7.046 7.051 - - - - 
2S 7.043 6.839 6.911 7.042 6.856 6.835 6.842 
2P 7.212 7.187 7.178 7.207 7.108 7.091 - 
3S 7.287 7.245 7.284 7.384 7.244 7.193 - 
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3P 7.471 7.467 7.494 - - - - 
4S 7.527 7.522 7.593 - - - - 

This might be a result of the additional quadratic 
potential term in our approach, which might raise the 
calculated masses for the excited states. 
 
Theoretical mass calculated for the 1𝑃 state comes out 
to be 6.669 𝐺𝑒𝑉, consistent with the values from the 
other models, assuring the strength of our method for 
the calculation of orbital excitations. We find the same 
consistency in the calculations for the 2𝑃  and 3𝑃 
states even though we do not possess experimental 
results for these states for direct comparison. 
 
Table 3 presents the calculated mass spectra for the 𝑏𝑐̅̅ 
meson in a hypothetical four-dimensional space (𝑁 =
4 ). These results are compared with those in [14], 
which uses the same potential model. 
 
The ground state mass, calculated as 1𝑆 , in 𝑁 = 4 
dimensions comes out to be 6.350 𝐺𝑒𝑉 , which is 
somewhat larger than the result in the 𝑁 = 3 
dimensional case. This can be anticipated because the 
increased spatial dimension changes the dynamics in 
the quark-antiquark system. Excited state masses are 
typically higher than in the 𝑁 = 3 dimensional case. 
 
Specifically, for the 2𝑆  state, our predicted mass of 
6.879 𝐺𝑒𝑉  agrees almost exactly with that given in 
[14], demonstrating the consistency of the neural 
network method with conventional analytical 
calculations even at larger dimensions. The calculated 
masses for the remaining states, including 3𝑆 and 3𝑃, 
agree likewise reasonably well with past results. 
 
Table 3. Mass spectra of 𝐵𝑐  meson (in 𝐺𝑒𝑉) for 𝑁 = 4. 

State Present Work [14] 
1S 6.350 6.355 
1P 6.862 6.883 
1D 7.052 - 
2S 6.879 6.878 
2P 7.165 7.161 
3S 7.516 8.035 
3P 7.282 - 
4S 7.246 - 

 
Results for 𝑵 = 𝟒  dimensions are noteworthy 
because they provide useful theoretical insight on 
the variation of the quark-antiquark interaction 
for systems of larger numbers of dimensions. An 
increase in spatial dimensions modifies the 
overall dynamics of a system through a variation 
of the combined potential, leading to computable 
observable changes of calculated meson masses. 
These results are of particular interest for studies 
of beyond-Standard Model scenarios, e.g., of string 
models or models of extra spatial dimensions. 
Such models are, of course, speculative without 
experimental confirmation but are a useful 
starting point for investigating the strength and 

versatility of theoretical approaches of meson 
spectroscopy. 
 
 
4. Discussion and Conclusion 
 
When compared to the results using the literature, it 
becomes apparent that the method using the neural 
network is a valid and effective technique to obtain the 
masses of the spectra of the heavy meson system of 𝑏𝑐̅̅. 
Adding the quadratic potential to the Cornell potential 
makes the model flexible, especially in the prediction 
of the excited states [10, 14, 25]. 
 
Yet, the minor variations seen in the excited states hint 
at the possibility of further tuning of the potential 
parameters or the incorporation of additional physical 
phenomena, e.g., relativistic correction or spin-spin 
interaction, to enhance the precision of predictions [7, 
23, 40-42]. 
 
Overall, the combined Cornell and quadratic potential 
used in the neural network method presents a wide 
range of potential for the study of heavy meson 
spectroscopy, giving results competitive to, and 
sometimes better than, the conventional theory. 
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