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Supported by Artificial Intelligence for Detection of
Real-Time Retinal Diseases
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Abstract— Retinal diseases such as choroidal neovascularization
(CNV), diabetic macular edema (DME), and drusen are among the
leading causes of vision loss worldwide, requiring early and
accurate diagnosis to prevent irreversible damage. Optical
Coherence Tomography (OCT) provides high-resolution imaging
of retinal structures, making it a valuable tool in ophthalmological
diagnosis. This study presents a novel artificial intelligence (Al)-
supported computer-aided diagnostic system for the real-time
classification of retinal diseases using OCT images. The proposed
system integrates a DenseNet-201 deep learning model with a
hash-based data integrity mechanism and a user-friendly interface
for clinical deployment. The DenseNet-201 model achieved
superior performance with an accuracy of 94.42%, an F1- score of
0.9442, and an AUC of 1.00, outperforming other widely used
models such as GoogleNet, ResNet50, and EfficientNetB0. Unlike
existing systems, our approach includes automatic image
validation, eliminates data redundancy through hashing, and is
optimized for practical use via the Gradio interface. These
features address major limitations in prior studies, such as a lack
of real-time capability, data inconsistency, and insufficient clinical
integration. The system not only improves diagnostic accuracy but
also reduces clinician workload, ensuring faster and more reliable
decision-making in the detection of retinal diseases. This work
demonstrates the feasibility of deploying Al-powered diagnostic
tools in real-world ophthalmic settings and lays the groundwork
for future development of integrated, scalable healthcare solutions.

Index Terms—Retinal Diseases, Optical Coherence Tomography
(OCT), Artificial Intelligence (Al), Deep Learning, Computer-
Aided Diagnosis, Clinical Decision Support System, Real-Time
Classification, Medical Image Analysis, DenseNet-201, GoogleNet,
ResNet50, EfficientNetB0, Gradio Interface

I. INTRODUCTION

I N MANY parts of the world, especially in Turkey, changes in

eating habits, a decline in physical and social activities, and
excessive engagement with technology have not only reduced
overall quality of life but also contributed to serious health
problems [1]. One of the most significant issues is the partial or
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total loss of vision. Additionally, with the rapid advancement of
technology, screens have become deeply integrated into our
daily lives, leading to prolonged screen exposure throughout the
day. This prolonged exposure results in excessive eye fatigue
and may contribute to future vision-related complications [2].
The primary objective of this study is to explore how the
benefits of modern technology—rparticularly artificial
intelligence—can be leveraged to support healthcare, rather
than merely highlighting health warnings or precautions. Since
the introduction of Al into everyday life, it has found
applications across numerous fields, with a particularly
significant impact in healthcare. Therefore, this study aims to
provide a comprehensive and precise evaluation while also
optimizing diagnostic  efficiency and reducing time
consumption.

Among all human functions, vision is undoubtedly one of the
most critical, as it provides meaning to our interaction with the
environment. With vision, the human environment gains
meaning. In addition, thanks to the ability to see, muscle
functions are fulfilled without restriction. We can explain this
by the fact that a person who has lost their eyesight moves very
slowly. Therefore, problems that may occur in eyesight will
affect our quality of life significantly negatively. It will limit
our activities considerably and will cause us to barely maintain
our vital functions [3].

The human eye is one of the most complex and essential
organs, responsible for facilitating communication with the
external world through vision. It operates via a series of
intricate biological processes and is composed of various
protective and sensory structures. Because vision is highly
sensitive, even minor damage or dysfunction in any of its
anatomical components can lead to severe visual impairment.
To prevent such ocular health issues, it is essential to
understand the eye's anatomy and its associated functions. For
this purpose, several key terms related to the diseases in
question, which are the subject of this study, need to be
examined simply [4].

The eye is the most complex sensory organ responsible for
enabling vision and facilitating interaction with the external
world. Its primary anatomical components include the cornea,

iris, lens, sclera (outer fibrous layer), choroid (vascular layer),
retina, vitreous gel, and optic nerves. Briefly, the process of
vision begins when light rays from an object enter the eye
through the cornea, pass through the iris—which adjusts in size
according to light intensity—then pass through the lens, and
finally converge onto the retina at the back of the eye as an
inverted image. These rays falling on the yellow spot on the
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retina stimulate the photoreceptors in this layer and send optical
signals to the brain to be evaluated, and as a result, a meaningful
image is formed from these signals [5][6].

