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 ABSTRACT  

 

Consider a module 𝑃 over a ring 𝑆. We describe 𝑃 as cofinitely 𝛿 − 𝐻 − 𝑠upplemented, in case 

there is a direct summand 𝐾 of 𝑃 with the property that the equality 𝑃 = 𝐴 + 𝑋 holds if and 

only if 𝑃 = 𝐾 + 𝑋 for any submodule 𝑋 of 𝑃 with singular 𝑃/𝑋 and for each cofinite submodule 

𝐴 of 𝑃. In this work, we demonstrate that 𝑃 satisfies cofinitely 𝛿 − 𝐻 − 𝑠upplemented condition 

if and only if 𝑃 has a direct summand 𝐾 with the properties (𝐴 + 𝐾)/𝐴 ≪𝛿 𝑃/𝐴 and 
(𝐴 + 𝐾)/𝐾 ≪𝛿 𝑃/𝐾 for each cofinite submodule 𝐴 of 𝑃. 𝛿 −semiperfect rings are 

characterized by means of cofinitely 𝛿 − 𝐻 −supplemented modules, with the characterization 

expressed through a set of equivalent statements. 

 

 
Keywords: Cofinitely 𝐻 −supplemented module, 𝛿 −Small submodule, Cofinite 

submodule, Cofinitely 𝛿 − 𝐻 − 𝑠upplemented module.  

 

1 INTRODUCTION 

In module theory, the distinct definitional approach, unconventional characteristics, and 

the fact that 𝐻 −supplemented modules extend the concept of lifting modules have attracted 

significant attention, prompting further exploration beyond the foundational work by Mohamed 

and Müller [1].  A module 𝑃 is defined as  𝐻 − 𝑠upplemented if for its each submodule 𝐴, 𝑃 

has a direct summand 𝐾 such that the equality 𝑃 = 𝐴 + 𝑋 holds if and only if the equality 𝑃 =

𝐾 + 𝑋  is satisfied for any submodule 𝑋 of 𝑃 [1]. Since its introduction, researchers have 

investigated the properties of 𝐻 −supplemented modules, with significant contributions 

beginning with Koşan and Keskin Tütüncü’s paper [2]. Their note explores some characteristics 
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of 𝐻 −supplemented modules, focusing in particular on their behavior under homomorphic 

images and direct summands. In [3], building on [2], the authors provided a characterization of 

𝐻 −supplemented modules in terms of small submodules. Several studies have been conducted 

on this class of modules, addressing their extended properties and presenting generalizations of 

the 𝐻 −supplemented concept [4], [5], [6], [7].  

The central objective of this study is to introduce the property of cofinitely 𝛿 − 𝐻 −

𝑠upplemented modules. This study defines the notion of cofinitely 𝛿 − 𝐻 − 𝑠upplemented 

modules and focus on their algebraic characteristics. Among various findings, it is proven a 

module 𝑃 being cofinitely 𝛿 − 𝐻 − 𝑠upplemented is equivalent to  𝑃 having a direct summand 

𝐾 with (𝐴 + 𝐾)/𝐴 ≪𝛿 𝑃/𝐴 and (𝐴 + 𝐾)/𝐾 ≪𝛿 𝑃/𝐾 for each cofinite submodule 𝐴 of 𝑃. This 

study further shows that if a module 𝑃 is either a singular module, or a module without a simple 

projective submodule, then the notions of cofinitely 𝛿 − 𝐻 −supplemented and cofinitely 

𝐻 −supplemented coincide for the module 𝑃. Consequently, this study establishes that the 

modules which are cofinitely 𝛿 − 𝐻 −supplemented coincide with cofinitely 𝐻 −supplemented 

ones over the rings for which each simple module is singular. It is proven that a module 𝑃 that 

is non−𝛿 −cosingular is cofinitely 𝛿 −lifting if and only if it is cofinitely 𝛿 −

𝐻 −supplemented. We demonstrate that for an indecomposable module 𝑃, being cofinitely 𝛿 −

𝐻 −supplemented is equivalent to the condition that either all of its cofinite submodules are 

𝛿 −small in 𝑃, or that 𝑃 is simple. This study shows that whenever 𝐴 is a projection invariant 

submodule of a cofinitely 𝛿 − 𝐻 −supplemented module 𝑃, the quotient module 𝑃/𝐴 

necessarily inherits the cofinitely 𝛿 − 𝐻 −supplemented property. Furthermore, this study 

obtains a characterization of 𝛿 −semiperfect rings using cofinitely 𝛿 − 𝐻 −supplemented 

modules, presented as a series of equivalent conditions. As a result of this characterization, this 

study provides an example of a module that is cofinitely 𝛿 − 𝐻 − 𝑠upplemented but not 

cofinitely 𝐻 − 𝑠upplemented.  

