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Abstract— Retinal diseases such as choroidal neovascularization 

(CNV), diabetic macular edema (DME), and drusen are among the 

leading causes of vision loss worldwide, requiring early and 

accurate diagnosis to prevent irreversible damage. Optical 

Coherence Tomography (OCT) provides high-resolution imaging 

of retinal structures, making it a valuable tool in ophthalmological 

diagnosis. This study presents a novel artificial intelligence (AI)-

supported computer-aided diagnostic system for the real-time 

classification of retinal diseases using OCT images. The proposed 

system integrates a DenseNet-201 deep learning model with a 

hash-based data integrity mechanism and a user-friendly interface 

for clinical deployment. The DenseNet-201 model achieved 

superior performance with an accuracy of 94.42%, an F1- score of 

0.9442, and an AUC of 1.00, outperforming other widely used 

models such as GoogleNet, ResNet50, and EfficientNetB0. Unlike 

existing systems, our approach includes automatic image 

validation, eliminates data redundancy through hashing, and is 

optimized for practical use via the Gradio interface. These 

features address major limitations in prior studies, such as a lack 

of real-time capability, data inconsistency, and insufficient clinical 

integration. The system not only improves diagnostic accuracy but 

also reduces clinician workload, ensuring faster and more reliable 

decision-making in the detection of retinal diseases. This work 

demonstrates the feasibility of deploying AI-powered diagnostic 

tools in real-world ophthalmic settings and lays the groundwork 

for future development of integrated, scalable healthcare solutions. 

 

Index Terms—Retinal Diseases, Optical Coherence Tomography 

(OCT), Artificial Intelligence (AI), Deep Learning, Computer-

Aided Diagnosis, Clinical Decision Support System, Real-Time 

Classification, Medical Image Analysis, DenseNet-201, GoogleNet, 

ResNet50, EfficientNetB0, Gradio Interface 

 

I. INTRODUCTION 

N MANY parts of the world, especially in Turkey, changes in 

eating habits, a decline in physical and social activities, and 

excessive engagement with technology have not only reduced 

overall quality of life but also contributed to serious health 

problems [1]. One of the most significant issues is the partial or 

total loss of vision. Additionally, with the rapid advancement of 

technology, screens have become deeply integrated into our 

daily lives, leading to prolonged screen exposure throughout the 

day. This prolonged exposure results in excessive eye fatigue 

and may contribute to future vision-related complications [2]. 

The primary objective of this study is to explore how the 

benefits of modern technology—particularly artificial 

intelligence—can be leveraged to support healthcare, rather 

than merely highlighting health warnings or precautions. Since 

the introduction of AI into everyday life, it has found 

applications across numerous fields, with a particularly 

significant impact in healthcare. Therefore, this study aims to 

provide a comprehensive and precise evaluation while also 

optimizing diagnostic efficiency and reducing time 

consumption. 

Among all human functions, vision is undoubtedly one of the 

most critical, as it provides meaning to our interaction with the 

environment. With vision, the human environment gains 

meaning. In addition, thanks to the ability to see, muscle 

functions are fulfilled without restriction. We can explain this 

by the fact that a person who has lost their eyesight moves very 

slowly. Therefore, problems that may occur in eyesight will 

affect our quality of life significantly negatively. It will limit 

our activities considerably and will cause us to barely maintain 

our vital functions [3]. 

The human eye is one of the most complex and essential 

organs, responsible for facilitating communication with the 

external world through vision. It operates via a series of 

intricate biological processes and is composed of various 

protective and sensory structures. Because vision is highly 

sensitive, even minor damage or dysfunction in any of its 

anatomical components can lead to severe visual impairment. 

To prevent such ocular health issues, it is essential to 

understand the eye's anatomy and its associated functions. For 

this purpose, several key terms related to the diseases in 

question, which are the subject of this study, need to be 

examined simply [4]. 

The eye is the most complex sensory organ responsible for 

enabling vision and facilitating interaction with the external 

world. Its primary anatomical components include the cornea,

iris, lens, sclera (outer fibrous layer), choroid (vascular layer), 

retina, vitreous gel, and optic nerves. Briefly, the process of 

vision begins when light rays from an object enter the eye 

through the cornea, pass through the iris—which adjusts in size 

according to light intensity—then pass through the lens, and 

finally converge onto the retina at the back of the eye as an 

inverted image. These rays falling on the yellow spot on the 
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retina stimulate the photoreceptors in this layer and send optical 

signals to the brain to be evaluated, and as a result, a meaningful 

image is formed from these signals [5][6]. 