The retina is a highly differentiated neuroectodermal tissue
located at the innermost and posterior part of the eyeball, where
light is focused. It consists of two distinct regions: the central
retina (macula) and the peripheral retina. Photoreceptor cell
bodies are situated in the outer nuclear layer, while bipolar,
horizontal, and amacrine cell bodies are located in the inner
nuclear layer [7]. Signals generated by the photoreceptors are
transmitted to the brain via the optic nerves. There are two main
types of photoreceptors in the retina: rods and cones, which
absorb light and enable sharp, color-rich vision. The most
common retinal diseases include choroidal neovascularization
(CNV), diabetic macular edema (DME), and drusen. CNV
refers to the formation of abnormal new blood vessels beneath
the retina. These vessels often leak fluid, leading to dark spots
in the visual field, distorted lines, and sudden vision loss. It is
most frequently observed in the advanced stages of age-related
macular degeneration [8]. DME is a complication of diabetic
retinopathy characterized by fluid accumulation in the macula,
resulting in blurred vision. Since the macula is responsible for
detailed central vision, swelling in this area can cause
significant visual impairment [9][10]. Drusen are yellowish
deposits that accumulate under the retinal pigment epithelium
and are considered an early indicator of age-related macular
degeneration. Their presence may cause symptoms such as
central blurring, faded color perception, and scotomas in the
visual field [11].

Optical coherence tomography (OCT) is an advanced imaging
technique that enables high-resolution visualization of
biological tissue layers. It generates cross-sectional images by
calculating the intensity and time delay of infrared light waves
emitted from the device and reflected from various tissue
structures. The light beam from the source is split by a semi-
permeable mirror called a beamsplitter; one part is directed to a
reference mirror, while the other part is directed into the
patient's eye. The light reflected from the retinal layers and the
reference mirror is then combined in an interferometer. The
resulting time delay is calculated and used to construct a
detailed tomographic image [12].

Some of the studies using OCT images with artificial
intelligence are as follows: Li et al. (2019) applied deep transfer
learning with VGG-16 on 109,312 OCT images and achieved
98.6% accuracy [13]. Serener et al. (2019) classified dry AMD
using ResNet with 99.5% accuracy [14]. Motozawa et al.
(2019) used CNN and transfer learning to distinguish normal
and AMD subtypes with 99% accuracy [15]. Sun et al. (2020)
employed ResNet-50 with an attention mechanism and reached
98.17% accuracy on the Duke dataset [16]. Acar et al. (2021)
developed an automatic cataract detection system using
VGGNet and DenseNet on fundus images, achieving up to
97.94% accuracy and highlighting the potential of deep
learning in teleophthalmology [17]. Shi et al. (2021) developed
the Med- XAI-Net model for geographic atrophy detection and
achieved 91.5% accuracy [18]. Rajagopalan et al. (2021)
trained a CNN model on 12,000 OCT images and achieved
97.01% accuracy [19]. Sahin (2022) compared a proposed CNN
model with MobileNet50 and reported 94% accuracy [20].
Elsharkawy et al. (2022) used ResNet-50 on the Kermany
dataset and reached 96.21% accuracy [21]. He et al. (2022)
achieved 99.78% accuracy on the UCSD dataset using ResNet-
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50 and the LOF algorithm [22]. Aykat et al. (2023) developed a
novel hybrid model combining EfficientNetVV2S and Xception
(EffXceptNet) for classifying CNV, DME, and drusen in OCT
images, achieving 99.90% accuracy and outperforming
conventional CNN architectures [23]. Baharlouei et al. (2023)
applied a CNN model based on wavelet scattering transform
and achieved 97.1% accuracy on the Heidelberg and Duke
datasets [24]. Kulyabin et al. (2024) used VGG16 on the
OCTDL dataset and reported 85.9% accuracy [25]. Gencer et
al. (2025) developed a hybrid model integrating EfficientNetBO
and Xception with SE blocks, achieving 99.58% and 99.18%
accuracy on the UCSD and Duke datasets, respectively [26].
Existing Al-based methods, although successful in controlled
settings, often suffer from limitations such as a lack of real-time
functionality, redundancy in data processing, high
computational cost, and an insufficient user interface design for
clinical deployment. Most prior models also do not incorporate
effective mechanisms to prevent data duplication or ensure
image type validation, which are essential for consistent clinical
performance. The proposed method overcomes these limitations
by combining a high-performing DenseNet-201 deep learning
model with a hash-based data integrity mechanism and a
streamlined user interface via Gradio, enabling clinicians to
diagnose retinal diseases such as CNV, DME, and drusen with
high precision (accuracy: 94.42%, F1-score: 0.9442, AUC:
1.00) in real time. Furthermore, the model’s ability to focus
solely on OCT images, validate them automatically, and avoid
saving duplicates enhances both accuracy and efficiency,
making the system a robust and scalable solution for clinical
environments.

