
MCBÜ Soma Meslek Yüksekokulu Teknik Bilimler Dergisi Yıl: 2025 Sayı:39 Cilt: I 
 

27 
 
 
 

TUZLULUK DAĞILIMLARININ BELİRLENMESINDE KÜMELEME 
ALGORİTMALARININ ETKİNLİĞİNİN DEĞERLENDİRİLMESİ 

 
Perihan Karaköse1 

 
Accepted: 11 Temmuz 2025 

DOI: 10.47118/somatbd.1712594 
 

ÖZET 
 
Bu çalışmada, farklı kümeleme algoritmalarının tuzluluk verisi üzerindeki performansları 

karşılaştırılarak, karmaşık mekânsal desenleri sınıflandırmadaki başarıları incelenmiştir. 
Analizlerde KMeans, Agglomerative Clustering, DBSCAN, MeanShift, Birch, MiniBatch 
KMeans ve Spectral Clustering algoritmaları kullanılmıştır. Performans değerlendirmesi için 
siluet skoru temel ölçüt olarak kullanılmıştır. Elde edilen sonuçlara göre, MeanShift algoritması 
0.79 siluet skoru ile en iyi sonucu verirken, KMeans ve MiniBatch KMeans algoritmaları 0.38 
skoru ile orta düzeyde başarı göstermiştir. Agglomerative Clustering 0.34, Birch 0.31, DBSCAN 
0.28 skoru elde etmiş, Spectral Clustering ise -0.35 skoruyla en düşük performansı sergilemiştir. 
Sonuçlar, özellikle heterojen ve sürekli değişim gösteren okyanus verilerinde yoğunluk adaptif 
yöntemlerin (örneğin MeanShift) üstün performans sunduğunu göstermektedir. Çalışmada 
kullanılan deniz suyu tuzluluk verisi, NOAA World Ocean Database’den temin edilmiştir 
(https://www.ncei.noaa.gov/products/world-ocean-database). 
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ASSESSING THE EFFECTIVENESS OF CLUSTERING 
ALGORITHMS IN IDENTIFYING SALINITY DISTRIBUTIONS 

 
ABSTRACT 

 
In this study, the performances of various clustering algorithms were compared on salinity 

data to evaluate their effectiveness in classifying complex spatial patterns. The clustering 
methods applied included KMeans, Agglomerative Clustering, DBSCAN, MeanShift, Birch, 
MiniBatch KMeans, and Spectral Clustering. The silhouette score was used as the primary 
evaluation metric. According to the results, the MeanShift algorithm achieved the best 
performance with a silhouette score of 0.79, while KMeans and MiniBatch KMeans showed 
moderate success with scores of 0.38. Agglomerative Clustering, Birch, and DBSCAN yielded 
silhouette scores of 0.34, 0.31, and 0.28, respectively, whereas Spectral Clustering exhibited the 
poorest performance with a negative score of -0.35. These findings highlight that density-
adaptive methods like MeanShift are particularly effective for analyzing heterogeneous and 
continuous oceanographic data. The sea water salinity dataset used in this study was obtained 
from the NOAA World Ocean Database (https://www.ncei.noaa.gov/products/world-ocean-
database). 
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1. INTRODUCTION 
 
Clustering analysis is an effective data mining method used to identify meaningful 