The retina is a highly differentiated neuroectodermal tissue 

located at the innermost and posterior part of the eyeball, where 

light is focused. It consists of two distinct regions: the central 

retina (macula) and the peripheral retina. Photoreceptor cell 

bodies are situated in the outer nuclear layer, while bipolar, 

horizontal, and amacrine cell bodies are located in the inner 

nuclear layer [7]. Signals generated by the photoreceptors are 

transmitted to the brain via the optic nerves. There are two main 

types of photoreceptors in the retina: rods and cones, which 

absorb light and enable sharp, color-rich vision. The most 

common retinal diseases include choroidal neovascularization 

(CNV), diabetic macular edema (DME), and drusen. CNV 

refers to the formation of abnormal new blood vessels beneath 

the retina. These vessels often leak fluid, leading to dark spots 

in the visual field, distorted lines, and sudden vision loss. It is 

most frequently observed in the advanced stages of age-related 

macular degeneration [8]. DME is a complication of diabetic 

retinopathy characterized by fluid accumulation in the macula, 

resulting in blurred vision. Since the macula is responsible for 

detailed central vision, swelling in this area can cause 

significant visual impairment [9][10]. Drusen are yellowish 

deposits that accumulate under the retinal pigment epithelium 

and are considered an early indicator of age-related macular 

degeneration. Their presence may cause symptoms such as 

central blurring, faded color perception, and scotomas in the 

visual field [11]. 

Optical coherence tomography (OCT) is an advanced imaging 

technique that enables high-resolution visualization of 

biological tissue layers. It generates cross-sectional images by 

calculating the intensity and time delay of infrared light waves 

emitted from the device and reflected from various tissue 

structures. The light beam from the source is split by a semi-

permeable mirror called a beamsplitter; one part is directed to a 

reference mirror, while the other part is directed into the 

patient's eye. The light reflected from the retinal layers and the 

reference mirror is then combined in an interferometer. The 

resulting time delay is calculated and used to construct a 

detailed tomographic image [12]. 

Some of the studies using OCT images with artificial 

intelligence are as follows: Li et al. (2019) applied deep transfer 

learning with VGG-16 on 109,312 OCT images and achieved 

98.6% accuracy [13]. Serener et al. (2019) classified dry AMD 

using ResNet with 99.5% accuracy [14]. Motozawa et al. 

(2019) used CNN and transfer learning to distinguish normal 

and AMD subtypes with 99% accuracy [15]. Sun et al. (2020) 

employed ResNet-50 with an attention mechanism and reached 

98.17% accuracy on the Duke dataset [16]. Acar et al. (2021) 

developed an automatic cataract detection system using 

VGGNet and DenseNet on fundus images, achieving up to 

97.94% accuracy and highlighting the potential of deep 

learning in teleophthalmology [17]. Shi et al. (2021) developed 

the Med- XAI-Net model for geographic atrophy detection and 

achieved 91.5% accuracy [18]. Rajagopalan et al. (2021) 

trained a CNN model on 12,000 OCT images and achieved 

97.01% accuracy [19]. Sahin (2022) compared a proposed CNN 

model with MobileNet50 and reported 94% accuracy [20]. 

Elsharkawy et al. (2022) used ResNet-50 on the Kermany 

dataset and reached 96.21% accuracy [21]. He et al. (2022) 

achieved 99.78% accuracy on the UCSD dataset using ResNet-

50 and the LOF algorithm [22]. Aykat et al. (2023) developed a 

novel hybrid model combining EfficientNetV2S and Xception 

(EffXceptNet) for classifying CNV, DME, and drusen in OCT 

images, achieving 99.90% accuracy and outperforming 

conventional CNN architectures [23]. Baharlouei et al. (2023) 

applied a CNN model based on wavelet scattering transform 

and achieved 97.1% accuracy on the Heidelberg and Duke 

datasets [24]. Kulyabin et al. (2024) used VGG16 on the 

OCTDL dataset and reported 85.9% accuracy [25]. Gencer et 

al. (2025) developed a hybrid model integrating EfficientNetB0 

and Xception with SE blocks, achieving 99.58% and 99.18% 

accuracy on the UCSD and Duke datasets, respectively [26]. 