A key distinction from previous studies in visual data
processing is that the system assigns a unique hash value to
each tomographic image. This prevents data repetition and
redundancy, reduces unnecessary system load, and enables
faster access to images. Moreover, restricting the system to
accept only OCT (Optical Coherence Tomography)  images
improves the efficiency of the analysis process by ensuring the
model focuses solely on relevant medical data. Storing patient
information alongside the images enhances the integrity of
medical records. The proposed model will utilize an optimized
convolutional neural network (CNN) architecture that is
capable of performing both diagnosis and segmentation tasks
with a reduced number of deep layers. The model’s
performance will be evaluated comparatively using pre-trained
architectures (GoogleNet, ResNet, EfficientNet, DenseNet) and
expert assessments. Wi th these components combined, the
study aims to develop an Al- assisted retinal disease diagnosis
system with high accuracy based on OCT images.

Il. MATERIAL AND METHOD
a. Dataset Collection

The OCT-2017 dataset consists of retinal images obtained using
a medical imaging technique called Optical Coherence
Tomography OCT. The dataset is published on the Kaggle
platform. The dataset contains images from four different
retinal disease categories: DME (Diabetic Macular Edema),
Drusen, CNV (Choroidal Neovascular Membrane), and
Normal. In this framework:

- CNV: Choroidal Neovascular Membrane category includes
37,205 training images and 242 test images.

- DME: Diabetic Macular Edema category includes 11,350
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training images and 242 test images.

- DRUSEN: There are 8,616 training images and 242 test
images in the Drusen category.

- NORMAL: There are 26,318 training images and 242 test
images in the Normal category [27].
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Fig 2.1. Examples from the OCT dataset [27]
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b. Basic Working Principle
The basic working principle of the system describes the process
of a client (doctor, specialized personnel or other service)
submitting a decision support request via Gradio, as illustrated by
a sequence diagram in Figure 2.1. The process starts with the
client sending a request to Gradio. If the uploaded data is in
image format, the request is forwarded to the Image Validator
layer. If the image format is not supported, the uploaded image is
not a colour or OCT image, and it provides feedback to the user
with an unsupported image warning. If it is a supported image,
the validator checks the accuracy of the OCT retinal image. Then,
the Al model makes a prediction based on the input image.
During the prediction process, the Al model makes a prediction
using the data. Finally, the prediction result and the image are
saved in the database and sent to the client via Gradio. However,
if the image sent is not valid, i.e., has an unsupported format or
structure, the validator responds to the client with an Unsupported
Media Type (415) error. Similarly, if the incoming token is
invalid, in this way, a doctor or other expert or service can send a
request to the decision support system and receive an estimate. It
is also worth mentioning that if the uploaded image has already
been evaluated, it is re-evaluated, and the result is retrieved again.
However, the image is not saved in the database again to avoid
data redundancy, as it was previously saved with the given hash.

o O @& =

Boctor ot Gradio Processing Image Validator Ai model Database
Experts e :
Send a image 2 .
2 Predict =
Check image
Predicting
Send prediction result 3

