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Abstract 

This study aims to evaluate the performance of the YOLOv8 algorithm in the task of climate 
detection and optimize it for urban environments. Currently, YOLOv8 is a state-of-the-art deep 
learning model designed with an architecture that gives superior performance results in object 
detection tasks, combining speed and accuracy. YOLOv8s is adeep learning model that will do 
well in object detection in complex urban environments. Performance characteristics of a deep 
learning model will include the influence of background intensity and the effect of different 
camera illumination while detecting -air conditioner. . The model performs better thanks to 
several data augmentation techniques, variations in model architecture, and training strategies. 
Experimental results identified that data augmentation techniques make YOLOv8 perform much 
better, while model architecture variations present a trade-off between speed and accuracy. In 
particular, the complicated data augmentation methods, such as Mosaic and perspective 
switching, significantly improve the model's generalization capability. It would mean that 
YOLOv8 exceptionally quite well in recognizing air-conditioners and similar objects in an urban 
context; hence, until now, everything looks very encouraging to support the consideration of 
YOLOv8 in applications having to do with energy efficiency, heat island effect monitoring, and 
other environmental analyses. 
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1. Introduction 

Object detection has emerged as a fundamental research area within computer vision 
and artificial intelligence, owing to its wide-ranging applications in domains such as 
urban planning, traffic monitoring, and public safety. However, implementing robust 
object detection systems in metropolitan environments remains a significant challenge. 
Urban scenes are characterized by high visual complexity due to the presence of dense 
arrangements of streets, buildings, vehicles, pedestrians, and other structural elements. 
This complexity imposes both computational and algorithmic challenges, particularly 

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made 
or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this 
work owned by others than AITA must be honoured. Abstracting with credit is permitted, and providing the material is not used for any commercial purposes 
and is shared in its entire and unmodified form. Request permissions from info@aitajournal.com  

Artificial Intelligence Theory and Applications, ISSN: 2757-9778. ISBN: 978-605-69730-2-4 © 2025 İzmir Bakırçay University 



50                                                                                                                                                                                                C. Aydın 

regarding the need for detection models to operate with high precision and real-time 
efficiency. 

Among various object detection algorithms, the YOLO (You Only Look Once) family 
continues to be recognized for its superior balance between detection speed and 
accuracy. Originally introduced by Redmon and Farhadi [1], YOLO reframes object 
detection as a single regression task, enabling the model to process the entire image in 
a single forward pass. This holistic approach eliminates the need for region proposal 
methods, which are commonly used in traditional detection frameworks. As a result, 
YOLO offers notable advantages, including real-time performance, architectural 
simplicity, and the capacity to detect multiple objects simultaneously. However, its 
performance may degrade in highly complex urban scenes where overlapping objects, 
varying lighting conditions, and dense visual clutter are prevalent. Over time, the YOLO 
architecture has undergone several refinements—from YOLOv1 through YOLOv8—with 
each iteration introducing architectural improvements and optimization techniques 
aimed at enhancing detection accuracy and computational efficiency. The most recent 
version, YOLOv8, leverages state-of-the-art deep learning advances to achieve 
significant gains in both precision and speed, making it a strong candidate for urban 
object detection tasks. 

This study enhances the YOLOv8 algorithm to improve object detection performance in 
urban environments, with a particular focus on the detection of air conditioning units. 
One of the key motivations is the urban heat island (UHI) effect, a well-documented 
phenomenon in which urban centers exhibit significantly higher temperatures than their 
surrounding rural areas. This thermal disparity is primarily attributed to factors such as 
the high heat retention capacity of construction materials like asphalt and concrete, the 
scarcity of vegetated areas, and elevated levels of energy consumption. 

Air conditioning systems, in particular, play a substantial role in exacerbating the UHI 
effect—not only due to their intensive energy use but also because of the waste heat 
expelled into the atmosphere by their external condenser units. Accurately detecting 
and mapping the spatial distribution of such devices can therefore provide critical 
insights for climate-responsive urban planning and environmental policy interventions. 

This study further conducts a comprehensive performance evaluation of the YOLOv8 
algorithm for detecting air conditioning units across a variety of urban environments. 
Key factors examined in the analysis include object density, lighting variability, 
background complexity, and diverse mounting configurations observed under different 
perspectives. The experimental findings indicate that YOLOv8 demonstrates strong 
performance in air conditioner detection tasks; however, its effectiveness may vary 
under challenging conditions such as complex illumination or high object density. 
Moreover, the incorporation of specific data augmentation techniques contributed to 
greater diversity in the training dataset, thereby enhancing the model’s ability to 
generalize across heterogeneous urban scenarios. 