Existing AI-based methods, although successful in controlled 

settings, often suffer from limitations such as a lack of real-time 

functionality, redundancy in data processing, high 

computational cost, and an insufficient user interface design for 

clinical deployment. Most prior models also do not incorporate 

effective mechanisms to prevent data duplication or ensure 

image type validation, which are essential for consistent clinical 

performance. The proposed method overcomes these limitations 

by combining a high-performing DenseNet-201 deep learning 

model with a hash-based data integrity mechanism and a 

streamlined user interface via Gradio, enabling clinicians to 

diagnose retinal diseases such as CNV, DME, and drusen with 

high precision (accuracy: 94.42%, F1-score: 0.9442, AUC: 

1.00) in real time. Furthermore, the model’s ability to focus 

solely on OCT images, validate them automatically, and avoid 

saving duplicates enhances both accuracy and efficiency, 

making the system a robust and scalable solution for clinical 

environments. 

A key distinction from previous studies in visual data 

processing is that the system assigns a unique hash value to 

each tomographic image. This prevents data repetition and 

redundancy, reduces unnecessary system load, and enables 

faster access to images. Moreover, restricting the system to 

accept only OCT (Optical Coherence Tomography) images 

improves the efficiency of the analysis process by ensuring the 

model focuses solely on relevant medical data. Storing patient 

information alongside the images enhances the integrity of 

medical records. The proposed model will utilize an optimized 

convolutional neural network (CNN) architecture that is 

capable of performing both diagnosis and segmentation tasks 

with a reduced number of deep layers. The model’s 

performance will be evaluated comparatively using pre-trained 

architectures (GoogleNet, ResNet, EfficientNet, DenseNet) and 

expert assessments. Wi th these components combined, the 

study aims to develop an AI- assisted retinal disease diagnosis 

system with high accuracy based on OCT images. 

 

II. MATERIAL AND METHOD 
a. Dataset Collection 

The OCT-2017 dataset consists of retinal images obtained using 

a medical imaging technique called Optical Coherence 

Tomography OCT. The dataset is published on the Kaggle 

platform. The dataset contains images from four different 

retinal disease categories: DME (Diabetic Macular Edema), 

Drusen, CNV (Choroidal Neovascular Membrane), and 

Normal. In this framework: 

- CNV: Choroidal Neovascular Membrane category includes 

37,205 training images and 242 test images. 

- DME: Diabetic Macular Edema category includes 11,350 
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training images and 242 test images. 

- DRUSEN: There are 8,616 training images and 242 test 

images in the Drusen category. 

- NORMAL: There are 26,318 training images and 242 test 

images in the Normal category [27]. 

 
Fig 2.1. Examples from the OCT dataset [27] 

 

 

b. Basic Working Principle 

The basic working principle of the system describes the process 

of a client (doctor, specialized personnel or other service) 

submitting a decision support request via Gradio, as illustrated by 

a sequence diagram in Figure 2.1. The process starts with the 

client sending a request to Gradio. If the uploaded data is in 

image format, the request is forwarded to the Image Validator 

layer. If the image format is not supported, the uploaded image is 

not a colour or OCT image, and it provides feedback to the user 

with an unsupported image warning. If it is a supported image, 

the validator checks the accuracy of the OCT retinal image. Then, 

the AI model makes a prediction based on the input image. 

During the prediction process, the AI model makes a prediction 

using the data. Finally, the prediction result and the image are 

saved in the database and sent to the client via Gradio. However, 

if the image sent is not valid, i.e., has an unsupported format or 

structure, the validator responds to the client with an Unsupported 

Media Type (415) error. Similarly, if the incoming token is 

invalid, in this way, a doctor or other expert or service can send a 

request to the decision support system and receive an estimate. It 

is also worth mentioning that if the uploaded image has already 

been evaluated, it is re-evaluated, and the result is retrieved again. 

However, the image is not saved in the database again to avoid 

data redundancy, as it was previously saved with the given hash.