structures within large datasets (Jain and Dubes, 1988; Xu and Wunsch, 2005). It is particularly 
utilized in oceanography to classify the distributions of physical parameters such as temperature 
and salinity (Maze et al., 2017). In this study, a diverse set of clustering algorithms was 
deliberately selected to represent different clustering strategies—including partition-based, 
hierarchical, density-based, and graph-based approaches—to comprehensively assess their 
performance on ocean salinity data. The K-means algorithm is one of the most popular methods 
due to its computational simplicity, fast execution, and ability to generate interpretable clusters 
(Ahmed, Seraj and Islam, 2020; Chong, 2021). It was included as a baseline due to its widespread 
usage in environmental data analysis. However, it can perform poorly on clusters with non-
spherical shapes and in datasets with significant noise (Arbelaitz et al., 2013). Agglomerative 
(hierarchical) clustering was selected because it does not require a pre-specified number of 
clusters and provides a detailed representation of data structure through dendrograms. This 
method offers particular advantages when working with multiscale oceanographic data, where 
the number of distinct water masses may not be known a priori (Ranzinger et al., 2024). 
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is known for its 
robustness to noise and ability to detect clusters of arbitrary shape. Given the heterogeneous and 
dynamic nature of ocean salinity distributions, DBSCAN provides a density-adaptive approach 
suitable for capturing irregular patterns (Singh, Girdhar, and Dahiya, 2022). The Mean Shift 
algorithm identifies clusters by locating the modes of a density function and can determine the 
number of clusters automatically. This non-parametric nature makes it particularly valuable 
when the true number of water masses or salinity zones is unknown, which is often the case in 
exploratory oceanographic studies (Aidilof et al., 2025). Birch (Balanced Iterative Reducing and 
Clustering using Hierarchies) was included due to its ability to efficiently process large datasets 
in a single scan. Its hierarchical structure allows it to retain summary statistics, making it suitable 
for streaming or high-volume satellite-derived salinity datasets (Wahyuningrum et al., 2021). 
MiniBatch K-means, a faster variant of K-means, was chosen for its computational efficiency on 
large-scale data. Its inclusion allows assessment of how much performance is gained or lost when 
optimizing for speed over accuracy in ocean monitoring tasks (Hanji & Hanji, 2023). Spectral 
Clustering operates on similarity matrices and can capture non-convex clusters through graph 
partitioning methods. It is particularly useful when underlying patterns are better understood 
through network relationships rather than geometric proximity, which can apply to salinity 
gradients influenced by ocean currents and bathymetric constraints (Berahmand et al., 2022). To 
evaluate the accuracy of clustering results and the quality of the clusters, the Silhouette score 
was used. This metric provides an objective comparison of algorithm performance by measuring 
the balance between inter-cluster separation and intra-cluster cohesion (Topaloğlu, 2024). 
 

With the recent rise in the application of artificial intelligence, clustering methods have 
become increasingly widespread in environmental sciences. In this study, seven widely used 
clustering algorithms were systematically selected and compared on the same salinity dataset, 
each chosen for its unique strengths and relevance to the complex structure of oceanographic 
data. 
 
2. MATERIAL AND METHODS 
 

In this research, multiple clustering algorithms were implemented and evaluated to explore 
the structural characteristics of salinity datasets. The clustering processes were conducted using 
Python programming language and its associated machine learning libraries. The performance 
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of each method was assessed through silhouette score metrics to objectively compare the quality 
of the clustering results. A detailed description of the applied algorithms is presented below. 

 
2.1. K-means Clustering 

 
K-means clustering is a partitioning method that aims to divide a dataset into a predefined 

number of clusters by minimizing intra-cluster variance. Initially, random centroids are selected, 
and each data point is assigned to the nearest centroid based on Euclidean distance. Centroids 
are updated iteratively until convergence is achieved. Despite its simplicity and computational 
speed, K-means may struggle to accurately cluster data with non-spherical shapes or significant 
noise. 
 
2.2.  Agglomerative Clustering 
 

Agglomerative clustering, a bottom-up hierarchical method, begins by treating each 
observation as an individual cluster. At each step, the two clusters with the smallest distance are 
merged until a single cluster encompassing all observations is formed or until the desired number 
of clusters is reached. This approach reveals the nEsted structure of data and does not require 
specifying the number of clusters in advance, making it suitable for complex datasets with 
varying scales. 

 
2.3.  DBSCAN 
 

DBSCAN is a density-based clustering algorithm that groups together data points closely 
packed in space and identifies points in low-density areas as noise. Unlike K-means, it can 
discover clusters of arbitrary shape and does not necessitate specifying the number of clusters 
beforehand. Its resilience to noise and effectiveness in handling datasets with varying densities 
make it advantageous for analyzing heterogeneous oceanographic data. 

 
2.4. Mean Shift Clustering 
 

Mean Shift is a non-parametric clustering method that identifies clusters by shifting data 
points towards the nearest peak of the data density. It operates without requiring the number of 
clusters to be predetermined, adapting instead to the underlying structure of the data. This 
property makes it particularly useful for datasets where natural cluster boundaries are not well-
defined, such as variations in salinity measurements across ocean regions. 

 
2.5. Birch Clustering 
 

Birch (Balanced Iterative Reducing and Clustering using Hierarchies) is an efficient 
clustering algorithm designed for large-scale datasets. It constructs a Clustering Feature (CF) 
tree that summarizes the data compactly and then applies clustering on this summary structure. 
Birch performs particularly well when memory resources are limited and offers rapid processing 
while maintaining a reasonable level of accuracy. 

 
2.6.  MiniBatch K-means 

 
MiniBatch K-means is an extension of the K-means algorithm that updates cluster centroids 

based on small random subsets (mini-batches) of the data rather than the full dataset. This 
significantly speeds up the convergence process, making it particularly advantageous when 
working with massive datasets. Although it introduces slight approximations compared to 
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standard K-means, it achieves comparable clustering quality with greatly reduced computational 
cost. 
 