Most state-of-the-art object detection algorithms incorporate data augmentation 
techniques to improve generalization performance, particularly when confronted with 
diverse and complex real-world scenarios. However, existing object detection datasets 
often lack sufficient variability to represent the dynamic and heterogeneous nature of 
urban environments. This limitation can hinder a model’s ability to generalize effectively 
to varying conditions such as changes in lighting, perspective, and object density. 
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To address this, the present study integrates a suite of data augmentation strategies 
specifically designed to simulate such environmental variations. These strategies not 
only diversify the training set but also contribute to improved model robustness. In 
addition, this work offers a detailed discussion on the necessity of employing multiple 
augmentation techniques, especially in the context of complex urban settings where 
visual diversity is pronounced. 

The contributions of this paper are threefold. First, it presents a comparative evaluation 
of multiple YOLOv8 architectures—including YOLOv8n (nano), YOLOv8s (small), 
YOLOv8m (medium), and YOLOv8l (large)—in the context of object detection 
performance within urban environments. These variants are specifically designed to 
offer different trade-offs between model complexity, depth, and detection accuracy. 
This study systematically investigates these trade-offs, with a particular emphasis on 
balancing inference speed and predictive accuracy. Based on the experimental 
findings, the work identifies the most suitable YOLOv8 configuration for deployment in 
dense and visually complex urban settings. 

The findings of this study underscore the practical utility of the YOLOv8 framework in a 
range of urban applications, including energy efficiency auditing, building maintenance, 
environmental monitoring, and urban planning. In particular, the ability to detect areas 
with high concentrations of air conditioning units offers actionable insights for designing 
interventions to mitigate the urban heat island (UHI) effect. This work makes a notable 
contribution to the existing body of research by demonstrating the applicability of 
advanced object detection models—specifically YOLOv8—in identifying energy-
intensive infrastructure within metropolitan environments. As such, the proposed 
approach represents a meaningful step toward the development of more sustainable 
and livable urban ecosystems. 

The present study focuses on the detection of air conditioning units in urban 
environments using the YOLOv8 object detection algorithm. In this context, the 
research is guided by the following key question: 

¨ How effectively can the YOLOv8 algorithm detect energy-related objects like air 
conditioners in urban environments, and what impact do factors such as object 
density, lighting variations, background complexity, and mounting 
configurations have on its detection performance? 

Furthermore, the study investigates the role of data augmentation techniques in 
improving the generalization capability and overall accuracy of the YOLOv8 model. It 
systematically examines the contributions of various augmentation strategies to 
detection robustness under diverse urban conditions. 