This study presents work on unitary rings. These rings are denoted by 𝑆 and are 

considered together with the corresponding unitary left 𝑆 −modules. Throughout, let 𝑃 denote 

such a left 𝑆 −module. The notation 𝐴 ≤ 𝑃 signifies that 𝐴 is a submodule of 𝑃. 𝐴 ≤  𝑃 is 

defined as cofinite if the quotient module 𝑃/𝐴 is finitely generated [8]. 𝐴 ≤  𝑃 is said to be 

small in 𝑃, written as 𝐴 ≪  𝑃, provided for each proper submodule 𝐵 of 𝑃, the submodule 𝐴 +

 𝐵 does not equal 𝑃. Dually, 𝐴 ≤  𝑃 is called essential in P, written 𝐴 ⊴  𝑃, provided 𝐴 ∩

 𝐾 ≠  0 for each nonzero 𝐾 ≤  𝑃. 𝑃 is called a singular module in case 𝑃 ≅  𝐵/𝐴 for some 

module 𝐵 and for its essential submodule 𝐴. 𝐴 ≤  𝑃  is defined as 𝛿 −small in 𝑃, indicated by 
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𝐴 ≪𝛿 𝑃, provided for each proper submodule 𝐵 of 𝑃 satisfying that 𝑃/𝐵 is singular, the 

submodule 𝐴 +  𝐵 does not equal to 𝑃. Each small submodule and non-singular semisimple 

submodule of 𝑃 satisfies the 𝛿 −small condition. This study adopts the standard notation 𝛿(𝑃) 

for the sum of all 𝛿 −small submodules of 𝑃 (see [9], [10] for further information).   

2 MATERIAL AND METHOD 

This study outlines key properties of 𝛿 −small submodules in the following lemma, 

drawn from [10, Lemma 1.2 and 1.3]. 

Lemma 2.1. Suppose that 𝑃 is a module.  

1) For any submodule 𝐴 of 𝑃, 𝐴 ≪𝛿 𝑃 if and only if whenever 𝑃 =  𝑋 +  𝐴  there is a 

semisimple projective submodule 𝐴′ of 𝐴 with 𝑋 ⊕  𝐴′ =  𝑃.  

2) If 𝐴 ≪𝛿 𝑃 and ℎ ∶  𝑃 →  𝑊 is a homomorphism, then ℎ(𝐴) ≪𝛿 𝑊. In particular, if 

𝐴 ≪𝛿 𝑃 ≤  𝑊, then 𝐴 ≪𝛿 𝑊. 

3) If 𝐴1 ≪𝛿 𝐵1  ≤  𝑃 and 𝐴2 ≪𝛿 𝐵2  ≤  𝑃 , then 𝐴1  +  𝐴2  ≪𝛿  𝐵1  +  𝐵2.  

4) If 𝑃 =⊕𝑖∈𝐼 𝑃𝑖, then 𝛿(𝑃) =⊕𝑖∈𝐼 𝛿(𝑃𝑖). 

5) If 𝐴 ≤ 𝐵 ≤ 𝑃, 𝐴 ≪𝛿 𝑃 and 𝐵 is a direct summand of 𝑃, then 𝐴 ≪𝛿 𝐵. 

Definition 2.2. A module 𝑃 is called 𝛿 −supplemented provided for each submodule 𝐴 of 𝑃, 

there exists a submodule 𝐵 of 𝑃 such that 𝑃 = 𝐴 + 𝐵 and 𝐴 ∩ 𝐵 ≪𝛿 𝐵. In this case, the 

submodule 𝐵 is called a 𝛿 −supplement of 𝐴 in 𝑃 [11].  