2.7.  Spectral Clustering 

 
Spectral clustering transforms the original data into a new space using the eigenvectors of 

a similarity matrix derived from the data points. By clustering in this transformed space, it 
captures complex relationships between points that are not evident in the original feature space. 
Spectral clustering is especially powerful for identifying non-convex and intricate cluster 
structures, providing a flexible approach suitable for analyzing complex environmental data 
distributions. 
 
2.8. Silhouette Score Calculation 

 
To assess the effectiveness of the clustering algorithms applied, the silhouette score was 

chosen as the primary evaluation metric. The silhouette score evaluates how well each data point 
fits within its own cluster (cohesion) relative to other clusters (separation), offering a holistic 
view of the clustering quality. 
 
For each data point 𝑖, two metrics are computed: 
 

 𝑎(𝑖): the average distance between point 𝑖 and all other points within the same cluster 
(intra-cluster distance), 

 
 𝑏(𝑖): the average distance between point 𝑖 and the closest point in any other cluster 

(nearest-cluster distance). 
 
The silhouette coefficient 𝑠(𝑖) for each point is caluculated using the Equation 1. 
 

𝑠ሺ𝑖ሻ ൌ
𝑏ሺ𝑖ሻ െ 𝑎ሺ𝑖ሻ

max ሼ𝑎ሺ𝑖ሻ, 𝑏ሺ𝑖ሻሽ
 

 (1) 

 
The silhouette coefficient 𝑠(𝑖) ranges from -1 to 1: 
 

 Values close to 1 suggest that the point is well-matched to its own cluster and poorly 
matched to other clusters. 

 
 Values near 0 indicate that the point lies on the boundary between two clusters. 

 
 Negative values imply that the point may be incorrectly assigned to its current cluster. 

 
The overall silhouette score for a clustering result is the average of the silhouette coefficients 
across all data points in Equation 2.  
 

𝑆 ൌ
1
𝑛

෍ 𝑠ሺ𝑖ሻ

௡

௜ୀଵ

 

 

(2) 

 
where 𝑛 represents the total number of data points. 
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In this study, the silhouette score was used to objectively evaluate the clustering 

performance of various algorithms applied to the salinity dataset. A higher silhouette score 
indicates a more well-defined and meaningful clustering outcome. 
 
3. Data SET  
 

In this study, two distinct datasets—bottle.csv and cast.csv—were utilized for the analysis 
of salinity and other physical parameters. These datasets are based on measurement data 
provided by the NOAA National Centers for Environmental Information (NCEI) as part of the 
World Ocean Database (WOD) (NOAA, 2025). To enhance computational efficiency and reduce 
processing load, a random sample of 10,000 observations was extracted from each dataset. The 
bottle.csv dataset comprises in-situ measurements of seawater samples collected at various 
depths and geographical locations using bottle samplers. It includes a range of parameters such 
as temperature, salinity, pressure, and chemical composition. This dataset serves as a critical 
source for evaluating vertical ocean profiles and the spatial distribution of physical 
characteristics. Conversely, the cast.csv dataset provides supplementary metadata for each 
sampling event, including geographical coordinates (latitude and longitude), sampling dates and 
times, and sampling depths. This metadata facilitates the accurate spatial contextualization of the 
physical parameters under investigation. Prior to analysis, both datasets underwent preprocessing 
procedures. Irrelevant columns were removed, and selected variables were normalized to a range 
between 0 and 1 using the MinMaxScaler method. The integration of bottle.csv and cast.csv has 
established a robust foundation for clustering analyses aimed at characterizing the structural 
variability of salinity and classifying heterogeneity within oceanic environments. A 
representative spatial visualization of the sampled data points is presented in Figure 1. This 2D 
plot displays the geographic distribution of salinity values across the selected region, where the 
color scale corresponds to salinity levels. The figure effectively illustrates the spatial variability 
and gradient of salinity within the study area. 

 

 
Figure 1. Ground Truth Salinity Data Map 
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4. SIMULATION AND DISCUSSIONS 
 