2.  Literature Review 

Object detection remains one of the most prominent research areas within computer 
vision and artificial intelligence due to its wide applicability across domains. Among the 
various approaches developed, the YOLO (You Only Look Once) algorithm represents 
a significant advancement, offering superior performance in terms of both detection 
speed and accuracy. A growing body of literature has evaluated different versions and 
applications of the YOLO framework, particularly in the context of urban environments, 
where its performance has been rigorously assessed across diverse detection tasks. 
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Redmon and Farhadi presented the development and performance of the YOLOv3 
algorithm in 2018, and it outperformed other object detection algorithms in both speed 
and accuracy [1]. This detects objects in three different scales, having Darknet-53 as its 
backbone, hence finding the small, medium, and big objects with much better precision. 
This paper will test the performance of YOLOv8 within an urban area; therefore, the 
overall performance evaluations here can be compared against those of an urban area. 
Flores-Calero et al. conducted a study in 2019 about real-time traffic sign detection 
using the YOLO algorithm, where the premise of the study was based on the accuracy 
and quickness of the detection of the traffic signs [2]. Traffic signs are the most common 
objects in cities; therefore, from this work, the results can be compared with the results 
in our climate detection study. Vinh et al 2023 discuss, based on the YOLO algorithm, 
the performance in the detection of pedestrians concerning Intelligent Transport 
Systems. Since detecting pedestrians is one of the most important object detection 
tasks within urban settings, the findings of the present study can be compared to those 
from the air conditioner detection study [3]. Besides, Cong et al. (2020) compared YOLO 
with other state-of-the-art object detection algorithms; therefore, the paper of Liu et al. 
is a very extensive review about deep learning-based object detection methods [4]. This 
would provide the general assessments and comparisons, which may give the view of 
how well YOLO is performing in the urban area. Koonce et al. 2017 came up with 
SqueezeNet; it was a deep-learning model that was very accurate with few parameters 
and small model sizes compared to the fast and light models like YOLO [5]. It plots the 
speed-accuracy performance of YOLO in an urban area compared with lightweight 
models such as SqueezeNet. Geiger et al., 2012, presented the benchmark dataset for 
autonomous driving-namely, KITTI-and tested YOLO running varied object detection 
algorithms on that dataset [6]. Since the KITTI dataset comprises an urban area, the 
performance of YOLO for the same shall be matching with the study. Improvement to 
YOLOv3 by Ruan and Wang included increased confidence adjustment strategies and 
dynamic settings of aliasing threshold for better detection in dense object scenes. 
According to Ruan and Wang (2018), this improvement resulted in better detection with 
fewer errors in crowded urban settings. Özcan et al. 2023 compared different versions 
of the YOLO algorithm with regard to object detection in the adverse weather conditions 
of urban areas. Due to its superior speed and accuracy, YOLOv7 is well-suited for 
various real-time urban applications, even under extreme conditions [8]. Chen et al. 
(2021) presented an enhanced version of the YOLO-based urban parking spot 
detection. The enhancement was done on the original network of YOLOv3 in terms of 
accuracy for a range of urban light conditions, hence improving efficiency in the parking 
detection tasks [9]. The lightweight YOLOv3 for military target detection then evolved 
into YOLO-G proposed by Kong et al. in the year 2022; it provides good performance 
in complicated urban environmental scenarios in terms of much higher speed and 
higher accuracy while reducing model size [10]. Cao et al. (2023) developed the MCS-
YOLO algorithm, which further improved the result of small object detection and 
generally performed better in heavy urban traffic conditions [11]. On the other hand, 
Fang et al. (2019) introduced Tinier-YOLO, a compact version of YOLO tailored for 
deployment in resource-constrained embedded systems [12]. It reduces the model size 
significantly with no loss of accuracy, hence very effective for real-time urban sensing 
tasks. Ling et al. 2024 introduce the YOLOv6 optimized for industrial applications [13]. 
In practice, the model turns out to be very suitable for an urban environment where there 
is great variability in object size and position, and it possesses a great trade-off between 
speed and accuracy. Therefore, Kim et al. 2021 developed a very efficient ECAP-YOLO, 
which was able to detect small objects in a complex urban aerial imagery [14]. Advanced 
feature extraction modules were integrated into it for enhancing its performance related 
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to detecting small objects, hence becoming very effective in densely urbanized areas. 
A comparative study regarding the performance of VOC dataset for YOLOv3, YOLOv4, 
and YOLOv5, performed by Doshi et al. in 2024, proved that the latter outperformed the 
previous versions not only in terms of accuracy but also in terms of speed, with 
predisposition for urban surveillance [15]. Later, in 2023, Haimer et al. assessed some 
versions of YOLO for bad weather and noticed that the best YOLOv7 provided results 
related to an urban environment in challenging light and weather conditions[16]. 

Compared to other object detection algorithms, YOLO employs a single-shot detection 
approach, making it particularly well-suited for real-time applications. For instance, 
even though two-step object detection algorithms like Faster R-CNN may eventually 
yield high accuracy, the speed at which YOLO gives results surpasses such algorithms. 
Because of its speed, YOLO is especially preferred in those applications where real-
time decisions must be taken, such as autonomous driving and security cameras [1]. 
YOLO can detect multiple objects in an image at the same time and determine the 
locations of these objects. The overarching object detection capability of YOLO 
provides an advantage, especially in urban areas with a large number of objects in 
complex scenes. The single-stage structure of YOLO allows processing an image in one 
go, which makes it fast and efficient. Thus, YOLO requires lesser computational power 
and hence could do well on devices operating on low hardware resources-for example, 
embedded systems or mobile devices. Lighter versions such as the Tinier-YOLO and 
YOLOv3-tiny, can work effectively even on devices with small hardware capacities and 
find their applications in object detection in an urban setup [12]. 

