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ABSTRACT

Consider a module P over a ring S. We describe P as cofinitely § — H — supplemented, in case
there is a direct summand K of P with the property that the equality P = A + X holds if and
only if P = K + X for any submodule X of P with singular P /X and for each cofinite submodule
A of P. In this work, we demonstrate that P satisfies cofinitely § — H — supplemented condition
if and only if P has a direct summand K with the properties (A + K)/A <5 P/A and
(A+K)/K <5 P/K for each cofinite submodule A of P. & —semiperfect rings are
characterized by means of cofinitely § — H —supplemented modules, with the characterization
expressed through a set of equivalent statements.

Keywords:  Cofinitely H —supplemented module, &§ —Small submodule, Cofinite
submodule, Cofinitely § — H — supplemented module.

1 INTRODUCTION

In module theory, the distinct definitional approach, unconventional characteristics, and
the fact that H —supplemented modules extend the concept of lifting modules have attracted
significant attention, prompting further exploration beyond the foundational work by Mohamed
and Miiller [1]. A module P is defined as H — supplemented if for its each submodule A, P
has a direct summand K such that the equality P = A + X holds if and only if the equality P =
K + X is satisfied for any submodule X of P [1]. Since its introduction, researchers have
investigated the properties of H —supplemented modules, with significant contributions

beginning with Kosan and Keskin Tiitiincii’s paper [2]. Their note explores some characteristics
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of H —supplemented modules, focusing in particular on their behavior under homomorphic
images and direct summands. In [3], building on [2], the authors provided a characterization of
H —supplemented modules in terms of small submodules. Several studies have been conducted
on this class of modules, addressing their extended properties and presenting generalizations of

the H —supplemented concept [4], [5], [6], [7].

The central objective of this study is to introduce the property of cofinitely 6 — H —
supplemented modules. This study defines the notion of cofinitely § — H — supplemented
modules and focus on their algebraic characteristics. Among various findings, it is proven a
module P being cofinitely § — H — supplemented is equivalent to P having a direct summand
K with (A+ K)/A <s P/Aand (A + K)/K <g P /K for each cofinite submodule A of P. This
study further shows that if a module P is either a singular module, or a module without a simple
projective submodule, then the notions of cofinitely § — H —supplemented and cofinitely
H —supplemented coincide for the module P. Consequently, this study establishes that the
modules which are cofinitely § — H —supplemented coincide with cofinitely H —supplemented
ones over the rings for which each simple module is singular. It is proven that a module P that
is non—3§ —cosingular is cofinitely & —lifting if and only if it is cofinitely &§ —
H —supplemented. We demonstrate that for an indecomposable module P, being cofinitely § —
H —supplemented is equivalent to the condition that either all of its cofinite submodules are
6 —small in P, or that P is simple. This study shows that whenever 4 is a projection invariant
submodule of a cofinitely 6 — H —supplemented module P, the quotient module P/A
necessarily inherits the cofinitely § — H —supplemented property. Furthermore, this study
obtains a characterization of & —semiperfect rings using cofinitely § — H —supplemented
modules, presented as a series of equivalent conditions. As a result of this characterization, this
study provides an example of a module that is cofinitely § — H — supplemented but not

cofinitely H — supplemented.

This study presents work on unitary rings. These rings are denoted by S and are
considered together with the corresponding unitary left S —modules. Throughout, let P denote
such a left S —module. The notation A < P signifies that A is a submodule of P. A < P is
defined as cofinite if the quotient module P/A is finitely generated [8]. A < P is said to be
small in P, written as A <« P, provided for each proper submodule B of P, the submodule A +
B does not equal P. Dually, A < P is called essential in P, written A 2 P, provided A N
K # 0 for each nonzero K < P. P is called a singular module in case P = B/A for some

module B and for its essential submodule A. A < P is defined as § —small in P, indicated by
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A <g P, provided for each proper submodule B of P satisfying that P/B is singular, the
submodule A + B does not equal to P. Each small submodule and non-singular semisimple
submodule of P satisfies the 6 —small condition. This study adopts the standard notation & (P)

for the sum of all § —small submodules of P (see [9], [10] for further information).

2 MATERIAL AND METHOD

This study outlines key properties of § —small submodules in the following lemma,
drawn from [10, Lemma 1.2 and 1.3].
Lemma 2.1. Suppose that P is a module.

1) For any submodule 4 of P, A < P if and only if whenever P = X + A thereisa
semisimple projective submodule A" of A with X @ A" = P.

2) IfA &g Pandh: P — W is a homomorphism, then h(A) <5 W. In particular, if
A <<5 P < W, then A <<5 w.

3) IfAl <<5 Bl < PandA2 <<6 BZ < P,thenA1 + AZ <<é‘ Bl + Bz.
4) IfpP :GBL'EI Pi: then S(P) :eaiEI 6(PL)
5) A< B<P,A < P and B is a direct summand of P, then A <4 B.