Definition 2.3. A module 𝑃 is defined as cofinitely 𝛿 −supplemented provided each cofinite 

submodule possesses a 𝛿 −supplement in 𝑃 [12].   

Definition 2.4. A module 𝑃 is called 𝐻 −cofinitely supplemented if for its each cofinite 

submodule 𝐴, the module 𝑃 has a direct summand 𝐾 such that the equality 𝑃 = 𝐴 + 𝑋 holds if 

and only if the equality 𝑃 = 𝐾 + 𝑋  is satisfied for any submodule 𝑋 of 𝑃 [13].  

Definition 2.5. A module 𝑃 is defined as cofinitely 𝛿 −lifting if for each cofinite submodule 𝐴 

of 𝑃, 𝑃 has a decomposition 𝑃 = 𝑃1⨁𝑃2 with 𝑃1 ≤ 𝐴 and 𝐴 ∩ 𝑃2 ≪𝛿 𝑃2 [12].  
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3 RESULTS AND DISCUSSION 

Definition 3.1. Consider a module 𝑃. The module 𝑃 is called cofinitely 𝛿 − 𝐻 − 𝑠upplemented 

provided for each cofinite submodule 𝐴 of 𝑃, 𝑃 has a direct summand 𝐾 such that 𝑃 = 𝐴 + 𝐵 

if and only if 𝑃 = 𝐾 + 𝐵 for each submodule 𝐵 of 𝑃 with singular 𝑃/𝐵.    

Clearly, each 𝐻 −cofinitely supplemented module is cofinitely 𝛿 − 𝐻 − supplemented. 

There are many examples of 𝐻 −cofinitely supplemented modules in [5]. These examples also 

serve as examples of cofinitely 𝛿 − 𝐻 − supplemented modules.  

The subsequent result provides an alternative criterion for determining when a module 

possesses cofinitely 𝛿 − 𝐻 − 𝑠upplemented property. Throughout this study, the result of this 

lemma is used without further citation. 

Lemma 3.2. A module 𝑃 being cofinitely 𝛿 − 𝐻 − 𝑠upplemented is equivalent 𝑃 having a 

direct summand 𝐾 with the properties (𝐴 + 𝐾)/𝐴 ≪𝛿 𝑃/𝐴 and (𝐴 + 𝐾)/𝐾 ≪𝛿 𝑃/𝐾 for each 

cofinite submodule 𝐴 of 𝑃.  

Proof: (⟹) If 𝑃 is a cofinitely 𝛿 − 𝐻 − 𝑠upplemented module, then for each cofinite 

submodule 𝐴 of 𝑃, 𝑃 has a direct summand 𝐾 satisfying the property that 𝑃 = 𝐴 + 𝐵 if and 

only if 𝑃 = 𝐾 + 𝐵 for any 𝐵 ≤ 𝑃 with singular 𝑃/𝐵. Let 𝐴 be a cofinite submodule of 𝑃. 

Assume now that for a submodule 𝑋 of 𝑃 containing 𝐴,  where the quotient module 𝑃/𝑋 is 

singular, the relation (𝐴 + 𝐾)/𝐴 + 𝑋/𝐴 = 𝑃/𝐴 is satisfied. We derive 𝑃 = 𝐾 + 𝑋. By 

assumption, 𝑃 = 𝐴 + 𝑋, and so 𝑃 = 𝑋. On the other hand, assume that (𝐴 + 𝐾)/𝐾 + 𝑌/𝐾 =

𝑃/𝐾 for a submodule 𝑌 of 𝑃 which contains 𝐾 with singular 𝑃/𝑌. Thus 𝑃 = 𝐴 + 𝑌. By 

assumption, 𝑃 = 𝐾 + 𝑌, and hence 𝑃 = 𝑌.  