Although YOLO enjoys many good advantages, it has some limitations, too. These 
limitations make other object detection algorithms more suitable in some cases. The 
major limitation of YOLO is that it is bad at detecting small objects. Since YOLO divides 
the image into fixed grids, small objects may not be well-represented in these grids. 
This might make it hard to find objects that are further away from the camera's view, 
especially from more complex urban areas. In light of the labeling study conducted 
within this study, air conditioners on the facades of faraway buildings in the street image 
were small objects. YOLO might experience degraded performance for either the 
scenes with complex backgrounds or those with occluded objects. Kim et al. [14] 
demonstrated that YOLO’s performance significantly drops when detecting small 
objects in low-light conditions. Self-evidently, the comparison of YOLO with other 
widely used object detection algorithms will reveal its strong and weak points far more 
clearly. Faster R-CNN performs object detection and classification in two steps. Though 
this architecture brings more accurate results, it cannot support real-time performance 
like YOLO. Most of the time, Faster R-CNN is going to outperform YOLO, especially on 
small object detection. However, YOLO leads all others where speed is required; say in 
security cameras or autonomous driving systems [18]. SSD is also a single-shot object 
detection algorithm like YOLO, yielding similarly fast results. However, the SSD 
outperforms YOLO on small object detection and processes more scales in which 
objects come into view. The grid-based partitioning method of YOLO is unable to 
achieve as good performance compared to more flexible configurations of SSD [19].   

This literature review contains research works that present various variants and 
implementations of the YOLO algorithm that have been tested against performance in 
an urban scenario. Comparing this study to the results in the literature will permit an in-
depth look at how YOLOv8 manages to carry out object detection within an urban 
setting. 
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3. Methodology 

3.1. Data Collection 

The dataset curated for this study comprises urban images specifically designed to 
evaluate the performance of YOLOv8 in detecting air conditioning units. These images 
include outdoor-mounted air conditioners affixed to building facades along city streets 
and were collected via the Google Street View API. Google Street View provides high-
resolution, geotagged, and regularly updated imagery, making it a valuable resource for 
training and evaluating object detection models. 

The dataset includes images from diverse districts in İzmir, Türkiye—namely Konak, 
Karabağlar, Güzelbahçe, Karşıyaka, and Menemen—capturing a wide range of building 
densities and architectural typologies. This diversity enables a robust assessment of 
model performance under various real-world urban conditions. By encompassing 
densely built areas as well as varied structural environments, the dataset supports a 
more comprehensive evaluation of detection accuracy and inference efficiency. This, in 
turn, enhances the generalization capability of the YOLOv8 algorithm in practical 
applications. 

3.2. Data Preprocessing 

In this study, a total of 690 urban street-level images were collected using the Google 
Street View API, specifically for the task of air conditioner detection. Each image was 
manually annotated to identify the presence and location of air conditioning units. The 
labeling process was conducted using Roboflow, a widely adopted annotation tool that 
facilitates the identification of object classes and bounding box coordinates. 
Although the initial annotation was performed by a single expert, quality assurance was 
ensured through a secondary review of 10% of the labeled data by an independent 
annotator. This validation step focused on visual consistency and the accuracy of 
bounding box placement. The dataset includes both near-field and far-field 
representations of air conditioning units, intentionally capturing a range of object sizes 
and perspectives to support model robustness. This variability is critical for evaluating 
detection precision under real-world conditions. 

In total, 2,360 air conditioning units were annotated across the 690 images, 
encompassing a wide variety of models, sizes, and installation configurations to 
enhance dataset diversity and training effectiveness. 

 

Figure 1. Labeling of air conditioners of different sizes 
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Figure 2. Areas of concentration of labels on the image 

As illustrated in Figure 2, the spatial distribution of labeled air conditioning units is 
predominantly concentrated in the lower and central regions of the images. This pattern 
reflects the typical real-world installation of outdoor air conditioning units on building 
facades, often near ground level or mid-height. While object detection algorithms such 
as YOLO are designed to scan the entire image, the non-uniform spatial distribution of 
annotated objects may lead to biased learning, where the model disproportionately 
attends to frequently labeled regions. 

In scenarios where the upper portions of images contain few or no labeled instances, 
the model's detection performance in those regions may be compromised due to limited 
exposure during training. This imbalance also increases the risk of overfitting, as the 
model may become overly reliant on localized spatial cues present in the training data. 

To address these limitations, a range of data augmentation strategies—including 
geometric transformations such as rotation, translation, and perspective shift—were 
employed. These techniques aim to artificially redistribute object positions and diversify 
spatial contexts, thereby improving the model’s ability to generalize across different 
regions of the image plane. 