Definition 2.2. A module P is called § —supplemented provided for each submodule 4 of P,
there exists a submodule B of P such that P = A+ B and A N B <s B. In this case, the

submodule B is called a § —supplement of A in P [11].

Definition 2.3. A module P is defined as cofinitely § —supplemented provided each cofinite

submodule possesses a § —supplement in P [12].

Definition 2.4. A module P is called H —cofinitely supplemented if for its each cofinite
submodule A, the module P has a direct summand K such that the equality P = A + X holds if
and only if the equality P = K + X 1is satisfied for any submodule X of P [13].

Definition 2.5. A module P is defined as cofinitely § —lifting if for each cofinite submodule A
of P, P has a decomposition P = P;@®P, with P; < Aand A N P, K5 P, [12].
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3 RESULTS AND DISCUSSION

Definition 3.1. Consider a module P. The module P is called cofinitely 6 — H — supplemented
provided for each cofinite submodule A of P, P has a direct summand K such that P = A + B
if and only if P = K + B for each submodule B of P with singular P/B.

Clearly, each H —cofinitely supplemented module is cofinitely § — H — supplemented.
There are many examples of H —cofinitely supplemented modules in [5]. These examples also

serve as examples of cofinitely § — H — supplemented modules.

The subsequent result provides an alternative criterion for determining when a module
possesses cofinitely § — H — supplemented property. Throughout this study, the result of this

lemma is used without further citation.

Lemma 3.2. A module P being cofinitely § — H — supplemented is equivalent P having a
direct summand K with the properties (A + K)/A <s P/A and (A + K)/K <5 P/K for each

cofinite submodule 4 of P.

Proof: (=) If P is a cofinitely § — H — supplemented module, then for each cofinite
submodule A of P, P has a direct summand K satisfying the property that P = A + B if and
only if P = K + B for any B < P with singular P/B. Let A be a cofinite submodule of P.
Assume now that for a submodule X of P containing A, where the quotient module P/X is
singular, the relation (A+ K)/A+ X/A =P/A is satisfied. We derive P = K + X. By
assumption, P = A + X, and so P = X. On the other hand, assume that (A + K)/K + Y/K =
P/K for a submodule Y of P which contains K with singular P/Y. Thus P = A+Y. By
assumption, P = K + Y, and hence P =Y.

(&) Assuming that for each cofinite submodule A of P, P = A + B with singular P/B, we
derive P/K = (A + K)/K + (B + K)/K for a direct summand K of P. Here it should be noted
that P/(B + K) is a singular module as a quotient module of the singular module P/B. By
assumption, P = B + K. Now assuming that P = K + B with singular P/B for each direct
summand K of P, we derive (A + K)/A + (A + B)/A = P /A for each cofinite submodule A
of P. Here P/(A + B) is a singular module as a quotient module of the singular module P/B.
By assumption, P = A + B.
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Proposition 3.3. Let P be a module. If either
1) P is a singular module, or

2) P does not have any simple projective submodule, then P is a cofinitely § — H —

supplemented module if and only if P is a cofinitely H — supplemented module.

Proof: Suppose that P is a singular module. It should be noted that § —small submodules of a
singular module are small submodules. As such, using [5, Theorem 2.10] it can be easily
checked that a singular module P is a cofinitely § — H — supplemented module if and only if

P is a cofinitely H — supplemented module.

Furthermore, assume that P is a cofinitely § — H — supplemented module which does
not have any simple projective module and A < P is a cofinite submodule. Then by assumption,
P has a direct summand K such that (A + K)/A <5 P/A and (A+K)/K <s P/K. Let
(A+K)/A+T/A = P/A forasubmodule T/A of P/A. By Lemma 2.1 (A + K) /A includes a
direct summand X /A of P/A which is semisimple projective such that X/A @ T/A = P/A. So
that X has a submodule A" such that X = A@A' as X /A is projective. This yields that A" includes
a submodule which is simple projective as A’ is semisimple. Accordingly, we infer X = A, and
so T/A = P/A. For this reason, (A + K)/A « P/A. In like manner, it can be observed that
(A+ K)/K < P/K. As aresult, P is a cofinitely H — supplemented module by [5, Theorem
2.10].

Corollary 3.4. Assume that S is a ring such that every simple left S —module is singular. In this
case, an S —module P is a cofinitely H —supplemented module if and only if P is a cofinitely
8 — H — supplemented module. Specifically, a Z —module P is a cofinitely H —supplemented

module if and only if P is a cofinitely § — H — supplemented module.

Recall from [14] that a module P is said to be non- § cosingular if Zs(P) = N{Kerg | g :
P — W where there exists another module Y such that W <5 Y} = P.