Fig. 2.2.  System Basic Working Principle 

 

c. Deep Learning 

Artificial intelligence involves automating processes that require 

human reasoning and logic, such as mathematical computations, 

and human-specific capabilities, including event interpretation, 

experience-based benefits, learning, and inference. It can be said 

that artificial intelligence, which is a modelling of the human 

brain, is an effort to bring human and superhuman abilities to 

machines. Machine learning is the self-learning of operations 
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based on the codes written by users, without waiting for 

commands from the user or without the need to write new code 

[28]. Deep learning is a subset of machine learning that consists 

of a large number of hidden layers, and the output of one 

hidden layer is the input of the next hidden layer. It is a subfield 

of machine learning based on artificial neural networks that 

tries to mimic the way the human brain works. It aims to create 

systems that can automatically learn complex tasks by training 

with large data sets [29]. 

 

1. Convolutional Neural Networks (CNN) 

Convolutional Neural Networks (CNN) are a multilayer forward 

artificial neural network, which is one of the deep learning 

architectures that needs fewer parameters and less training in 

large network models. It is used in image processing analysis, 

object recognition, and natural language processing. At first, it 

was used for object recognition because it could not meet the 

requirements due to hardware deficiencies, but later, with the 

development of graphical processing units, it has been 

frequently preferred in areas such as image processing and 

recognition, sound processing, computer vision, face 

recognition, text processing and classification, and its popularity 

has increased. The crowding and complexity of data, along with 

the development of technology, have underscored the 

importance of convolutional neural networks and increased their 

use [30]. Convolutional neural networks perform better on 

complex data than fully connected layers, as they progress 

hierarchically by adding and superimposing what they have 

learnt in the previous layer. CNN architectures consist of input 

layer (Input Layer), convolution layer (Convolution Layer), 

flattened linear unit layer (RELU), pooling layer (Pooling 

Layer), fully connected layer (Fully Connected Layer), dropout 

layer (Dropout Layer) and classification layer (Classification 

Layer) [31]. The number of layers depends on the work of the 

person designing the model and the study. In convolutional 

neural networks, much less preprocessing is needed to create the 

filters to be trained compared to traditional techniques due to 

the automatic self-training of different features [32]. 

In this study, deep learning architectures such as GoogleNet, 

ResNet, EfficientNet, and DenseNet are used, and they are 

compared with each other, and the comparison results are 

briefly mentioned. As can be seen from the results, the most 

efficient result is obtained with DenseNet, so the graphs and 

evaluations are based on this model. 

Fig. 2.3. DenseNet Architecture [33] 

 

a) GoogleNet 

Instead of stacking convolution and pooling layers directly on 

top of each other, GoogleNet is structured with Inception 

modules connected in parallel. This approach aims to increase 

learning capacity with non-linear activation functions while 

reducing computational and memory costs. In the 22-layer 

architecture, 1×1 convolution layers are used to manage the 

number of parameters and computational complexity [34]. 

b) ResNet 

ResNet was developed to solve the vanishing gradient problem 

seen in deep networks and is differentiated by its residual 

block structure. This structure provides a deeper and more 

efficient learning by learning the input and output differences 

instead of direct input-output mapping. There are versions 

with different depths (ResNet18, ResNet34, ResNet50, 

ResNet101, ResNet152) [35]. 

 
c) EfficientNet 

EfficientNet is an architecture that scales the depth, width and 

input resolution of the network in a balanced way.  

Convolutional layers, bottleneck layers and inverse residual 

blocks are used to increase efficiency. It aims to achieve high 

accuracy with fewer parameters than traditional CNN 

architectures [36]. 

 

d) DenseNet 

The images were trained with the DenseNet201 artificial 

intelligence model for image classification and retinal disease 

detection. DenseNet-201 has an input size of 224x224x3, 

where 224 is the width, 224 is the height, and 3 is the depth 

(number of color channels). DenseNet201 is a deep learning 

model where each layer receives features from all previous 

layers as input, thus improving information flow and gradient 

propagation [37]. This dense connection structure makes the 

model more efficient and provides high performance with 

fewer parameters. In the tests performed with the DenseNet201 

model in this study, successful results were obtained. The main 

reason why the model is preferred is that it has more layers 

than other DenseNet models. Since it has 201 layers, the model 

can be trained in many more layers, and much more accurate 

results can be obtained. In classical convolutional neural 

network models, the layers are connected in such a way that the 

output of one layer depends on the input of the other layer, but 

in the DenseNet architecture, the outputs of all previous layers 

can be given as input for any layer, offering much more 

effective results in terms of performance and accuracy [38]. 
 