OK(200)
3 Save prediction result v
T B : -
3 Unsupported image

(401)
Gradio Processing image Validator Ai model Database

Doctor or
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Fig. 2.2. System Basic Working Principle

c. Deep Learning
Artificial intelligence involves automating processes that require
human reasoning and logic, such as mathematical computations,
and human-specific capabilities, including event interpretation,
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experience-based benefits, learning, and inference. It can be said
that artificial intelligence, which is a modelling of the human
brain, is an effort to bring human and superhuman abilities to
machines. Machine learning is the self-learning of operations
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based on the codes written by users, without waiting for
commands from the user or without the need to write new code
[28]. Deep learning is a subset of machine learning that consists
of a large number of hidden layers, and the output of one
hidden layer is the input of the next hidden layer. It is a subfield
of machine learning based on artificial neural networks that
tries to mimic the way the human brain works. It aims to create
systems that can automatically learn complex tasks by training
with large data sets [29].

1. Convolutional Neural Networks (CNN)

Convolutional Neural Networks (CNN) are a multilayer forward
artificial neural network, which is one of the deep learning
architectures that needs fewer parameters and less training in
large network models. It is used in image processing analysis,
object recognition, and natural language processing. At first, it
was used for object recognition because it could not meet the
requirements due to hardware deficiencies, but later, with the
development of graphical processing units, it has been
frequently preferred in areas such as image processing and
recognition, sound processing, computer vision, face
recognition, text processing and classification, and its popularity
has increased. The crowding and complexity of data, along with
the development of technology, have underscored the
importance of convolutional neural networks and increased their
use [30]. Convolutional neural networks perform better on
complex data than fully connected layers, as they progress
hierarchically by adding and superimposing what they have
learnt in the previous layer. CNN architectures consist of input
layer (Input Layer), convolution layer (Convolution Layer),
flattened linear unit layer (RELU), pooling layer (Pooling
Layer), fully connected layer (Fully Connected Layer), dropout
layer (Dropout Layer) and classification layer (Classification
Layer) [31]. The number of layers depends on the work of the
person designing the model and the study. In convolutional
neural networks, much less preprocessing is needed to create the
filters to be trained compared to traditional techniques due to
the automatic self-training of different features [32].

In this study, deep learning architectures such as GoogleNet,
ResNet, EfficientNet, and DenseNet are used, and they are
compared with each other, and the comparison results are
briefly mentioned. As can be seen from the results, the most
efficient result is obtained with DenseNet, so the graphs and
evaluations are based on this model.

reducing computational and memory costs. In the 22-layer
architecture, 1x1 convolution layers are used to manage the
number of parameters and computational complexity [34].

b) ResNet

ResNet was developed to solve the vanishing gradient problem
seen in deep networks and is differentiated by its residual
block structure. This structure provides a deeper and more
efficient learning by learning the input and output differences
instead of direct input-output mapping. There are versions
with different depths (ResNetl8, ResNet34, ResNet50,
ResNet101, ResNet152) [35].

c) EfficientNet

EfficientNet is an architecture that scales the depth, width and
input resolution of the network in a balanced way.
Convolutional layers, bottleneck layers and inverse residual
blocks are used to increase efficiency. It aims to achieve high
accuracy with fewer parameters than traditional CNN
architectures [36].

d) DenseNet

The images were trained with the DenseNet201 artificial
intelligence model for image classification and retinal disease
detection. DenseNet-201 has an input size of 224x224x3,
where 224 is the width, 224 is the height, and 3 is the depth
(number of color channels). DenseNet201 is a deep learning
model where each layer receives features from all previous
layers as input, thus improving information flow and gradient
propagation [37]. This dense connection structure makes the
model more efficient and provides high performance with
fewer parameters. In the tests performed with the DenseNet201
model in this study, successful results were obtained. The main
reason why the model is preferred is that it has more layers
than other DenseNet models. Since it has 201 layers, the model
can be trained in many more layers, and much more accurate
results can be obtained. In classical convolutional neural
network models, the layers are connected in such a way that the
output of one layer depends on the input of the other layer, but
in the DenseNet architecture, the outputs of all previous layers
can be given as input for any layer, offering much more
effective results in terms of performance and accuracy [38].
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Fig. 2.3. DenseNet Architecture [33]