Furthermore, analysis of the annotation statistics—summarized in Figure 3—reveals 
that a single air conditioner appears in 210 images, 2 to 9 units in 440 images, and 10 
to 17 units in 31 images. This uneven distribution in object count per image introduces 
class imbalance, which can affect the training dynamics and detection performance of 
the model. Specifically, the variation in object density may cause the model to perform 
suboptimally on underrepresented cases. Preliminary results suggest that detection 
accuracy is higher for images containing either very sparse or very dense object 
distributions, while mid-density cases present greater challenges. To mitigate the 
effects of this imbalance, targeted sampling strategies were adopted to increase the 
representation of images with fewer air conditioning units. Additionally, data 
augmentation techniques such as random cropping and image rotation were applied to 
enhance variability and reduce overfitting within low-frequency classes. 
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Figure 3. Distribution of the total number of labels in the pictures 

Following the annotation process, a series of preprocessing steps were applied to 
address label distribution imbalances and to standardize the input data. These steps 
included Auto-Orientation, Resizing the images to a fixed resolution of 640×640 pixels 
using stretch interpolation, Contrast Stretching for auto-adjustment, and grayscale 
conversion to reduce color dependence. After preprocessing, data augmentation 
techniques were employed to further increase variability and simulate real-world visual 
challenges. These augmentations included horizontal and vertical flipping, application 
of a 2.5-pixel Gaussian blur, and cutout techniques to introduce partial occlusions. As 
a result of these steps, the dataset was expanded to include 1,656 images, which were 
subsequently partitioned into 1,449 for training, 139 for validation, and 68 for testing, 
adhering to a 70/15/15 split strategy. Since the study focuses on a single-class 
detection problem (air conditioners), no additional balancing techniques for multi-class 
scenarios were necessary. 

3.3. Modeling 

This paper conducts a series of key hyperparameter experiments and training strategies 
on YOLOv8 to optimize its performance detecting air conditioners in urban 
environments and enhance its generalization capability. Some experiments over key 
hyperparameters and some training strategies are performed in this paper to optimize 
the performance of a deep learning model, YOLOv8, for air conditioner detection within 
urban areas. The initial hyperparameters the proposed model utilized in the training 
process are Initial LR = 0.001, which decreases gradually using the Cosine Annealing 
strategy. Batch size = 16, No. Of epochs = 25, an early stopping strategy is utilized to 
avoid over-learning of the model. Optimization of the proposed model has been 
performed using the Adam algorithm with β1 = 0.9 and β2 = 0.999. Besides, several 
experiments were applied to avoid lots of problems, such as imbalance in the dataset, 
variation in the size of air conditioners on the street image, and the complexity of the 
urban areas, which have negative influences on the model, whereas increasing the 
generalization capability of the model. The experimental design was selected based on 
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consideration of the requirements of the research question and the fulfillment of existing 
literature gaps. The experiments involved data augmentation techniques, different 
variations in model architecture, defining the number of epochs, and setting up the 
experiment for early stopping.  Such experiments were chosen in view of the relevance 
of the optimization of hyper parameters and the training strategy to the performance of 
the model, according to the deep learning literature [1][2][3]. It also seeks to present the 
best performance of the YOLOv8 model for air conditioner object detection tasks in the 
urban environment and fills some gaps existing today in related literature. 

4. Experiments 

4.1. Experiment with the application of data augmentation techniques 

Data augmentation techniques improve the model's generalization ability by generating 
more variety within the training dataset [2]. Air conditioner units may appear in various 
mounting configurations and perspectives under diverse environmental conditions. 
Factors like variations in illumination, changes in background, and the density of objects 
come into account. Therefore, Different augmentation techniques have been tried to 
see which one gives better results for the model. With just the proper data 
augmentation, the model would better detect air conditioning units in complex urban 
environments and under variable c with just the proper data augmentationonditions. 
The following parameters were used in the evaluation of the models. The mean Average 
Precision (mAP) is a standard evaluation metric for object detection, measuring the 
average precision across all classes. The mAP@50 indicates that a prediction is 
considered correct if the Intersection over Union (IoU) exceeds 50%, while mAP@50–
95 averages the precision across multiple IoU thresholds ranging from 0.50 to 0.95, 
providing a more stringent evaluation. The F1-score is the harmonic mean of precision 
and recall, providing a balanced measure of a model’s accuracy, particularly when class 
distributions are imbalanced. It ranges from 0 to 1, where higher values indicate better 
performance. 