(⟸) Assuming that for each cofinite submodule 𝐴 of 𝑃, 𝑃 = 𝐴 + 𝐵 with singular 𝑃/𝐵, we 

derive 𝑃/𝐾 = (𝐴 + 𝐾)/𝐾 + (𝐵 + 𝐾)/𝐾 for a direct summand 𝐾 of 𝑃. Here it should be noted 

that 𝑃/(𝐵 + 𝐾) is a singular module as a quotient module of the singular module 𝑃/𝐵. By 

assumption, 𝑃 = 𝐵 + 𝐾. Now assuming that 𝑃 = 𝐾 + 𝐵 with singular 𝑃/𝐵 for each direct 

summand 𝐾 of 𝑃, we derive (𝐴 + 𝐾)/𝐴 + (𝐴 + 𝐵)/𝐴 = 𝑃/𝐴 for each cofinite submodule 𝐴 

of 𝑃. Here 𝑃/(𝐴 + 𝐵) is a singular module as a quotient module of the singular module 𝑃/𝐵. 

By assumption, 𝑃 = 𝐴 + 𝐵. 
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Proposition 3.3. Let 𝑃 be a module. If either 

1) 𝑃 is a singular module, or 

2) 𝑃 does not have any simple projective submodule, then 𝑃 is a cofinitely 𝛿 − 𝐻 −

𝑠upplemented module if and only if 𝑃 is a cofinitely 𝐻 − 𝑠upplemented module.  

Proof: Suppose that 𝑃 is a singular module. It should be noted that 𝛿 −small submodules of a 

singular module are small submodules. As such, using [5, Theorem 2.10] it can be easily 

checked that a singular module 𝑃 is a cofinitely 𝛿 − 𝐻 − 𝑠upplemented module if and only if 

𝑃 is a cofinitely 𝐻 − 𝑠upplemented module.  

Furthermore, assume that 𝑃 is a cofinitely 𝛿 − 𝐻 − 𝑠upplemented module which does 

not have any simple projective module and 𝐴 ≤ 𝑃 is a cofinite submodule. Then by assumption, 

𝑃 has a direct summand 𝐾 such that (𝐴 + 𝐾)/𝐴 ≪𝛿 𝑃/𝐴 and (𝐴 + 𝐾)/𝐾 ≪𝛿 𝑃/𝐾. Let 

(𝐴 + 𝐾)/𝐴 + 𝑇/𝐴 = 𝑃/𝐴 for a submodule 𝑇/𝐴 of 𝑃/𝐴. By Lemma 2.1 (𝐴 + 𝐾)/𝐴 includes a 

direct summand 𝑋/𝐴 of 𝑃/𝐴 which is semisimple projective such that 𝑋/𝐴 ⨁ 𝑇/𝐴 = 𝑃/𝐴. So 

that 𝑋 has a submodule 𝐴′ such that 𝑋 = 𝐴⨁𝐴′ as 𝑋/𝐴 is projective. This yields that 𝐴′ includes 

a submodule which is simple projective as 𝐴′ is semisimple. Accordingly, we infer 𝑋 = 𝐴, and 

so 𝑇/𝐴 = 𝑃/𝐴. For this reason, (𝐴 + 𝐾)/𝐴 ≪ 𝑃/𝐴. In like manner, it can be observed that 

(𝐴 + 𝐾)/𝐾 ≪ 𝑃/𝐾. As a result, 𝑃 is a cofinitely 𝐻 − 𝑠upplemented module by [5, Theorem 

2.10]. 

Corollary 3.4. Assume that 𝑆 is a ring such that every simple left 𝑆 −module is singular. In this 

case, an 𝑆 −module 𝑃 is a cofinitely 𝐻 −supplemented module if and only if 𝑃 is a cofinitely 

𝛿 − 𝐻 − 𝑠upplemented module. Specifically, a ℤ −module 𝑃 is a cofinitely 𝐻 −supplemented 

module if and only if 𝑃 is a cofinitely 𝛿 − 𝐻 − 𝑠upplemented module. 

Recall from [14] that a module 𝑃 is said to be non- 𝛿-cosingular if 𝑍̅𝛿(𝑃) = ⋂{𝐾𝑒𝑟𝑔 | 𝑔 ∶

 𝑃 → 𝑊 where there exists another module 𝑌 such that 𝑊 ≪𝛿 𝑌} = 𝑃. 

Proposition 3.5. A module 𝑃 which is non- 𝛿-cosingular is a cofinitely 𝛿 −lifting module if 

and only if 𝑃 is a cofinitely 𝛿 − 𝐻 − 𝑠upplemented module.  