Proposition 3.5. A module P which is non- § cosingular is a cofinitely § —lifting module if

and only if P is a cofinitely § — H — supplemented module.

Proof: (=) Assume that A is a cofinite submodule of P. Since P is a cofinitely & —lifting
module, then P has a decomposition P = P;®P, with P, < A and A N P, <s5 P,. Here we
derive A = P, + (P, N A). Let P = A + X with singular P/X. Then P = (P1 + (P, N A)) + X,
andso P = P; + X by Lemma 2.1.
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(&) Suppose that P is a cofinitely & — H — supplemented module and A is a cofinite
submodule of P. Then there exists a direct summand K of P such that (A + K)/A <5 P/A and
(A+ K)/K <5 P/K. Since P is non- § cosingular, then K is so by [14, Proposition 2.4]. Tt
should be noted that (A + K)/A is § —small and also by [14, Proposition 2.4] it is non- 6 -
cosingular module as a factor module of the non- § cosingular module K. This yields that A =
A + K by [14, Proposition 2.4]. Accordingly, A/K is a submodule which is § —small in P /K,
so that P is a cofinitely § —lifting module.

Proposition 3.6. A module P which is indecomposable is cofinitely § — H — supplemented if

and only if either P is a simple module, or each cofinite submodule of P is § —small in P.

Proof: (=) Suppose that A is a cofinite submodule of P. Then there exists a direct summand
K of P with the properties that (A + K)/A <s P/A and (A + K)/K <5 P/K. Firstly, let K =
0. Then A < P. In the other case, if K = P, then P/A <5 P/A. By Lemma 2.1 P/A is a
semisimple projective module. This yields that A is a direct summand of P. Since P is

indecomposable, A = 0. As aresult, P is a simple module.
(<) Straightforward.

Proposition 3.7. If P is a cofinitely § — H — supplemented module with §(P) = 0, then each

cofinite submodule of P is a direct summand.

Proof: Assuming that A is a cofinite submodule of P, we derive that there exists a direct
summand K of P with the properties that (A + K)/A <s P/Aand (A + K)/K <s P/K. Since
K is a direct summand of P and §(P) = 0, then §(P/K) = 0. Accordingly, we infer K = A +
K meaning that K /A <5 P/A. Here it should be noted that the sum K /A + (K' + A)/A = P/A
is direct for any submodule (K’ + A)/A of P/A, because K is a direct summand of P. So that
K /A is a semisimple projective module by Lemma 2.1. This yields that A4 is a direct summand

of K. Hence A is a direct summand of P.

Recall that for a submodule A of a module P, A is called fully invariant (projection invariant)
if for each endomorphism (idempotent endomorphism) h of P, the image of A under h remains
within A; that is, h(A) € A. Based on fundamental definitions, it is readily inferable that any
fully invariant submodule necessarily satisfies projection invariance. Moreover, the module P

is called (weak) duo in case each submodule (direct summand) of P is fully invariant.
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Proposition 3.8. If P is a cofinitely § — H — supplemented module and A is a projection
invariant submodule of P, then its quotient module P /A is a cofinitely § — H — supplemented

module.

Proof: Assuming that T /A is a cofinite submodule of P/A, we conclude that T is a cofinite
submodule of P. Accordingly, P has a direct summand K with the property that the sum P =
T + X holds if and only if the sum P = K + X holds for each submodule X of P with singular
P/X. Let P = K@K'. Since A is a projection invariant submodule of P, then A = (AN
K)Y®(ANK') by [15, Proposition 3.1]. Therefore, (K + A) N (K' + A) = [K®(K' n A)] n
[((KNA)BK']| =(KNA)DK' NnA) =A. This immediately implies that, P/A = ((A +
K)/A)®D((A+ K")/A). Now assuming that P/A =T /A + Y /A for a submodule Y /A of P/A
with singular P/Y, we deduce that P = T + Y, and hence P = K + Y by assumption. So P/A =
(A+K)/A+Y/A. In order to show the rest of the proof, let P/A = (A+ K)/A + B/A with
singular P/B. Then P = K + B, and so P = T + B by assumption. As a result, we infer P/A =
T/A+ B/A.

Recall that a module P is said to be distributive provided its lattice of submodules satisfies
distributivity; in particular, for any submodules A4, B, C of P the following conditions are met:

ANnB)+(AnC)=An(B+C)andA+(BNnC)=(A+B)n(A+0C).

The next result can be observed with the fact that for a module P =@ ;¢; P; and for its

fully invariant submodule A, A =@ ;¢; (A N P;) given in [16].
Corollary 3.9.

1) Each homomorphic image of a cofinitely § — H — supplemented module which is

distributive is cofinitely § — H — supplemented.

2) Each direct summand of a cofinitely § — H — supplemented module which is weak duo

is cofinitely § — H — supplemented.