Concatenation

a) GoogleNet

Instead of stacking convolution and pooling layers directly on
top of each other, GoogleNet is structured with Inception
modules connected in parallel. This approach aims to increase
learning capacity with non-linear activation functions while
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Fig. 2.4. DenseNet Architecture [39]
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I1l. RESULTS AND DISCUSSION

During the model development studies, various deep learning
models, including GoogleNet, ResNet (ResNet50), EfficientNet
(EfficientNetB0), and DenseNet (Densenet201), were applied.
As can be seen from the detailed comparison and analyses
below, the most efficient results were obtained with the
DenseNet-201 model. Therefore, the graphs and analyses in this
study are mostly related to the DenseNet-201 model.

Train accuracy shows how accurately the model predicts the
training data. In other words, it is the success of the model on
the data it sees during learning. Validation accuracy indicates
the model's success on unseen data (validation). This evaluates
the generalization ability of the model. If train accuracy is high
but validation accuracy is low, there may be overfitting. If both
are low, there may be underfitting. If both are high and close to
each other, the model has learnt well and can generalise. Based
on this information, it is understood that the DenseNet-201
model gives by far the most successful result among the other
models for the graph in Figure 3.1. The lowest accuracy is
observed in EfficientNetB0 and GoogleNet models. In addition,
since Densenet201, the model with the highest F1 score in the
F1 score comparison graph in Figure 3.2, gives very balanced
and successful results in terms of both precision and recall, this
model stands out as the model that can discriminate between
classes best. Since EfficientNetB0 has the lowest F1 score with
a ratio of 0.83, this model seems to be less successful compared
to the others. In this parameter and many similar parameters, it
is clearly seen that the Densenet201 model shows the best result
among the models tested in this study.

Training and Validation Accuracy Comparison
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Fig. 3.1. Comparison of Train accuracy and Validation accuracy of the models
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The two most important factors that determine the complexity
of deep learning models are the number of layers and the
number of parameters. A high number of layers allows the
model to learn more complex patterns, which is especially
advantageous in tasks such as image processing, where edges
at the lower level, shapes at the middle level and objects at the
upper level can be recognized. A higher number of parameters
allows the model to learn more information; however, this
requires more data, more memory and more computational
power. In this context, the DenseNet201 model stands out
among other models with 201 layers and approximately 20
million parameters. In comparison, GoogleNet has 22 layers
and 7 million parameters, ResNet50 has 50 layers and 25.6
million parameters, and EfficientNetBO has 82 layers and 5.3
million parameters. This technical evaluation shows that
DenseNet201 is the best-performing model in this study.
However, it is not correct to say that DenseNet201 is the best
model in all cases; many factors, such as the size and
complexity of the dataset, data imbalance, and hardware, affect
the model's performance. Nevertheless, in this study, it was
observed that the best results were obtained with
DenseNet201. Therefore, the technical analyses, results and
graphical presentations of the study were based on this model.
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Fig. 3.3. Model accuracy and loss curves of DenseNet
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Figure 3.3 shows the accuracy and loss curves obtained during
the validation process of the model training for the DenseNet-
201 model.

In this study, the training and validation loss curves of the
DenseNet201 model, as shown in Figure 3.3, were analyzed to
evaluate the model’s learning behavior over time. The training
loss curve exhibited a consistent downward trend, indicating that
the model effectively learned from the training data and
progressively improved its performance. In contrast, the
validation loss curve showed more fluctuations, suggesting
potential overfitting risk and a relatively unstable generalization
performance on unseen data. To address this issue, an early
stopping mechanism was employed. Although the training cycle
was initially set for 128 epochs, the training process was
automatically halted around the 15th epoch due to a lack of
significant improvement in the validation loss. This decision
was based on a predefined “patience” parameter, which
monitors the model’s performance on the validation set and
stops the training if no further improvement is observed for a
specific number of epochs. This technique effectively prevented
overfitting, preserved the model’s generalization capability, and
ensured optimal training efficiency.