Proof:  (⟹) Assume that 𝐴 is a cofinite submodule of 𝑃. Since 𝑃 is a cofinitely 𝛿 −lifting 

module, then 𝑃 has a decomposition 𝑃 = 𝑃1⨁𝑃2 with 𝑃1 ≤ 𝐴 and 𝐴 ∩ 𝑃2 ≪𝛿 𝑃2. Here we 

derive 𝐴 = 𝑃1 + (𝑃2 ∩ 𝐴). Let 𝑃 = 𝐴 + 𝑋 with singular 𝑃/𝑋. Then 𝑃 = (𝑃1 + (𝑃2 ∩ 𝐴)) + 𝑋, 

and so 𝑃 =  𝑃1 + 𝑋 by Lemma 2.1.  
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(⟸) Suppose that 𝑃 is a cofinitely 𝛿 − 𝐻 − 𝑠upplemented module and 𝐴 is a cofinite 

submodule of 𝑃. Then there exists a direct summand 𝐾 of 𝑃 such that (𝐴 + 𝐾)/𝐴 ≪𝛿 𝑃/𝐴 and 

(𝐴 + 𝐾)/𝐾 ≪𝛿 𝑃/𝐾. Since 𝑃 is non- 𝛿-cosingular, then 𝐾 is so by [14, Proposition 2.4]. It 

should be noted that (𝐴 + 𝐾)/𝐴 is 𝛿 −small and also by [14, Proposition 2.4] it is non- 𝛿-

cosingular module as a factor module of the non- 𝛿-cosingular module 𝐾. This yields that 𝐴 =

𝐴 + 𝐾 by [14, Proposition 2.4]. Accordingly, 𝐴/𝐾 is a submodule which is 𝛿 −small in 𝑃/𝐾, 

so that 𝑃 is a cofinitely 𝛿 −lifting module. 

Proposition 3.6. A module 𝑃 which is indecomposable is cofinitely 𝛿 − 𝐻 − 𝑠upplemented if 

and only if either 𝑃 is a simple module, or each cofinite submodule of 𝑃 is 𝛿 −small in 𝑃. 

Proof: (⟹) Suppose that 𝐴 is a cofinite submodule of 𝑃. Then there exists a direct summand 

𝐾 of 𝑃 with the properties that (𝐴 + 𝐾)/𝐴 ≪𝛿 𝑃/𝐴 and (𝐴 + 𝐾)/𝐾 ≪𝛿 𝑃/𝐾. Firstly, let 𝐾 =

0. Then 𝐴 ≪𝛿 𝑃. In the other case, if 𝐾 = 𝑃, then 𝑃/𝐴 ≪𝛿 𝑃/𝐴. By Lemma 2.1 𝑃/𝐴 is a 

semisimple projective module. This yields that 𝐴 is a direct summand of 𝑃. Since 𝑃 is 

indecomposable, 𝐴 = 0.  As a result, 𝑃 is a simple module.  

 (⟸) Straightforward. 

Proposition 3.7. If 𝑃 is a cofinitely 𝛿 − 𝐻 − 𝑠upplemented module with 𝛿(𝑃) = 0, then each 

cofinite submodule of 𝑃 is a direct summand.  

Proof: Assuming that 𝐴 is a cofinite submodule of 𝑃, we derive that there exists a direct 

summand 𝐾 of 𝑃 with the properties that (𝐴 + 𝐾)/𝐴 ≪𝛿 𝑃/𝐴 and (𝐴 + 𝐾)/𝐾 ≪𝛿 𝑃/𝐾. Since 

𝐾 is a direct summand of 𝑃 and 𝛿(𝑃) = 0, then 𝛿(𝑃/𝐾) = 0. Accordingly, we infer 𝐾 = 𝐴 +

𝐾 meaning that 𝐾/𝐴 ≪𝛿 𝑃/𝐴. Here it should be noted that the sum 𝐾/𝐴 + (𝐾′ + 𝐴)/𝐴 = 𝑃/𝐴 

is direct for any submodule (𝐾′ + 𝐴)/𝐴 of 𝑃/𝐴, because 𝐾 is a direct summand of 𝑃. So that 

𝐾/𝐴 is a semisimple projective module by Lemma 2.1. This yields that 𝐴 is a direct summand 

of 𝐾. Hence 𝐴 is a direct summand of 𝑃.  