Theorem 3.10. Suppose that P = P; @ P, is a distributive module. Then P is a cofinitely § —
H — supplemented module if and only if P; and P, are cofinitely 6 — H — supplemented

modules.
Proof: (=) The necessity follows from Corollary 3.9.

(&) To prove the sufficiency, let P; and P, be cofinitely § — H — supplemented modules and
A be a cofinite submodule of P. For brevity in notation, say Ay = ANP; and A, = AN P,.

Then A = A; + A,. By assumption, P; has a direct summand K; for i = 1,2 with the properties
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(A; +K;)/A; <5 P;/A; and (A; + K;)/K; <s P;/K;. We claim that (A + K)/A «<s P/A and
(A+K)/K <5 P/K where K = K;®K, is a direct summand of P. For this, assuming that
P/A=(A+K)/A+ X/A for a submodule X of P with singular P/X, we derive that P = K +
X. Accordingly, we obtain that K; + (X n P;) = P;. For this reason, (4; + K;)/A; + (X N
P))/A, =P;/A; and P;/(XNP)=(X+P)/X<P/X is a singular module. Since
(A; + Ky)/K; <s P;/K;, we conclude the equality X N P; = P; meaning that X contains P;.
The equality P = K + X yields that K, + (X N P,) = P,. As (A, + K;)/A, + (X N P,) /A, =
P,/A, and (A, + K,)/A, <s P,/A,, and furthermore P,/(X N P,) = (X + P,)/X < P/X is
singular, so that we infer P, = X N P,. So that P = X. In addition, assuming that (A + K)/K +
T/K = P/K for a submodule T of P with singular P/T, we derive that P = A + T. As such,
P, =A; + (T nPy). Since (A; + K;)/K; <s P;/K; and P, /(T N P;) is singular, we derive
P; = T N P; meaning that P; < T. By the same arguments, we can provide that T contains

P,. Therefore, P = T. As a result, P is a cofinitely § — H — supplemented module.

Recall that an epimorphism h: P — W is called a § —cover of W if the kernel of h is § —small
in P. If P is furthermore projective, such a morphism is specifically called a projective
& —cover. Following [10], a ring S is said to be & —semiperfect provided each simple

S —module possesses a projective § —cover.

A module P is called cofinitely § —semiperfect, if each quotient module of P by a
cofinite submodule possesses a projective § —cover. A module P is said to be @ —cofinitely
6 —supplemented provided that each cofinite submodule of P possesses a § —supplement which

forms a direct summand in P [12].
Theorem 3.11. For a ring S, the statements listed below are all equivalent:
1) Sisad —semiperfect ring.
2) Each S —module is cofinitely § —semiperfect.
3) S is acofinitely § —semiperfect module.
4) S isa cofinitely 6 — H — supplemented module.
5) sSisa@® —cofinitely § — supplemented module.
Proof: (1) & (2) & (5) By [12, Theorem 3.9].

The implications (2) = (3) and (4) = (5) are straightforward.
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(3) = (4) A cofinitely 6 —semiperfect module ¢S is cofinitely § —lifting by [12, Theorem

3.6]. Hence it can be seen that ¢S is a cofinitely § — H — supplemented module by proving in

a similar way to the necessity proof of Proposition 3.5.

F F
0 F

{(xq, x5, e, Xp, X, X, ... )Jn €N, x; € M,(F), x € I} be a ring with component-wise operations.

Example 3.12. (see [12, Example 3.10]) Let F be a field, I=( ) and S =

By [12, Example 3.10], S is a § —semiperfect ring. As another result of [12, Example 3.10], we
derive that the module ¢S isnota H —cofinitely supplemented module. However, the module

sS is a cofinitely § — H — supplemented module according to Theorem 3.11.

4 CONCLUSION AND SUGGESTIONS

This study introduces a novel generalization of H —supplemented modules, which
themselves extend the concept of lifting modules. When H —supplemented modules are
analyzed from the perspective of singularity, the notion of modules that are & —
H —supplemented naturally arises. This study introduces a new class of modules derived from
the cofinite submodules of § — H —supplemented modules. This study defines this new class
as cofinitely § — H —supplemented modules and investigate their algebraic properties in detail.
This study proves that the homomorphic image of any cofinitely § — H —supplemented module
that satisfies the distributive condition also retains this property. Furthermore, this study
demonstrates that if a cofinitely 6 — H —supplemented module is weak duo, then each of its
direct summands is likewise cofinitely § — H —supplemented. Finally, this study provides a
new characterization of cofinitely § — H —supplemented modules by providing equivalent
conditions in the context of S being a § —semiperfect ring. The definitions and results presented
in this study can also be considered for co-coatomic submodules, which constitute a proper
generalization of cofinite submodules and were introduced in [17], and § — H —supplemented
modules may be approached via co-coatomic submodules in the same manner as carried out in

this paper.
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