The observed trends in Figure 3.3 confirm this mechanism:
while training accuracy continued to improve, validation
accuracy plateaued and then stabilized. Similarly, validation
loss ceased to decrease meaningfully, indicating that the model
had reached a critical threshold in learning. By terminating
training at this point, unnecessary training time and
computational resources were avoided. Furthermore, early
stopping contributed to maintaining the model's robustness,
reliability, and clinical applicability—key considerations in a
medical imaging context where unseen data performance is
paramount.

Overall, the use of early stopping played a crucial role in
balancing training performance with generalization ability,
optimizing resource usage, and enhancing the clinical readiness
of the proposed Al system.

In order to evaluate the classification performance, in other
words, the success of the study, some metric values are used as

351

Table 3.1 shows the performance results and success measures
of the classification model. Accuracy, or the rate at which the
model makes correct predictions, is 94.42%. This indicates that
the majority of instances are correctly classified. Sensitivity, or
the ability of the model to correctly recognize true positives, is
also 94.42%. It shows the percentage of actual positives that the
model correctly predicts as positive. Specificity, which refers to
the model's ability to correctly recognize true negatives, is
98.14%. It indicates the percentage of actual negatives that the
model correctly predicts as negative. Precision is the ratio of the
number of instances that the model predicts as positive to the
number of positive cases, and it is 94.75%. It shows the
proportion of samples classified as positive that are indeed
positive. The false positive rate, which is the rate at which the
model incorrectly classifies true negatives as positives, is
1.85%. It shows the percentage of negative samples that the
model incorrectly identifies as positive. The F1 score, which
balances sensitivity and precision, is 94.42%. It indicates how
well the classification model balances recall and precision.
Overall, these results demonstrate that the model performs well.
High accuracy, sensitivity, specificity, and precision suggest
that the model can accurately classify both positive and negative
cases.

In this study, the classification performance of the proposed
DenseNet201-based model was evaluated using Receiver
Operating Characteristic (ROC) curves. ROC curves are widely
used to assess the performance of classification models by
illustrating the trade-off between the true positive rate (TPR)
and the false positive rate (FPR) across various threshold
settings. In Figure 3.4, ROC curves for each class (CNV, DME,
DRUSEN, NORMAL) are presented on a single graph using
the one-vs-rest approach, allowing a comprehensive and
comparative analysis of the model's discriminative power
across all classes.

The results indicate that all classes achieved an AUC (Area
Under the Curve) value of 1.00, which suggests that the model
distinguishes each class from the others with perfect accuracy.

Receiver Operating Characteristic (ROC) Curve

shown in Table 3.1. The mathematical ratio of true positive 5
(TP), true negative (TN), false positive (FP) and false negative //
(FN) to each other provides some metric results to show the 7
success of the study. Knowing some metrics such as accuracy, i ot
sensitivity, recall, specificity, precision, false positive rate, and ,,/'
F1 score will contribute significantly to the judgment of the >
study's performance. 2 o6 it
[ ’/
TABLE | g s
PERFORMANCE RESULTS OF DENSENET F L’
0.4 P
Metrics Values P
ACCUracy 0.9442 ,4/ = = micro-average ROC curve (area = 1.00)
: 0.2 ’/’, ROC curve of class CNV (area = 1.00)
W ,,’ — ROC curve of class DME (area = 1.00)
SenSItI\“ty 09442 ,/’ —— ROC curve of class DRUSEN (area = 0.99)
Specificity 0.9814 // = ROC curve of class NORMAL (area = 1.00)
— *%00 02 04 06 o8 10
Precision 0.9475 False Positive Rate
False positive rate 0.0185 Fig. 3.4. ROC curve of the model
F1 score 0.9442
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The ROC curves cluster closely around the upper-left corner of
the graph, signifying both high sensitivity and a low false
positive rate—hallmarks of exceptional classification
performance.

In multi-class classification problems, visualizing ROC curves
for all classes in a single graph is a common and effective
practice in the academic literature. For instance, Rajagopalan et
al. (2021) utilized this approach to evaluate the overall
diagnostic strength of their deep learning models by comparing
the ROC curves of each class collectively [19]. This strategy
enables direct visual comparison of class-level performance,
particularly beneficial for assessing critical clinical classes such
as CNV and DME. Although presenting separate ROC curves
for each class may offer visual clarity, it limits holistic
comparison and may lead to misinterpretation due to
inconsistent axis scales. Therefore, displaying all ROC curves
within a single unified graph ensures scale consistency and
facilitates direct, comparative interpretation of model
performance across classes. This makes it a valuable method
for evaluating the overall diagnostic reliability of the model,
especially in clinical contexts.