Recall that for a submodule 𝐴 of a module 𝑃, 𝐴 is called fully invariant (projection invariant) 

if for each endomorphism (idempotent endomorphism) ℎ of 𝑃, the image of 𝐴 under ℎ remains 

within 𝐴; that is, ℎ(𝐴) ⊆ 𝐴. Based on fundamental definitions, it is readily inferable that any 

fully invariant submodule necessarily satisfies projection invariance. Moreover, the module 𝑃 

is called (weak) duo in case each submodule (direct summand) of 𝑃 is fully invariant.  
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Proposition 3.8. If 𝑃 is a cofinitely 𝛿 − 𝐻 − 𝑠upplemented module and 𝐴 is a projection 

invariant submodule of 𝑃, then its quotient module 𝑃/𝐴 is a cofinitely 𝛿 − 𝐻 − 𝑠upplemented 

module.  

Proof: Assuming that 𝑇/𝐴 is a cofinite submodule of 𝑃/𝐴, we conclude that 𝑇 is a cofinite 

submodule of 𝑃. Accordingly, 𝑃 has a direct summand 𝐾 with the property that the sum 𝑃 =

𝑇 + 𝑋 holds if and only if the sum 𝑃 = 𝐾 + 𝑋 holds for each submodule 𝑋 of 𝑃 with singular 

𝑃/𝑋. Let 𝑃 = 𝐾⨁𝐾′. Since 𝐴 is a projection invariant submodule of 𝑃, then 𝐴 = (𝐴 ∩

𝐾)⨁(𝐴 ∩ 𝐾′) by [15, Proposition 3.1]. Therefore, (𝐾 + 𝐴) ∩ (𝐾′ + 𝐴) = [𝐾⨁(𝐾′ ∩ 𝐴)] ∩

[(𝐾 ∩ 𝐴)⨁𝐾′] = (𝐾 ∩ 𝐴)⨁(𝐾′ ∩ 𝐴) = 𝐴. This immediately implies that, 𝑃/𝐴 = ((𝐴 +

𝐾)/𝐴)⨁((𝐴 + 𝐾′)/𝐴). Now assuming that 𝑃/𝐴 = 𝑇/𝐴 + 𝑌/𝐴 for a submodule 𝑌/𝐴 of 𝑃/𝐴 

with singular 𝑃/𝑌, we deduce that 𝑃 = 𝑇 + 𝑌, and hence 𝑃 = 𝐾 + 𝑌 by assumption. So 𝑃/𝐴 =

(𝐴 + 𝐾)/𝐴 + 𝑌/𝐴. In order to show the rest of the proof, let 𝑃/𝐴 = (𝐴 + 𝐾)/𝐴 + 𝐵/𝐴 with 

singular 𝑃/𝐵. Then 𝑃 = 𝐾 + 𝐵, and so 𝑃 = 𝑇 + 𝐵 by assumption. As a result, we infer 𝑃/𝐴 =

𝑇/𝐴 + 𝐵/𝐴.  

Recall that a module 𝑃 is said to be distributive provided its lattice of submodules satisfies 

distributivity; in particular, for any submodules 𝐴, 𝐵, 𝐶 of 𝑃 the following conditions are met: 

(𝐴 ∩ 𝐵) + (𝐴 ∩ 𝐶) = 𝐴 ∩ (𝐵 + 𝐶) and 𝐴 + (𝐵 ∩ 𝐶) = (𝐴 + 𝐵) ∩ (𝐴 + 𝐶).  

The next result can be observed with the fact that for a module 𝑃 =⊕𝑖∈𝐼 𝑃𝑖 and for its 

fully invariant submodule 𝐴, 𝐴 =⊕𝑖∈𝐼 (𝐴 ∩ 𝑃𝑖) given in [16].  

Corollary 3.9.  

1) Each homomorphic image of a cofinitely 𝛿 − 𝐻 − 𝑠upplemented module which is 

distributive is cofinitely 𝛿 − 𝐻 − 𝑠upplemented. 

2) Each direct summand of a cofinitely 𝛿 − 𝐻 − 𝑠upplemented module which is weak duo 

is cofinitely 𝛿 − 𝐻 − 𝑠upplemented.  