 

Fig. 2.4. DenseNet Architecture [39] 
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III. RESULTS AND DISCUSSION 

During the model development studies, various deep learning 

models, including GoogleNet, ResNet (ResNet50), EfficientNet 

(EfficientNetB0), and DenseNet (Densenet201), were applied. 

As can be seen from the detailed comparison and analyses 

below, the most efficient results were obtained with the 

DenseNet-201 model. Therefore, the graphs and analyses in this 

study are mostly related to the DenseNet-201 model. 

Train accuracy shows how accurately the model predicts the 

training data. In other words, it is the success of the model on 

the data it sees during learning. Validation accuracy indicates 

the model's success on unseen data (validation). This evaluates 

the generalization ability of the model. If train accuracy is high 

but validation accuracy is low, there may be overfitting. If both 

are low, there may be underfitting. If both are high and close to 

each other, the model has learnt well and can generalise. Based 

on this information, it is understood that the DenseNet-201 

model gives by far the most successful result among the other 

models for the graph in Figure 3.1. The lowest accuracy is 

observed in EfficientNetB0 and GoogleNet models. In addition, 

since Densenet201, the model with the highest F1 score in the 

F1 score comparison graph in Figure 3.2, gives very balanced 

and successful results in terms of both precision and recall, this 

model stands out as the model that can discriminate between 

classes best. Since EfficientNetB0 has the lowest F1 score with 

a ratio of 0.83, this model seems to be less successful compared 

to the others. In this parameter and many similar parameters, it 

is clearly seen that the Densenet201 model shows the best result 

among the models tested in this study.  

 

 

Fig. 3.1. Comparison of Train accuracy and Validation accuracy of the models 
 

 

 

 

 

 

 

 

 

 
 

Fig. 3.2. F1 Score Comparison of Models 

 
The two most important factors that determine the complexity 

of deep learning models are the number of layers and the 

number of parameters. A high number of layers allows the 

model to learn more complex patterns, which is especially 

advantageous in tasks such as image processing, where edges 

at the lower level, shapes at the middle level and objects at the 

upper level can be recognized. A higher number of parameters 

allows the model to learn more information; however, this 

requires more data, more memory and more computational 

power. In this context, the DenseNet201 model stands out 

among other models with 201 layers and approximately 20 

million parameters. In comparison, GoogleNet has 22 layers 

and 7 million parameters, ResNet50 has 50 layers and 25.6 

million parameters, and EfficientNetB0 has 82 layers and 5.3 

million parameters. This technical evaluation shows that 

DenseNet201 is the best-performing model in this study. 

However, it is not correct to say that DenseNet201 is the best 

model in all cases; many factors, such as the size and 

complexity of the dataset, data imbalance, and hardware, affect 

the model's performance. Nevertheless, in this study, it was 

observed that the best results were obtained with 

DenseNet201. Therefore, the technical analyses, results and 

graphical presentations of the study were based on this model. 

Fig. 3.3. Model accuracy and loss curves of DenseNet 
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Figure 3.3 shows the accuracy and loss curves obtained during 

the validation process of the model training for the DenseNet- 

201 model. 

In this study, the training and validation loss curves of the 

DenseNet201 model, as shown in Figure 3.3, were analyzed to 

evaluate the model’s learning behavior over time. The training 

loss curve exhibited a consistent downward trend, indicating that 

the model effectively learned from the training data and 

progressively improved its performance. In contrast, the 

validation loss curve showed more fluctuations, suggesting 

potential overfitting risk and a relatively unstable generalization 

performance on unseen data. To address this issue, an early 

stopping mechanism was employed. Although the training cycle 

was initially set for 128 epochs, the training process was 

automatically halted around the 15th epoch due to a lack of 

significant improvement in the validation loss. This decision 

was based on a predefined “patience” parameter, which 

monitors the model’s performance on the validation set and 

stops the training if no further improvement is observed for a 

specific number of epochs. This technique effectively prevented 

overfitting, preserved the model’s generalization capability, and 

ensured optimal training efficiency. 