In Figure 2.a, the results of the KMeans clustering algorithm are presented. The method 
appears to generate compact and well-defined clusters, particularly in regions with dense 
sampling. The silhouette score of 0.38 indicates a moderate level of internal cohesion and 
separation between clusters. The algorithm successfully captures the underlying structure of the 
spatial salinity distribution, especially around the central region. However, in more sparsely 
populated areas, the cluster boundaries become less distinct. In Figure 2.b, the clustering output 
from the Agglomerative Clustering algorithm is illustrated. While the overall cluster 
configuration resembles that of KMeans, the silhouette score is slightly lower (0.34), suggesting 
less effective inter-cluster separation. Some clusters are elongated and less compact, particularly 
toward the northern and southern extents of the study region. This observation suggests that 
while the method is suitable for capturing hierarchical relationships, its performance may be 
limited when dealing with high variability in spatial density. In Figure 2.c, the DBSCAN 
algorithm reveals a scattered distribution of clusters, accompanied by a significant number of 
noise points. This density-based approach identifies dense regions as clusters and labels the rest 
as outliers, resulting in a silhouette score of 0.28. Although DBSCAN is capable of identifying 
arbitrary-shaped clusters, its performance in this application appears constrained due to the 
variable spatial distribution of sampling points. The prevalence of noise may reflect limitations 
in capturing continuous spatial gradients. In Figure 2.d, MeanShift clustering demonstrates 
superior performance with the highest silhouette score (0.79) among all methods evaluated. The 
algorithm effectively identifies meaningful cluster centers based on data density and provides a 
highly coherent segmentation of the spatial domain. The smooth transition between clusters and 
their alignment with geographic gradients of salinity suggest that MeanShift is particularly well-
suited for this type of oceanographic data. In Figure 2.e, the Birch clustering algorithm yields 
moderately distinct groupings, with a silhouette score of 0.31. While clusters in the central 
regions are relatively compact, peripheral areas display more dispersed and weakly defined 
boundaries. Birch is known for its efficiency on large datasets, but in this case, its ability to 
differentiate between clusters in sparsely populated areas appears limited. In Figure 2.f, 
MiniBatch KMeans produces a cluster structure nearly identical to standard KMeans, achieving 
an identical silhouette score of 0.38. This algorithm offers faster computation by processing 
mini-batches of data, which is advantageous for large-scale applications. The consistency in 
performance and clustering quality indicates its viability as a faster alternative to KMeans 
without significant loss in accuracy. 

 
 

a) 
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b) 

c) 

d) 
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e) 

f) 
 

Figure 2. Spatial data clusters generated using different clustering algorithms. (a) KMeans 
(Silhouette: 0.38). (b) Agglomerative Clustering(Silhouette: 0.34). (c) DBSCAN (Silhouette: 
0.28). (d) MeanShift(Silhouette: 0.79). (e) Birch (Silhouette: 0.31). (f) MiniBatch KMeans 

(Silhouette: 0.38). 
 
5. CONCLUSIONS 

 
In this study, the performances of various clustering algorithms were compared on salinity 

data to evaluate their ability to classify complex spatial patterns. Salinity was selected as the 
primary variable due to its fundamental role in determining marine physical processes. The 
clustering algorithms applied included KMeans, Agglomerative Clustering, DBSCAN, 
MeanShift, Birch, MiniBatch KMeans, and Spectral Clustering. Each algorithm was 
implemented following identical preprocessing steps (data normalization and sampling), and 
their performance was assessed using the silhouette score as the primary evaluation metric. 
According to the silhouette score results: The MeanShift algorithm achieved the highest 
silhouette score of 0.79, producing coherent clusters that best reflected the natural gradients of 
salinity data. KMeans and MiniBatch KMeans attained silhouette scores of 0.38, indicating 
moderate success, particularly in densely sampled regions. Agglomerative Clustering yielded a 
silhouette score of 0.34, producing clusters similar to KMeans but more dispersed. DBSCAN, 
due to its density-based structure, formed irregular clusters but achieved a lower silhouette score 
of 0.28, which can be attributed to the high number of noise points. 
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Birch produced relatively compact clusters in the central areas but more scattered clusters 
at the periphery, with a silhouette score of 0.31. Spectral Clustering exhibited the poorest 
performance, with a negative silhouette score of -0.35, indicating its inadequacy in successfully 
separating the clusters within the dataset. 

 
These findings clearly demonstrate that the choice of clustering algorithm is critical in the 

analysis of environmental spatial datasets. Particularly for continuous and heterogeneous 
oceanographic data, density-adaptive methods such as MeanShift provide superior results. 
 

For future studies, it is recommended to explore more advanced and flexible clustering 
approaches. For instance, Gaussian Mixture Models (GMM) can provide probabilistic soft 
clustering, which may better reflect gradual transitions in oceanographic parameters. In addition, 
deep learning-based methods such as autoencoder-based clustering (e.g., DEC – Deep Embedded 
Clustering) can be utilized to capture non-linear structures in high-dimensional spatiotemporal 
data. The integration of such methods may enhance the interpretability and accuracy of clustering 
results, especially in large-scale and multi-variable ocean datasets. Ultimately, future research 
should focus on developing customized clustering frameworks that account for the physical 
characteristics and spatial dynamics of marine data, potentially combining data-driven and 
physics-informed approaches for more robust spatial classification. 
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