Theorem 3.10. Suppose that 𝑃 = 𝑃1 ⊕ 𝑃2 is a distributive module. Then 𝑃 is a cofinitely 𝛿 −

𝐻 − 𝑠upplemented module if and only if 𝑃1 and 𝑃2 are cofinitely 𝛿 − 𝐻 − 𝑠upplemented 

modules.  

Proof: (⟹) The necessity follows from Corollary 3.9.   

(⟸) To prove the sufficiency, let 𝑃1 and 𝑃2 be cofinitely 𝛿 − 𝐻 − 𝑠upplemented modules and 

𝐴 be a cofinite submodule of 𝑃. For brevity in notation, say 𝐴1 = 𝐴 ∩ 𝑃1 and 𝐴2 = 𝐴 ∩ 𝑃2. 

Then 𝐴 = 𝐴1 + 𝐴2. By assumption, 𝑃𝑖 has a direct summand 𝐾𝑖 for 𝑖 = 1,2 with the properties 
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(𝐴𝑖  + 𝐾𝑖)/𝐴𝑖 ≪𝛿 𝑃𝑖/𝐴𝑖 and (𝐴𝑖  + 𝐾𝑖)/𝐾𝑖 ≪𝛿 𝑃𝑖/𝐾𝑖. We claim that (𝐴 + 𝐾)/𝐴 ≪𝛿 𝑃/𝐴 and 

(𝐴 + 𝐾)/𝐾 ≪𝛿 𝑃/𝐾 where 𝐾 = 𝐾1⨁𝐾2 is a direct summand of 𝑃. For this, assuming that 

𝑃/𝐴 = (𝐴 + 𝐾)/𝐴 + 𝑋/𝐴 for a submodule 𝑋 of 𝑃 with singular 𝑃/𝑋, we derive that 𝑃 = 𝐾 +

𝑋. Accordingly, we obtain that 𝐾1 + (𝑋 ∩ 𝑃1) = 𝑃1. For this reason, (𝐴1 + 𝐾1)/𝐴1 + (𝑋 ∩

𝑃1)/𝐴1 = 𝑃1/𝐴1 and 𝑃1/(𝑋 ∩ 𝑃1) ≅ (𝑋 + 𝑃1)/𝑋 ≤ 𝑃/𝑋 is a singular module. Since 

(𝐴1  + 𝐾1)/𝐾1 ≪𝛿 𝑃1/𝐾1, we conclude the equality 𝑋 ∩ 𝑃1 = 𝑃1 meaning that 𝑋 contains 𝑃1. 

The equality 𝑃 = 𝐾 + 𝑋 yields that 𝐾2 + (𝑋 ∩ 𝑃2) = 𝑃2. As (𝐴2 + 𝐾2)/𝐴2 + (𝑋 ∩ 𝑃2)/𝐴2 =

𝑃2/𝐴2 and (𝐴2 + 𝐾2)/𝐴2 ≪𝛿 𝑃2/𝐴2, and furthermore 𝑃2/(𝑋 ∩ 𝑃2) ≅ (𝑋 + 𝑃2)/𝑋 ≤ 𝑃/𝑋  is 

singular, so that we infer 𝑃2 = 𝑋 ∩ 𝑃2. So that 𝑃 = 𝑋. In addition, assuming that (𝐴 + 𝐾)/𝐾 +

𝑇/𝐾 = 𝑃/𝐾 for a submodule 𝑇 of 𝑃 with singular 𝑃/𝑇, we derive that 𝑃 = 𝐴 + 𝑇. As such, 

𝑃1 = 𝐴1 + (𝑇 ∩ 𝑃1). Since (𝐴1  + 𝐾1)/𝐾1 ≪𝛿 𝑃1/𝐾1 and 𝑃1/(𝑇 ∩ 𝑃1) is singular, we derive 

𝑃1 = 𝑇 ∩ 𝑃1 meaning that 𝑃1 ≤ 𝑇. By the same arguments, we can provide that 𝑇 contains 

𝑃2. Therefore,  𝑃 = 𝑇. As a result, 𝑃 is a cofinitely 𝛿 − 𝐻 − 𝑠upplemented module.  