The observed trends in Figure 3.3 confirm this mechanism: 

while training accuracy continued to improve, validation 

accuracy plateaued and then stabilized. Similarly, validation 

loss ceased to decrease meaningfully, indicating that the model 

had reached a critical threshold in learning. By terminating 

training at this point, unnecessary training time and 

computational resources were avoided. Furthermore, early 

stopping contributed to maintaining the model's robustness, 

reliability, and clinical applicability—key considerations in a 

medical imaging context where unseen data performance is 

paramount. 

Overall, the use of early stopping played a crucial role in 

balancing training performance with generalization ability, 

optimizing resource usage, and enhancing the clinical readiness 

of the proposed AI system. 

In order to evaluate the classification performance, in other 

words, the success of the study, some metric values are used as 

shown in Table 3.1. The mathematical ratio of true positive 

(TP), true negative (TN), false positive (FP) and false negative 

(FN) to each other provides some metric results to show the 

success of the study. Knowing some metrics such as accuracy, 

sensitivity, recall, specificity, precision, false positive rate, and 

F1 score will contribute significantly to the judgment of the 

study's performance. 
 

TABLE I 

 PERFORMANCE RESULTS OF DENSENET 

 

 

Table 3.1 shows the performance results and success measures 

of the classification model. Accuracy, or the rate at which the 

model makes correct predictions, is 94.42%. This indicates that 

the majority of instances are correctly classified. Sensitivity, or 

the ability of the model to correctly recognize true positives, is 

also 94.42%. It shows the percentage of actual positives that the 

model correctly predicts as positive. Specificity, which refers to 

the model's ability to correctly recognize true negatives, is 

98.14%. It indicates the percentage of actual negatives that the 

model correctly predicts as negative. Precision is the ratio of the 

number of instances that the model predicts as positive to the 

number of positive cases, and it is 94.75%. It shows the 

proportion of samples classified as positive that are indeed 

positive. The false positive rate, which is the rate at which the 

model incorrectly classifies true negatives as positives, is 

1.85%. It shows the percentage of negative samples that the 

model incorrectly identifies as positive. The F1 score, which 

balances sensitivity and precision, is 94.42%. It indicates how 

well the classification model balances recall and precision. 

Overall, these results demonstrate that the model performs well. 

High accuracy, sensitivity, specificity, and precision suggest 

that the model can accurately classify both positive and negative 

cases. 

In this study, the classification performance of the proposed 

DenseNet201-based model was evaluated using Receiver 

Operating Characteristic (ROC) curves. ROC curves are widely 

used to assess the performance of classification models by 

illustrating the trade-off between the true positive rate (TPR) 

and the false positive rate (FPR) across various threshold 

settings. In Figure 3.4, ROC curves for each class (CNV, DME, 

DRUSEN, NORMAL) are presented on a single graph using 

the one-vs-rest approach, allowing a comprehensive and 

comparative analysis of the model's discriminative power 

across all classes. 

The results indicate that all classes achieved an AUC (Area 

Under the Curve) value of 1.00, which suggests that the model 

distinguishes each class from the others with perfect accuracy.  
 

Fig. 3.4. ROC curve of the model 

 

 

Metrics           Values 

Accuracy 0.9442 

Sensitivity 0.9442 

Specificity 0.9814 

Precision 0.9475 

False positive rate 0.0185 

F1 score 0.9442 
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The ROC curves cluster closely around the upper-left corner of 

the graph, signifying both high sensitivity and a low false 

positive rate—hallmarks of exceptional classification 

performance. 

In multi-class classification problems, visualizing ROC curves 

for all classes in a single graph is a common and effective 

practice in the academic literature. For instance, Rajagopalan et 

al. (2021) utilized this approach to evaluate the overall 

diagnostic strength of their deep learning models by comparing 

the ROC curves of each class collectively [19]. This strategy 

enables direct visual comparison of class-level performance, 

particularly beneficial for assessing critical clinical classes such 

as CNV and DME. Although presenting separate ROC curves 

for each class may offer visual clarity, it limits holistic 

comparison and may lead to misinterpretation due to 

inconsistent axis scales. Therefore, displaying all ROC curves 

within a single unified graph ensures scale consistency and 

facilitates direct, comparative interpretation of model 

performance across classes. This makes it a valuable method 

for evaluating the overall diagnostic reliability of the model, 

especially in clinical contexts. 