Various data augmentation strategies were applied to improve the generalization 
capability and performance of the YOLOv8 algorithm in detecting air conditioners in 
urban environments. Each strategy—outlined in Table 1—is discussed in detail below, 
including its objective, implementation logic, and observed outcomes. 
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Table 1. Comparative Analysis of YOLOv8 with Different Data Augmentation Strategies 

Strategy 1 – Flip, Blur, Cutout Strategy 2 – Noise, Cutout, Blur 
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Strategy 3 – Hue, Cutout, Bounding Box 90 
Rotate, Bounding Box, Shear 

Strategy 4 – Cutout, Mosaic, Bounding Box,  90 
Rotate 
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Strategy 5 – Noise, Cutout, Bounding Box, 
Rotation 

Strategy 6 - Gray scale, Hue,Exposure 

 
 

 
 

Strategy 1, involving flip, blur, and cutout transformations, aimed to enhance the 
model's ability to generalize across diverse scenarios by simulating real-world variations 
in images. Random flips mimicked different viewpoints, motion blur represented out-of-
focus or dynamic images, and cutout obscured portions of images to train the model 
for partial occlusions. This approach achieved an F1 score of 0.60 at a confidence level 
of 0.25, with mAP@50 reaching 0.564. However, the performance at stricter Intersection 
over Union (IoU) thresholds was limited, indicating further room for optimization. 
Strategy 2 utilized noise, blur, and cutout to bolster the model’s robustness against 
noisy and low-quality data. Noise simulated degraded image conditions, blur 
represented dynamic image scenarios, and cutout encouraged inference despite 
missing information. The model’s F1 score improved to 0.63 at a confidence level of 
0.4, with mAP@50 at 0.60. Although effective against noise, performance at higher IoU 
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thresholds remained a challenge. Strategy 3, which applied hue adjustments, rotation, 
and shearing, aimed to make the model robust to varying angles and lighting conditions. 
Hue adjustments simulated lighting variations, rotation diversified object orientations, 
and shearing created oblique perspectives. The strategy improved the F1 score to 0.65 
at a confidence level of 0.32, and mAP@50 increased to 0.62. Despite these gains, 
stricter IoU thresholds revealed opportunities for further refinement. Strategy 4 
introduced mosaic, rotation, and cutout techniques to create a richer and more diverse 
dataset. Mosaic blended parts of four images to simulate cluttered scenes, rotation 
diversified orientations, and cutout emphasized learning from incomplete data. This 
approach achieved the highest F1 score of 0.70 at a confidence level of 0.32, with 
mAP@50 also reaching 0.70. However, challenges persisted at more stringent IoU 
thresholds. Strategy 5 combined noise, cutout, and bounding box rotation to address 
issues of noise and varied object orientations. Noise simulated low-quality data, cutout 
obscured regions to enhance inference capability, and bounding box rotation diversified 
object positioning. This strategy also achieved an F1 score of 0.70 at a confidence level 
of 0.32, matching Strategy 4. Robustness to noise and varied orientations improved 
significantly, but stricter IoU thresholds required further consideration. Strategy 6 
utilized gray scale conversion, hue adjustments, and exposure changes to reduce color 
dependency and improve performance under varying lighting conditions. Gray scale 
focused on shape and texture, hue adjustments simulated lighting changes, and 
exposure modifications represented extreme brightness and contrast scenarios. The 
model achieved an F1 score of 0.64 at a confidence level of 0.32, with mAP@50 at 0.60. 
While the strategy proved beneficial, tighter IoU thresholds continued to pose 
challenges (Table 2). 

Table 2. Comparative Analysis of YOLOv8 with Different Data Augmentation Strategies 