IV. CONCLUSION

In this study, an artificial intelligence-based computer-aided
diagnostic system was developed for the automated detection of
retinal diseases using Optical Coherence Tomography (OCT)
images. Various state-of-the-art deep learning models,
including GoogleNet, ResNet, EfficientNet, and DenseNet,
were implemented and comparatively evaluated. Among these
models, DenseNet-201 achieved the highest classification
performance with an accuracy of 94.42%, an F1 score of
94.42%, and an AUC of 1.00. These results indicate that
DenseNet-201 is highly effective in distinguishing between
different retinal disease categories and normal cases.

The system was designed not only to achieve high diagnostic
accuracy but also to optimize data management through hashing
mechanisms and to ensure usability through a user-friendly
interface. Moreover, the system was developed with real-world
clinical applicability in mind, aiming to support healthcare
professionals in early and accurate diagnosis of retinal diseases.
By reducing the workload of clinicians and accelerating the
diagnostic process, the system has the potential to improve
patient outcomes and contribute to more efficient clinical
workflows.

The proposed system aims to address the shortcomings
observed in previous studies in the literature. Although some
studies report high accuracy rates, they often fall short in terms
of ease of use, real-time processing, and clinical applicability.
Key distinguishing features of this study include a hash-based
data recording mechanism that enhances data security,
acceptance of only OCT (Optical Coherence Tomography)
images to ensure analysis efficiency, intuitive and training-free
user interfaces, and integration potential with national health
software such as e- Nabiz. Another notable advantage is the
ability of the system to be embedded into OCT devices via
embedded software, enabling direct output generation from the
device. Patient- specific OCT images are securely stored in the
MongoDB database with a unique hash value assigned at the
time of upload. If the same image is uploaded again, only the
prediction result is displayed without saving a duplicate, thereby
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reducing data redundancy and improving system performance.
The Gradio-based interface is designed to reduce the workload
of healthcare professionals and save time. Furthermore, the
developed patient interface allows individuals to communicate
directly with their doctors via email.

Despite these strengths, the system has several practical
limitations. If the system is to be installed individually on the
computers located in relevant departments of the Ministry of
Health, the process may lead to excessive time consumption
and face limitations due to insufficient hardware capabilities, as
not every institutional computer may support the operational
requirements of the model. Alternatively, deploying it via
centralized servers could increase operational costs.
Additionally, OCT devices may not be available in every
healthcare unit, limiting their widespread use. Most
importantly, since patients' medical images are classified as
sensitive personal health data, using such images for analysis
requires special authorization from the Ministry of Health. This
administrative requirement is often a lengthy and complex
process, posing a significant barrier to real-world
implementation. Therefore, while the current version of the
system cannot yet fully achieve large-scale clinical integration,
it lays a strong conceptual foundation for future development
and adoption.

Looking ahead, several directions for future improvement are
evident. Expanding the dataset with more diverse and real-
world clinical images will be crucial to enhancing the model's
generalization capability. Integration of hybrid approaches,
such as combining deep learning with traditional image
processing techniques or clinical metadata, may further boost
diagnostic performance. Efforts should also be made to
optimize the system for real-time performance and to ensure
seamless integration with existing healthcare platforms and
electronic medical record systems. Collaborations with
hospitals and healthcare providers will be essential to test and
refine the system in actual clinical practice. Ultimately,
embedding the model directly into OCT devices or national
healthcare platforms could significantly increase its
accessibility and impact. Furthermore, more effective use and
widespread access may be possible by integrating the model
directly into OCT devices or health system software and the e-
Nabiz platform. However, adequate technical infrastructure,
financial support and official permissions are required to realize
these goals.

In conclusion, this study demonstrates the feasibility and
potential of an Al-supported OCT image analysis system for
retinal disease detection. While further work is needed to fully
realize its clinical utility, the results obtained provide a strong
foundation for future advancements and broader adoption in
ophthalmological practice.
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