Recall that an epimorphism ℎ: 𝑃 → 𝑊 is called a 𝛿 −cover of 𝑊 if the kernel of ℎ is 𝛿 −small 

in 𝑃. If 𝑃 is furthermore projective, such a morphism is specifically called a projective 

𝛿 −cover. Following [10], a ring 𝑆 is said to be 𝛿 −semiperfect provided each simple 

𝑆 −module possesses a projective 𝛿 −cover. 

A module 𝑃 is called cofinitely 𝛿 −semiperfect, if each quotient module of 𝑃 by a 

cofinite submodule possesses a projective 𝛿 −cover. A module 𝑃 is said to be ⊕ −cofinitely 

𝛿 −supplemented provided that each cofinite submodule of 𝑃 possesses a 𝛿 −supplement which 

forms a direct summand in 𝑃 [12]. 

Theorem 3.11. For a ring 𝑆, the statements listed below are all equivalent:  

1) 𝑆 is a 𝛿 −semiperfect ring.  

2) Each 𝑆 −module is cofinitely 𝛿 −semiperfect. 

3) 𝑆𝑆  is a cofinitely 𝛿 −semiperfect module.  

4) 𝑆𝑆  is a cofinitely 𝛿 − 𝐻 − 𝑠upplemented module. 

5) 𝑆𝑆  is a ⨁ −cofinitely 𝛿 − 𝑠upplemented module.  

Proof: (1) ⟺ (2) ⟺ (5) By [12, Theorem 3.9].  

The implications (2) ⟹ (3) and (4) ⟹ (5) are straightforward.  
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(3) ⟹ (4) A cofinitely 𝛿 −semiperfect module 𝑆𝑆  is cofinitely 𝛿 −lifting by [12, Theorem 

3.6]. Hence it can be seen that 𝑆𝑆  is a cofinitely 𝛿 − 𝐻 − 𝑠upplemented module by proving in 

a similar way to the necessity proof of Proposition 3.5.  

Example 3.12. (see [12, Example 3.10]) Let 𝐹 be a field, 𝐼 = (
𝐹 𝐹
0 𝐹

) and 𝑆 =

{(𝑥1, 𝑥2, … , 𝑥𝑛, 𝑥, 𝑥, … )|𝑛 ∈ ℕ, 𝑥𝑖 ∈ 𝑀2(𝐹), 𝑥 ∈ 𝐼} be a ring with component-wise operations. 

By [12, Example 3.10], 𝑆 is a 𝛿 −semiperfect ring. As another result of [12, Example 3.10], we 

derive that the module 𝑆𝑆  is not a  𝐻 −cofinitely supplemented module. However, the module 

𝑆𝑆  is a cofinitely 𝛿 − 𝐻 − 𝑠upplemented module according to Theorem 3.11. 

4 CONCLUSION AND SUGGESTIONS 

This study introduces a novel generalization of 𝐻 −supplemented modules, which 

themselves extend the concept of lifting modules. When 𝐻 −supplemented modules are 

analyzed from the perspective of singularity, the notion of modules that are 𝛿 −

𝐻 −supplemented naturally arises. This study introduces a new class of modules derived from 

the cofinite submodules of 𝛿 − 𝐻 −supplemented modules. This study defines this new class 

as cofinitely 𝛿 − 𝐻 −supplemented modules and investigate their algebraic properties in detail. 

This study proves that the homomorphic image of any cofinitely 𝛿 − 𝐻 −supplemented module 

that satisfies the distributive condition also retains this property. Furthermore, this study 

demonstrates that if a cofinitely 𝛿 − 𝐻 −supplemented module is weak duo, then each of its 

direct summands is likewise cofinitely 𝛿 − 𝐻 −supplemented. Finally, this study provides a 

new characterization of cofinitely 𝛿 − 𝐻 −supplemented modules by providing equivalent 

conditions in the context of 𝑆 being a 𝛿 −semiperfect ring. The definitions and results presented 

in this study can also be considered for co-coatomic submodules, which constitute a proper 

generalization of cofinite submodules and were introduced in [17], and 𝛿 − 𝐻 −supplemented 

modules may be approached via co-coatomic submodules in the same manner as carried out in 

this paper. 
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