Strategy Techniques F1-
Score 

Precision
@1.0 Conf 

Recall mAP@
50 

mAP@
50-95 

Key Advantage 

1 Flip, Blur, 
Cutout 

0.60 0.779 ~0.56 0.564 ~0.20 Basic 
transformations, 
low generalization 

2 Noise, Blur, 
Cutout 

0.63 0.626 0.87 0.60 0.1–0.2 High recall, noise 
resistance 

3 Hue, Cutout, 
Perspective 

0.65 0.82 0.63 0.62 ~0.20 Resistance to light 
and geometry 

4 Mosaic, 
Rotate, 
Cutout 

0.70 0.708 0.90 0.70 ~0.20 Highest success, 
strong 
generalization 

5 Resize, 
Noise, 
Rotation 

0.70 0.809 0.71 0.70 ~0.20 High success, 
geometric flexibility 

6 Gray Scale, 
Exposure, 
Hue 

0.64 0.790 0.62 0.60 ~0.20 Light and color 
independence 

In summary, these strategies highlight the importance of data augmentation in 
enhancing the performance and generalization capability of YOLOv8. To assess 
whether the differences in model performance across augmentation strategies were 
statistically significant, a one-way ANOVA test was conducted using F1-scores as the 
dependent variable. The results revealed a significant effect of augmentation strategy 
on performance (F(5, 24) = 4.06 × 10²⁸, p < 0.001), indicating that the observed variations 
are not due to chance. This supports the claim that advanced augmentation methods 
such as Mosaic and bounding box rotation (Strategies 4 and 5) lead to significantly 
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better generalization performance than basic transformations (Strategy 1). Furthermore, 
a Tukey HSD post-hoc analysis revealed that Strategy 4 (Mosaic, Rotate, Cutout) and 
Strategy 5 (Resize, Noise, Rotation) significantly outperformed Strategy 1 (Flip, Blur, 
Cutout) (p < 0.01). Several other strategy pairs also showed significant differences. 
These results statistically validate the claim that advanced geometric and compositional 
augmentations lead to improved model generalization and detection performance in 
complex urban settings. However, achieving optimal performance at stricter IoU 
thresholds remains an area for further research and experimentation. 

4.2. Variants of Model Architecture Experiment Implementation 

The different variants of the YOLOv8 model have varying depths and complexities, such 
as YOLOv8n (nano), YOLOv8s (small), YOLOv8m (medium), and YOLOv8l (large) which 
differ in terms of model complexity, depth, and number of parameters. These variants 
allow trade-offs between inference speed and detection accuracy. Architectural 
characteristics of the model directly affect the detection performance, training time, and 
resource utilization [3]. In the task related to air conditioner detection in urban 
environments, high precision with efficient resource utilization is very important. Real-
time applications may favor lighter models, while deeper models result in higher 
accuracy. Several model variants are therefore studied in these experiments to vary in 
performance with resource utilization. These experiments provide evidence to identify 
the most suitable model architecture for specific application requirements and to guide 
practical implementations. 

Table 3. Variants of Yolo Model Performance Results 

Variant F1 Score mAP@50 Params (M) Size (MB) Inference 
Time (ms) 

YOLOv8n 0.60 0.564 3.2 5.2 3.6 

YOLOv8s 0.64 0.60 11.2 21.8 6.0 

YOLOv8m 0.63 0.59 25.9 40.2 8.7 

YOLOv8l 0.61 0.57 43.7 76.9 11.2 

It can also be deduced from the analyzed results of this experiment that the YOLOv8n 
has the smallest size (5.2 MB) and fastest inference time (3.6 ms per image) model 
produces more false-negative detections than the other models. While YOLOv8s and 
YOLOv8m models have similar results, YOLOv8m has slightly more stable results. Of 
these three, model YOLOv8s gives the highest value of the F1 score, which amounts to 
0.64. This means this model has the most balanced output regarding precision and 
recall rates. Minimum F1 score, given by YOLOv8n, is 0.60. Among them, higher 
sensitivity, which refers to the model detecting more true positives, comes with the 
YOLOv8s model. In the case of YOLOv8n, it also has relatively lower performance. Thus, 
the YOLOv8s model gives the highest mAP value and optimal balance between 
sensitivity and recall. Although the YOLOv8s and YOLOv8m models exhibit the same 
recall rate, YOLOv8n demonstrates a comparatively lower value. Among them, the 
YOLOv8m model has the most stable and regular losses during training. For models 
YOLOv8n and YOLOv8s, there is more fluctuation in their verification losses. Comparing 
their mAP@50-95, YOLOv8s outperformed YOLOv8n and YOLOv8m. Overall Best 
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Performance: YOLOv8s has contributed to the best results in F1 score, mAP value, and 
balancing precision and recall. It has a very stable training and validation process. 
Efficiency Although the YOLOv8n model is faster and lighter, this model shows the 
poorest performance compared to the rest of the models. Most Stable Training: 
YOLOv8m has a steadier decline in training loss. Some fluctuations still appear in the 
validation process (Table 3). 

4.3. Experiment on the Number of Epochs and Implementation of the Early Stop 
Strategy 

The number of epochs governs the number of cycles the model will see from the training 
data; hence, it reflects how the model learns. Thus, a suitable number of epochs will 
give your model enough time to learn while reducing the risk of over-fitting. Early 
stopping is a technique that automatically halts training at the optimal point, based on 
performance on the validation set [5]. Training was stopped after 25 epochs based on 
an early stopping strategy with a patience of 5. 