 
 

IV.   CONCLUSION 
In this study, an artificial intelligence-based computer-aided 

diagnostic system was developed for the automated detection of 

retinal diseases using Optical Coherence Tomography (OCT) 

images. Various state-of-the-art deep learning models, 

including GoogleNet, ResNet, EfficientNet, and DenseNet, 

were implemented and comparatively evaluated. Among these 

models, DenseNet-201 achieved the highest classification 

performance with an accuracy of 94.42%, an F1 score of 

94.42%, and an AUC of 1.00. These results indicate that 

DenseNet-201 is highly effective in distinguishing between 

different retinal disease categories and normal cases. 

The system was designed not only to achieve high diagnostic 

accuracy but also to optimize data management through hashing 

mechanisms and to ensure usability through a user-friendly 

interface. Moreover, the system was developed with real-world 

clinical applicability in mind, aiming to support healthcare 

professionals in early and accurate diagnosis of retinal diseases. 

By reducing the workload of clinicians and accelerating the 

diagnostic process, the system has the potential to improve 

patient outcomes and contribute to more efficient clinical 

workflows. 

The proposed system aims to address the shortcomings 

observed in previous studies in the literature. Although some 

studies report high accuracy rates, they often fall short in terms 

of ease of use, real-time processing, and clinical applicability. 

Key distinguishing features of this study include a hash-based 

data recording mechanism that enhances data security, 

acceptance of only OCT (Optical Coherence Tomography) 

images to ensure analysis efficiency, intuitive and training-free 

user interfaces, and integration potential with national health 

software such as e- Nabız. Another notable advantage is the 

ability of the system to be embedded into OCT devices via 

embedded software, enabling direct output generation from the 

device. Patient- specific OCT images are securely stored in the 

MongoDB database with a unique hash value assigned at the 

time of upload. If the same image is uploaded again, only the 

prediction result is displayed without saving a duplicate, thereby 

reducing data redundancy and improving system performance. 

The Gradio-based interface is designed to reduce the workload 

of healthcare professionals and save time. Furthermore, the 

developed patient interface allows individuals to communicate 

directly with their doctors via email. 

Despite these strengths, the system has several practical 

limitations. If the system is to be installed individually on the 

computers located in relevant departments of the Ministry of 

Health, the process may lead to excessive time consumption 

and face limitations due to insufficient hardware capabilities, as 

not every institutional computer may support the operational 

requirements of the model. Alternatively, deploying it via 

centralized servers could increase operational costs. 

Additionally, OCT devices may not be available in every 

healthcare unit, limiting their widespread use. Most 

importantly, since patients' medical images are classified as 

sensitive personal health data, using such images for analysis 

requires special authorization from the Ministry of Health. This 

administrative requirement is often a lengthy and complex 

process, posing a significant barrier to real-world 

implementation. Therefore, while the current version of the 

system cannot yet fully achieve large-scale clinical integration, 

it lays a strong conceptual foundation for future development 

and adoption. 

Looking ahead, several directions for future improvement are 

evident. Expanding the dataset with more diverse and real-

world clinical images will be crucial to enhancing the model's 

generalization capability. Integration of hybrid approaches, 

such as combining deep learning with traditional image 

processing techniques or clinical metadata, may further boost 

diagnostic performance. Efforts should also be made to 

optimize the system for real-time performance and to ensure 

seamless integration with existing healthcare platforms and 

electronic medical record systems. Collaborations with 

hospitals and healthcare providers will be essential to test and 

refine the system in actual clinical practice. Ultimately, 

embedding the model directly into OCT devices or national 

healthcare platforms could significantly increase its 

accessibility and impact. Furthermore, more effective use and 

widespread access may be possible by integrating the model 

directly into OCT devices or health system software and the e-

Nabız platform. However, adequate technical infrastructure, 

financial support and official permissions are required to realize 

these goals. 

In conclusion, this study demonstrates the feasibility and 

potential of an AI-supported OCT image analysis system for 

retinal disease detection. While further work is needed to fully 

realize its clinical utility, the results obtained provide a strong 

foundation for future advancements and broader adoption in 

ophthalmological practice. 
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