 

Figure 4. Training Progress of YOLOv8 Variant Across Epochs in Terms of Accuracy                                 
and Loss Components 

Figure 4 shows the mAP and mAP@50:95 metrics over 180 epochs, indicating a steady 
increase and stabilization. The lower plots illustrate the evolution of Box Loss, Class 
Loss, and Objectness Loss, revealing early convergence and stable performance 
throughout training. 

5. Conclusion and Discussion 

This study experimentally demonstrated how the YOLOv8 algorithm can be optimized 
for air conditioner detection tasks in urban areas. The results revealed that data 
augmentation strategies, model architecture variants, and training process 
optimizations have a significant impact on the accuracy and generalization capability of 
YOLOv8. 
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Among the tested data augmentation strategies, methods involving mosaic blending 
and bounding box rotation achieved the highest performance, raising the F1 score to 
70%. More basic transformations (e.g., flipping, hue adjustment, grayscale conversion) 
provided limited but meaningful contributions. These findings confirm that advanced 
augmentation techniques, which increase diversity in complex urban imagery, 
substantially enhance the overall effectiveness of the model. 

Comparative analysis of model architectures indicated that YOLOv8s offers the most 
optimal balance between accuracy and inference speed. Although YOLOv8m exhibited 
more stable learning curves, YOLOv8s stood out with its lightweight structure and high 
performance. In the training phase, an early stopping strategy was applied at 25 epochs 
to prevent overfitting. This result highlights the importance of careful hyperparameter 
tuning, particularly when working with limited datasets. 

Overall, the findings demonstrate that YOLOv8 can be significantly strengthened for 
urban object detection tasks through data augmentation, architectural selection, and 
training strategies. The air conditioner detection outcomes achieved with YOLOv8 can 
serve as a valuable decision support tool, especially in applications such as energy 
efficiency auditing, environmental analysis, and urban planning. 

This contribution forms part of a broader effort to evaluate air conditioner detector 
performance in urban settings and aligns with other YOLO-based studies in the 
literature. A general comparison with related work is provided below. The YOLOv8 
algorithm used in this study offers significant improvements over YOLOv3 in terms of 
both accuracy and speed. Through the application of data augmentation techniques, 
the training dataset was diversified, enhancing YOLOv8’s generalization ability—
particularly in complex urban environments—compared to YOLOv3 as introduced by 
Ali Farhadi and Redmon (2018). The augmentation techniques used in this study also 
improved YOLOv8's robustness against complex backgrounds, especially in densely 
populated and visually cluttered urban areas. Similarly, the accuracy of YOLOv8 was 
evaluated under urban complexity and varying illumination conditions. Our experiments 
explored different YOLOv8 variants—nano, small, and medium—and identified their 
trade-offs between accuracy and speed. As a newer version, YOLOv8 was observed to 
achieve improved performance metrics consistent with findings from earlier versions 
[19]. The adopted augmentation methods—primarily including rotation, blurring, and 
noise addition—substantially enhanced model performance in challenging urban 
terrains. The study significantly contributes to the literature by demonstrating how data 
augmentation can improve generalization capability. Our findings align with similar 
scenarios in which YOLOv8 was applied for air conditioner detection using urban 
datasets such as KITTI. The performance of YOLOv8 in complex urban environments 
outperformed earlier YOLO versions with consistent superiority [6]. 

This paper employed datasets specific to a certain geographic region for air conditioner 
detection. Therefore, future studies may focus on more generalized models by 
incorporating diversified urban datasets from multiple geographical areas. Additional 
variables such as different climatic conditions, building structures, and urban 
morphological factors should also be considered. It would be of particular interest to 
examine YOLOv8’s performance under extreme conditions—such as nighttime, low 
light, rain, or fog. These directions could support further research aimed at improving 
model robustness through more advanced augmentation strategies under such 
conditions. 
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The present study offers substantial contributions through the use of diverse data 
augmentation techniques that significantly enhanced model performance. Future work 
will focus on incorporating images from broader geographic regions, introducing 
various building and climate types, and evaluating model robustness under challenging 
atmospheric conditions. In addition, the implementation of targeted augmentation 
techniques for underrepresented classes, along with training on high-resolution 
imagery, is expected to further improve model accuracy and generalization. 
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